
Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH
IN ARTIFICIAL INTELLIGENCE

Lecture 8 Constraint Satisfaction Problems

Sarah Gaggl

Dresden, 10th December 2019

Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction Problems (CSP)
7 Evolutionary Algorithms/ Genetic Algorithms
8 Structural Decomposition Techniques (Tree/Hypertree Decompositions)

TU Dresden, 10th December 2019 PSSAI slide 2 of 48

Constraint satisfaction problems (CSPs)

• Standard search problem:
– state is a “black box”—any old data structure that supports goal

test, eval, successor
• CSP:

– state is defined by variables Xi with values from domain Di
– goal test is a set of constraints specifying allowable combinations of

values for subsets of variables
• Simple example of a formal representation language
• Allows useful general-purpose algorithms with more power

than standard search algorithms
• Main idea: eliminate large portions of search space all at once by

identifying variable/value combinations that violate constraints

TU Dresden, 10th December 2019 PSSAI slide 3 of 48

Defining CSPs

Constraint Satisfaction Problem (CSP)
A CSP is defined as a tuple C = 〈X, D, C〉, with
• X a set of variables, {X1, . . . , Xn}.
• D a set of domains, {D1, . . . , Dn}, for each variable.
• C a set of constraints that specify allowable combinations of values.

• Each domain Di consists of a set of allowable values, {v1, . . . , vk} for
variable Xi.

• Each constraint Ci consists of a pair 〈scope, rel〉, where scope is a tuple of
variables in the constraint, and rel defines the possible values.

• A relation can be
– an explicit list of all tuples of values satisfying the constraint, or
– an abstract relation.

TU Dresden, 10th December 2019 PSSAI slide 4 of 48

Defining CSPs ctd.

If X1 and X2 both have domain {A, B}, the constraint saying they have different
values can be written as:
• 〈(X1, X2), [(A, B), (B, A)]〉, or
• 〈(X1, X2), X1 6= X2〉.

To solve a CSP, we define a state space and the notion of a solution.
• Each state in a CSP is defined by an assignment of values to some (or all

variables), {Xi = vi, Xj = vj, . . . }.
• An assignment is consistent if it does not violate any constraints.
• A complete assignment has a value assigned to each variable.
• A solution is a consistent, complete assignment.
• A partial assignment is one that assigns values to only some of the

variables.

TU Dresden, 10th December 2019 PSSAI slide 5 of 48

Example: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables WA, NT, Q, NSW, V, SA, T

Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors e.g., WA 6= NT (if the

language allows this), or
(WA, NT) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}

TU Dresden, 10th December 2019 PSSAI slide 6 of 48

Example: Map-Coloring ctd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA= red, NT = green, Q= red, NSW = green, V = red, SA= blue, T = green}

TU Dresden, 10th December 2019 PSSAI slide 7 of 48

Constraint Graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent sub-problem!

TU Dresden, 10th December 2019 PSSAI slide 8 of 48

Varieties of CSPs
Discrete variables
• finite domains; size d =⇒ O(dn) complete assignments

– e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
• infinite domains (integers, strings, etc.)

– e.g., job scheduling, variables are start/end days for each job
– need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3
– linear constraints solvable, nonlinear undecidable

Continuous variables
• e.g., start/end times for Hubble Telescope observations
• linear constraints solvable in poly time by LP methods

TU Dresden, 10th December 2019 PSSAI slide 9 of 48

Varieties of constraints

Unary constraints involve a single variable,
e.g., SA 6= green

Binary constraints involve pairs of variables,
e.g., SA 6= WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
→ constrained optimization problems

TU Dresden, 10th December 2019 PSSAI slide 10 of 48

Example: Cryptarithmetic

OWTF U R
+

OWT
OWT

F O U R

X2 X1X3

Variables: F T U W R O X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints alldiff(F, T, U, W, R, O), O + O = R + 10 · X1, etc.

TU Dresden, 10th December 2019 PSSAI slide 11 of 48

Real-world CSPs

• Assignment problems
– e.g., who teaches what class

• Timetabling problems
– e.g., which class is offered when and where?

• Hardware configuration
• Spreadsheets
• Transportation scheduling
• Factory scheduling
• Floorplanning

Notice that many real-world problems involve real-valued variables

TU Dresden, 10th December 2019 PSSAI slide 12 of 48

Constraint Propagation: Inference in CSPs

In regular state-space search, an algorithm can only perform search. In CSPs
there is a choice
• an algorithm can search (choose a new variable assignment form several

possibilities), or
• do a specific type of inference called constraint propagation:

– using the constraints to reduce the number of legal values for a
variable

– this can reduce the legal values for another variable,
– and so on.

Constraint propagation may be
• intertwined with search, or
• done as a pre-processing step (could solve the whole problem; no search

is required).

TU Dresden, 10th December 2019 PSSAI slide 13 of 48

Constraint Propagation

The key idea is local consistency.
• Treat each variable as a node in a graph.
• Each binary constraint represents an arc.
• Enforcing local consistency in each part of the graph eliminates

inconsistent values throughout the graph.

Different types of local consistency:
• Node consistency
• Arc consistency
• Path consistency

TU Dresden, 10th December 2019 PSSAI slide 14 of 48

Node Consistency

Node consistency
A variable X is node-consistent if all values in the domain of X satisfy the unary
constraints of X. A CSP is node-consistent if every variable is node consistent.

Example
South Australia dislikes green.
• Variable SA starts with {red, green, blue},
• make it node consistent by eliminating green,
• reduced domain of SA is {red, blue}.

TU Dresden, 10th December 2019 PSSAI slide 15 of 48

Arc Consistency

Arc consistency
A variable is arc-consistent if every value in its domain satisfies the variable’s
binary constraints. Xi is arc-consistent wrt. Xj if for every value in Di there is
some value in Dj that satisfies the binary constraint on the arc (Xi, Xj). A CSP is
arc-consistent if every variable is arc-consistent with every other variable.

Example
Consider the constraint Y = X2, where the domain of both X and Y is the set of
digits. We can write the constraint explicitly as

〈(X, Y), {(0, 0), (1, 1), (2, 4), (3, 9)}〉.

To make X arc-consistent wrt. Y, we reduce X’s domain to {0, 1, 2, 3}. We also
reduce Y ’s domain to {0, 1, 4, 9} and the CSP is arc-consistent.

TU Dresden, 10th December 2019 PSSAI slide 16 of 48

Path Consistency

• Arc consistency can reduce domains of variables and sometimes find a
solution (or failure).

• But for other networks, arc consistency fails to make enough inferences.
• Example of map coloring of Australia with two colors.

Path consistency
A two-variable set {Xi, Xj} is path-consistent wrt. a third variable Xm if, for every
assignment {Xi = a, Xj = b} consistent with constraints on {Xi, Xj}, there is an
assignment to Xm that satisfies the constraints on {Xi, Xm} and {Xm, Xj}.

TU Dresden, 10th December 2019 PSSAI slide 17 of 48

Example: Path Consistency

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Consider two-coloring of Australia. We make {WA, SA} path consistent wrt. NT.

• Start by enumerating the consistent assignments to the set.
– {WA = red, SA = blue}
– {WA = blue, SA = red}

• With both assignments NT can be neither red nor blue.
• Eliminate both assignments.
• Thus, there is no solution to the problem.

TU Dresden, 10th December 2019 PSSAI slide 18 of 48

Standard search formulation (incremental)

• Let’s start with the straightforward, dumb approach, then fix it
• States are defined by the values assigned so far

Initial state: the empty assignment, {}
Successor function: assign a value to an unassigned variable that does not conflict with

current assignment.
=⇒ fail if no legal assignments (not fixable!)

Goal test: the current assignment is complete

1 This is the same for all CSPs! ,
2 Every solution appears at depth n with n variables

=⇒ use depth-first search
3 Path is irrelevant, so can also use complete-state formulation
4 b=(n− `)d at depth `, hence n!dn leaves!!!! /

TU Dresden, 10th December 2019 PSSAI slide 19 of 48

Backtracking search

• Variable assignments are commutative, i.e.,
[WA= red then NT = green] same as [NT = green then WA= red]

• Only need to consider assignments to a single variable at each node
=⇒ b= d and there are dn leaves

• Depth-first search for CSPs with single-variable assignments is called
backtracking search

• Backtracking search is the basic uninformed algorithm for CSPs
• Can solve n-queens for n ≈ 25

TU Dresden, 10th December 2019 PSSAI slide 20 of 48

Backtracking search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var← Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result←Recursive-Backtracking(assignment, csp)
if result 6= failure then return result
remove {var = value} from assignment

return failure

TU Dresden, 10th December 2019 PSSAI slide 21 of 48

Backtracking example

TU Dresden, 10th December 2019 PSSAI slide 22 of 48

Backtracking example

TU Dresden, 10th December 2019 PSSAI slide 23 of 48

Backtracking example

TU Dresden, 10th December 2019 PSSAI slide 24 of 48

Backtracking example

TU Dresden, 10th December 2019 PSSAI slide 25 of 48

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:
1 Which variable should be assigned next?
2 In what order should its values be tried?
3 Can we detect inevitable failure early?
4 Can we take advantage of problem structure?

TU Dresden, 10th December 2019 PSSAI slide 26 of 48

Minimum remaining values

Minimum remaining values (MRV):
• choose the variable with the fewest legal values

TU Dresden, 10th December 2019 PSSAI slide 27 of 48

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
• choose the variable with the most constraints on remaining variables

TU Dresden, 10th December 2019 PSSAI slide 28 of 48

Least constraining value

Given a variable, choose the least constraining value:
• the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

TU Dresden, 10th December 2019 PSSAI slide 29 of 48

Forward checking

Idea:
• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA NT Q NSW V SA T

TU Dresden, 10th December 2019 PSSAI slide 30 of 48

Forward checking

Idea:
• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA NT Q NSW V SA T

TU Dresden, 10th December 2019 PSSAI slide 31 of 48

Forward checking

Idea:
• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA NT Q NSW V SA T

TU Dresden, 10th December 2019 PSSAI slide 32 of 48

Forward checking

Idea:
• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA NT Q NSW V SA T

TU Dresden, 10th December 2019 PSSAI slide 33 of 48

Constraint propagation

Forward checking propagates information from assigned to unassigned
variables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

• NT and SA cannot both be blue!
• Constraint propagation repeatedly enforces constraints locally

TU Dresden, 10th December 2019 PSSAI slide 34 of 48

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

TU Dresden, 10th December 2019 PSSAI slide 35 of 48

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

TU Dresden, 10th December 2019 PSSAI slide 36 of 48

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

• If X loses a value, neighbors of X need to be rechecked

TU Dresden, 10th December 2019 PSSAI slide 37 of 48

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

• If X loses a value, neighbors of X need to be rechecked
• Arc consistency detects failure earlier than forward checking
• Can be run as a pre-processor or after each assignment

TU Dresden, 10th December 2019 PSSAI slide 38 of 48

Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, Xj)←Remove-First(queue)
if Remove-Inconsistent-Values(Xi, Xj) then

for each Xk in Neighbors[Xi] do
add (Xk, Xi) to queue

function Remove-Inconsistent-Values(Xi, Xj) returns true iff succeeds
removed← false
for each x in Domain[Xi] do

if no value y in Domain[Xj] allows (x,y) to satisfy the constraint Xi ↔ Xj
then delete x from Domain[Xi]; removed← true

return removed

TU Dresden, 10th December 2019 PSSAI slide 39 of 48

Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

• Tasmania and mainland are independent sub-problems
• Identifiable as connected components of constraint graph

TU Dresden, 10th December 2019 PSSAI slide 40 of 48

Problem structure ctd.

• Suppose each subproblem has c variables out of n total
• Worst-case solution cost is n/c · dc, linear in n

• E.g., n= 80, d = 2, c= 20
– 280 = 4 billion years at 10 million nodes/sec
– 4 · 220 = 0.4 seconds at 10 million nodes/sec

TU Dresden, 10th December 2019 PSSAI slide 41 of 48

Tree-structured CSPs

A
B

C
D

E

F

Theorem
If the constraint graph has no loops, the CSP can be solved in O(n d2) time.

• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to logical and probabilistic reasoning: an
important example of the relation between syntactic restrictions and the
complexity of reasoning.

TU Dresden, 10th December 2019 PSSAI slide 42 of 48

Algorithm for tree-structured CSPs

1 Choose a variable as root, order variables from root to leaves such that
every node’s parent precedes it in the ordering

A
B

C
D

E

F
A B C D E F

2 For j from n down to 2, apply RemoveInconsistent(Parent(Xj), Xj)

3 For j from 1 to n, assign Xj consistently with Parent(Xj)

TU Dresden, 10th December 2019 PSSAI slide 43 of 48

Nearly tree-structured CSPs

• Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

• Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

• Cutset size c =⇒ runtime O(dc · (n− c)d2), very fast for small c

TU Dresden, 10th December 2019 PSSAI slide 44 of 48

Iterative algorithms for CSPs

• Hill-climbing, simulated annealing typically work with “complete” states,
i.e., all variables assigned

• To apply to CSPs:
– allow states with unsatisfied constraints
– operators reassign variable values

• Variable selection: randomly select any conflicted variable
• Value selection by min-conflicts heuristic:

– choose value that violates the fewest constraints
– i.e., hillclimb with h(n) = total number of violated constraints

TU Dresden, 10th December 2019 PSSAI slide 45 of 48

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

TU Dresden, 10th December 2019 PSSAI slide 46 of 48

Summary

• CSPs are a special kind of problem:
– states defined by values of a fixed set of variables
– goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable assigned per node
• Variable ordering and value selection heuristics help significantly
• Forward checking prevents assignments that guarantee later failure
• Constraint propagation (e.g., arc consistency) does additional work to

constrain values and detect inconsistencies
• The CSP representation allows analysis of problem structure
• Tree-structured CSPs can be solved in linear time
• Iterative min-conflicts is usually effective in practice

TU Dresden, 10th December 2019 PSSAI slide 47 of 48

References

Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach (3. edition). Pearson
Education, 2010.

TU Dresden, 10th December 2019 PSSAI slide 48 of 48

