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Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction Problems (CSP)
7 Evolutionary Algorithms/ Genetic Algorithms
8 Structural Decomposition Techniques (Tree/Hypertree Decompositions)

TU Dresden, 10th December 2019 PSSAI slide 2 of 48



Constraint satisfaction problems (CSPs)

• Standard search problem:
– state is a “black box”—any old data structure that supports goal

test, eval, successor
• CSP:

– state is defined by variables Xi with values from domain Di
– goal test is a set of constraints specifying allowable combinations of

values for subsets of variables
• Simple example of a formal representation language
• Allows useful general-purpose algorithms with more power

than standard search algorithms
• Main idea: eliminate large portions of search space all at once by

identifying variable/value combinations that violate constraints
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Defining CSPs

Constraint Satisfaction Problem (CSP)
A CSP is defined as a tuple C = 〈X, D, C〉, with
• X a set of variables, {X1, . . . , Xn}.
• D a set of domains, {D1, . . . , Dn}, for each variable.
• C a set of constraints that specify allowable combinations of values.

• Each domain Di consists of a set of allowable values, {v1, . . . , vk} for
variable Xi.

• Each constraint Ci consists of a pair 〈scope, rel〉, where scope is a tuple of
variables in the constraint, and rel defines the possible values.

• A relation can be
– an explicit list of all tuples of values satisfying the constraint, or
– an abstract relation.
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Defining CSPs ctd.

If X1 and X2 both have domain {A, B}, the constraint saying they have different
values can be written as:
• 〈(X1, X2), [(A, B), (B, A)]〉, or
• 〈(X1, X2), X1 6= X2〉.

To solve a CSP, we define a state space and the notion of a solution.
• Each state in a CSP is defined by an assignment of values to some (or all

variables), {Xi = vi, Xj = vj, . . . }.
• An assignment is consistent if it does not violate any constraints.
• A complete assignment has a value assigned to each variable.
• A solution is a consistent, complete assignment.
• A partial assignment is one that assigns values to only some of the

variables.
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Example: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables WA, NT, Q, NSW, V, SA, T

Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors e.g., WA 6= NT (if the

language allows this), or
(WA, NT) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}
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Example: Map-Coloring ctd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA= red, NT = green, Q= red, NSW = green, V = red, SA= blue, T = green}
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Constraint Graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent sub-problem!
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Varieties of CSPs
Discrete variables
• finite domains; size d =⇒ O(dn) complete assignments

– e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
• infinite domains (integers, strings, etc.)

– e.g., job scheduling, variables are start/end days for each job
– need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3
– linear constraints solvable, nonlinear undecidable

Continuous variables
• e.g., start/end times for Hubble Telescope observations
• linear constraints solvable in poly time by LP methods
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Varieties of constraints

Unary constraints involve a single variable,
e.g., SA 6= green

Binary constraints involve pairs of variables,
e.g., SA 6= WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
→ constrained optimization problems
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Example: Cryptarithmetic

OWTF U R
+

OWT
OWT

F O U R

X2 X1X3

Variables: F T U W R O X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints alldiff(F, T, U, W, R, O), O + O = R + 10 · X1, etc.
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Real-world CSPs

• Assignment problems
– e.g., who teaches what class

• Timetabling problems
– e.g., which class is offered when and where?

• Hardware configuration
• Spreadsheets
• Transportation scheduling
• Factory scheduling
• Floorplanning

Notice that many real-world problems involve real-valued variables
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Constraint Propagation: Inference in CSPs

In regular state-space search, an algorithm can only perform search. In CSPs
there is a choice
• an algorithm can search (choose a new variable assignment form several

possibilities), or
• do a specific type of inference called constraint propagation:

– using the constraints to reduce the number of legal values for a
variable

– this can reduce the legal values for another variable,
– and so on.

Constraint propagation may be
• intertwined with search, or
• done as a pre-processing step (could solve the whole problem; no search

is required).
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Constraint Propagation

The key idea is local consistency.
• Treat each variable as a node in a graph.
• Each binary constraint represents an arc.
• Enforcing local consistency in each part of the graph eliminates

inconsistent values throughout the graph.

Different types of local consistency:
• Node consistency
• Arc consistency
• Path consistency
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Node Consistency

Node consistency
A variable X is node-consistent if all values in the domain of X satisfy the unary
constraints of X. A CSP is node-consistent if every variable is node consistent.

Example
South Australia dislikes green.
• Variable SA starts with {red, green, blue},
• make it node consistent by eliminating green,
• reduced domain of SA is {red, blue}.
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Arc Consistency

Arc consistency
A variable is arc-consistent if every value in its domain satisfies the variable’s
binary constraints. Xi is arc-consistent wrt. Xj if for every value in Di there is
some value in Dj that satisfies the binary constraint on the arc (Xi, Xj). A CSP is
arc-consistent if every variable is arc-consistent with every other variable.

Example
Consider the constraint Y = X2, where the domain of both X and Y is the set of
digits. We can write the constraint explicitly as

〈(X, Y), {(0, 0), (1, 1), (2, 4), (3, 9)}〉.

To make X arc-consistent wrt. Y, we reduce X’s domain to {0, 1, 2, 3}. We also
reduce Y ’s domain to {0, 1, 4, 9} and the CSP is arc-consistent.
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Path Consistency

• Arc consistency can reduce domains of variables and sometimes find a
solution (or failure).

• But for other networks, arc consistency fails to make enough inferences.
• Example of map coloring of Australia with two colors.

Path consistency
A two-variable set {Xi, Xj} is path-consistent wrt. a third variable Xm if, for every
assignment {Xi = a, Xj = b} consistent with constraints on {Xi, Xj}, there is an
assignment to Xm that satisfies the constraints on {Xi, Xm} and {Xm, Xj}.
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Example: Path Consistency

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Consider two-coloring of Australia. We make {WA, SA} path consistent wrt. NT.

• Start by enumerating the consistent assignments to the set.
– {WA = red, SA = blue}
– {WA = blue, SA = red}

• With both assignments NT can be neither red nor blue.
• Eliminate both assignments.
• Thus, there is no solution to the problem.
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Standard search formulation (incremental)

• Let’s start with the straightforward, dumb approach, then fix it
• States are defined by the values assigned so far

Initial state: the empty assignment, {}
Successor function: assign a value to an unassigned variable that does not conflict with

current assignment.
=⇒ fail if no legal assignments (not fixable!)

Goal test: the current assignment is complete

1 This is the same for all CSPs! ,
2 Every solution appears at depth n with n variables

=⇒ use depth-first search
3 Path is irrelevant, so can also use complete-state formulation
4 b=(n− `)d at depth `, hence n!dn leaves!!!! /
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Backtracking search

• Variable assignments are commutative, i.e.,
[WA= red then NT = green] same as [NT = green then WA= red]

• Only need to consider assignments to a single variable at each node
=⇒ b= d and there are dn leaves

• Depth-first search for CSPs with single-variable assignments is called
backtracking search

• Backtracking search is the basic uninformed algorithm for CSPs
• Can solve n-queens for n ≈ 25
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Backtracking search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var← Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result←Recursive-Backtracking(assignment, csp)
if result 6= failure then return result
remove {var = value} from assignment

return failure
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Backtracking example
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Backtracking example
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Backtracking example

TU Dresden, 10th December 2019 PSSAI slide 24 of 48



Backtracking example
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Improving backtracking efficiency

General-purpose methods can give huge gains in speed:
1 Which variable should be assigned next?
2 In what order should its values be tried?
3 Can we detect inevitable failure early?
4 Can we take advantage of problem structure?
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Minimum remaining values

Minimum remaining values (MRV):
• choose the variable with the fewest legal values
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Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
• choose the variable with the most constraints on remaining variables
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Least constraining value

Given a variable, choose the least constraining value:
• the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible
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Forward checking

Idea:
• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA NT Q NSW V SA T
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Forward checking

Idea:
• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values
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Constraint propagation

Forward checking propagates information from assigned to unassigned
variables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

• NT and SA cannot both be blue!
• Constraint propagation repeatedly enforces constraints locally
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Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T
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Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

• If X loses a value, neighbors of X need to be rechecked
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Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

• If X loses a value, neighbors of X need to be rechecked
• Arc consistency detects failure earlier than forward checking
• Can be run as a pre-processor or after each assignment
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Arc consistency algorithm

function AC-3( csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, Xj)←Remove-First(queue)
if Remove-Inconsistent-Values(Xi, Xj) then

for each Xk in Neighbors[Xi] do
add (Xk, Xi) to queue

function Remove-Inconsistent-Values( Xi, Xj) returns true iff succeeds
removed← false
for each x in Domain[Xi] do

if no value y in Domain[Xj] allows (x,y) to satisfy the constraint Xi ↔ Xj
then delete x from Domain[Xi]; removed← true

return removed
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Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

• Tasmania and mainland are independent sub-problems
• Identifiable as connected components of constraint graph
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Problem structure ctd.

• Suppose each subproblem has c variables out of n total
• Worst-case solution cost is n/c · dc, linear in n

• E.g., n= 80, d = 2, c= 20
– 280 = 4 billion years at 10 million nodes/sec
– 4 · 220 = 0.4 seconds at 10 million nodes/sec

TU Dresden, 10th December 2019 PSSAI slide 41 of 48



Tree-structured CSPs

A
B

C
D

E

F

Theorem
If the constraint graph has no loops, the CSP can be solved in O(n d2) time.

• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to logical and probabilistic reasoning: an
important example of the relation between syntactic restrictions and the
complexity of reasoning.
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Algorithm for tree-structured CSPs

1 Choose a variable as root, order variables from root to leaves such that
every node’s parent precedes it in the ordering

A
B

C
D

E

F
A B C D E F

2 For j from n down to 2, apply RemoveInconsistent(Parent(Xj), Xj)

3 For j from 1 to n, assign Xj consistently with Parent(Xj)
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Nearly tree-structured CSPs

• Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

• Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

• Cutset size c =⇒ runtime O(dc · (n− c)d2), very fast for small c
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Iterative algorithms for CSPs

• Hill-climbing, simulated annealing typically work with “complete” states,
i.e., all variables assigned

• To apply to CSPs:
– allow states with unsatisfied constraints
– operators reassign variable values

• Variable selection: randomly select any conflicted variable
• Value selection by min-conflicts heuristic:

– choose value that violates the fewest constraints
– i.e., hillclimb with h(n) = total number of violated constraints
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Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0
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Summary

• CSPs are a special kind of problem:
– states defined by values of a fixed set of variables
– goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable assigned per node
• Variable ordering and value selection heuristics help significantly
• Forward checking prevents assignments that guarantee later failure
• Constraint propagation (e.g., arc consistency) does additional work to

constrain values and detect inconsistencies
• The CSP representation allows analysis of problem structure
• Tree-structured CSPs can be solved in linear time
• Iterative min-conflicts is usually effective in practice
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