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Syntax of Pure Prolog

p(X,a) :- q(X), r(X,Yi). ≙ p(x, a) ← q(x), r(x,yi)

% Comment

Ambivalent syntax:

 p(p(a,b), [c,p(a)]) ≙ p
1
(p

2
(a, b), [c, p

3
(a)]) ← 

 predicate p/2, functions p/1, p/2

Anonymous variables:

 p(X,a) :- q(X), r(X,_) ≙ p(x, a) ← q(x), r(x, y) 
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Specifics of Prolog

Leftmost selection rule

LD-resolution, LD-resolvent, ...

A program is a sequence of clauses

Unification without occur check

Depth-first search, backtracking
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LD-Trees and Prolog Trees

Finitely branching trees of queries, possibly marked with “success” or “failure”, 

produced as follows:

P program and Q0 query

Start with tree TQ0
, which contains Q0 as unique node.

LD-Tree for P  {Q0}:

repeatedly apply to current tree T and every unmarked leaf Q in T  the operation
expand(T, Q)
( LD-Tree obeys leftmost selection rule)

Prolog Tree for P  {Q0}:

repeatedly apply to current tree T and leftmost unmarked leaf Q in T   the operation
expand(T, Q)
( Prolog Tree additionally obeys order of clauses and depth-first search)
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The Expand Operation

operation expand(T, Q) is defined by:

if Q = □, then mark Q with “success”

if Q has no LD-resolvents, then mark Q with “failure”

else add for each clause that is applicable to the leftmost atom of Q an LD-
resolvent as descendant of Q.  If a Prolog tree is constructed, respect the
order in which the clauses appear in the program.
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Outcomes of Prolog Computations (I)

Assume here that also in LD-trees the order in which the clauses appear in the
program is respected:

Q0 universally terminates

:Û LD-tree for P  {Q0} is finite

Q0 diverges

:Û LD-tree for P  {Q0} contains an infinite branch to the left of any success node

Q0 potentially diverges

:Û LD-tree for P  {Q0} contains a success node, all branches to its left are finite,
an infinite branch exists to its right
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Outcomes of Prolog Computations (II)

Q0 produces infinitely many answers

:Û LD-tree for P  {Q0} has infinitely many success nodes, all infinite branches lie
to the right of them

Q0 fails

:Û LD-tree for P  {Q0} is finitely failed
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Recap: The List Datastructure

[a1,..., an] [apples,pears,plums]

[head | tail] = [apples | [pears,plums]]

member(X, [X | List]).

member(X, [Y | List]) :- member(X, List).
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Some List Processing Predicates (I)

% app(Xs,Ys,Zs) :- Zs is the concatenation of lists Xs and Ys

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

% rev1(Xs,Ys) :- Ys is the reversal of list Xs

rev1([],[]).

rev1([X|Xs],Ys) :- rev1(Xs,Zs), app(Zs,[X],Ys).

% rev2(Xs,Ys) :- Ys is the reversal of list Xs

rev2(Xs,Ys) :- rev(Xs,[],Ys).

rev([],Ys,Ys).

rev([X|Xs],Ys,Zs) :- rev(Xs,[X|Ys],Zs).

% sub(Xs,Ys) :- Xs is a sublist of list Ys

sub(Xs,Ys) :- app(Xs,_,Zs), app(_,Zs,Ys).
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Some List Processing Predicates (II)
% perm(Xs,Ys) :- Ys is a permutation of list Xs

perm([],[]).

perm(Xs,[X|Ys]) :- app(X1s,[X|X2s],Xs), app(X1s,X2s,Zs), perm(Zs,Ys).

% quick(Xs,Ys) :- Ys is obtained by sorting Xs using quicksort

quick([],[]).

quick([X|Xs],Ys) :- smaller(Xs,X,Ss), quick(Ss,X1s),

                    greater(Xs,X,Gs), quick(Gs,X2s),

                    app(X1s,[X|X2s],Ys).

smaller([],_,[]).

smaller([Y|Ys],X,[Y|Zs]) :- Y<X,  smaller(Ys,X,Zs).

smaller([Y|Ys],X,Zs)     :- Y>=X, smaller(Ys,X,Zs).

greater([],_,[]).

greater([Y|Ys],X,[Y|Zs]) :- Y>=X, greater(Ys,X,Zs).

greater([Y|Ys],X,Zs)     :- Y<X,  greater(Ys,X,Zs).
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Arithmetic Expressions

arithmetic expression

:Û

term over variables and the following function symbols:

 0, 1, -1, 2, -2, ... (nullary)

 –, abs (unary)

 +, –, *, //, mod (binary)

ground arithmetic expression (GAE)

:Û variable free arithmetic expression
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Comparison Relations and GAEs (I)

Comparison relations are defined only for GAEs.

| ?- 5*2 > 3+4.

yes

| ?- [] < 5.

{DOMAIN ERROR: []<5 – arg 1: expected expression, found []}

| ?- X < 5.

{INSTANTIATION ERROR: _33<5 – arg 1}
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Comparison Relations and GAEs (II)

max(X, Y, X) :- X > Y.

max(X, Y, Y) :- X =< Y.

| ?- max(2, 3, Z).

Z = 3

| ?- max(Z, 7, 7).

{INSTANTIATION ERROR: _33=<7 – arg 1}

| ?- max(Z, 7, 8).

Z = 8
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Evaluation of GAEs

The evaluation of GAEs is triggered by the sub-query

 s is t

t is a GAE with value val(t)  �

- s is a GAE syntactically identical to val(t)

    �  sub-query succeeds with CAS ²

- s is a variable

�     sub-query succeeds with CAS {s=val(t)}

- else � sub-query fails

t is not a GAE � runtime error
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Evaluation of GAEs - Examples

| ?- 7 is 3+4.

yes

| ?- X is 3+4.

X = 7

| ?- 8 is 3+4.

no

| ?- 3+4 is 3+4

no

| ?- X is Y+1.

{INSTANTIATION ERROR: _36 is _33+1 – arg 2}
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The Cut – Advantages and Disadvantages

Cut operator is nullary predicate symbol, denoted by “ !”, which can prune off
subtrees of Prolog trees.

Advantages:

Efficiency gain, since search space is reduced.

Simplification of programs (e.g. of programs dealing with sets).

Disadvantages:

Main source of errors in Prolog programs (e.g. if successful branches are
pruned off or wrong answers are delivered).

Harder verification of programs, since procedural interpretation must be used
(declarative interpretation cannot be used, since the semantics of the cut
depends on leftmost selection rule and clause ordering).
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Informal Semantics of Cut

Let P be a Prolog program containing exactly the following k clauses for a predicate p:

 p(t1,1, ..., t1,n) ← A1

 ...

 p(ti,1, ..., ti,n) ← B, !, C

 ...

 p(tk,1, ..., tk,n) ← Ak

Let some atom p(t1, ..., tn) in a query be resolved using the i-th clause for p and
suppose that later the cut atom thus introduced become the leftmost atom. Then:

The indicated occurrence of ! succeeds immediately.

All other ways of resolving the atoms in B are discarded.

All derivations of p(t1, ..., tn) using the (i + 1)-st to k-th clause for p are discarded.
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Formal Semantics of Cut

Let Q be a node in an initial fragment of a Prolog tree T with the cut as leftmost atom.
Origin of this cut-occurrence :Û

youngest ancestor of Q in T  that contains less cut atoms than Q

Construction of Prolog trees with cuts by extending the operation expand(T, Q) (cf. Slide 6):

if Q = !, A and Q' is origin of this cut-occurrence, then add A as only direct descendant 

of Q and remove from T all the nodes that are descendants of Q' and lie to the right of
the path connecting Q' and Q.
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Using the Cut: Sets in Prolog (I)

member(X,[X|_]).

member(X,[_|Xs]) :- member(X,Xs).

set([],[]).

set([X|Xs],Ys)     :- member(X,Xs), !, set(Xs,Ys).

set([X|Xs],[X|Ys]) :- set(Xs,Ys).

| ?- set([1,2,1],Us).

Us = [2,1] ? ;

no

| ?- set([1,2,1],[2,1]).

yes

| ?- set([1,2,1],[1,2]).

no
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Using the Cut: Sets in Prolog (II)

member(X,[X|_]).

member(X,[_|Xs]) :- member(X,Xs).

union([],Ys,Ys).

union([X|Xs],Ys,Zs)     :- member(X,Ys), !, union(Xs,Ys,Zs).

union([X|Xs],Ys,[X|Zs]) :- union(Xs,Ys,Zs).

| ?- union([1,2],[1,3],Us).

Us = [2,1,3] ? ;

no
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Incorrect Use of Cut: Successful Branches Pruned off

only_b(a) :- !,test(a).

only_b(b) :- !,test(b).

test(b).

| ?- only_b(a).

no

| ?- only_b(b).

yes

| ?- only_b(X).

no
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Incorrect Use of Cut: Wrong Answers

% max(X,Y,Z) :- Z is the maximum of X and Y

max(X,Y,Y) :- X=<Y,!.

max(X,_,X).

| ?- max(2,5,Z).

Z = 5

| ?- max(2,1,Z).

Z = 2

| ?- max(2,5,2).

yes
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Objectives

Pure PROLOG vs. logic programming

Lists in Pure PROLOG

Adding Arithmetics to Pure PROLOG

Adding the Cut to Pure PROLOG
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