
1Foundations of Logic Programming Pure PROLOG

Chapter 5

Pure PROLOG

2Foundations of Logic Programming Pure PROLOG

Outline

Pure PROLOG vs. logic programming

Lists in Pure PROLOG

Adding Arithmetics to Pure PROLOG

Adding the Cut to Pure PROLOG

3Foundations of Logic Programming Pure PROLOG

Syntax of Pure Prolog

p(X,a) :- q(X), r(X,Yi). ≙ p(x, a) ← q(x), r(x,yi)

% Comment

Ambivalent syntax:

 p(p(a,b), [c,p(a)]) ≙ p
1
(p

2
(a, b), [c, p

3
(a)]) ←

 predicate p/2, functions p/1, p/2

Anonymous variables:

 p(X,a) :- q(X), r(X,_) ≙ p(x, a) ← q(x), r(x, y)

4Foundations of Logic Programming Pure PROLOG

Specifics of Prolog

Leftmost selection rule

LD-resolution, LD-resolvent, ...

A program is a sequence of clauses

Unification without occur check

Depth-first search, backtracking

5Foundations of Logic Programming Pure PROLOG

LD-Trees and Prolog Trees

Finitely branching trees of queries, possibly marked with “success” or “failure”,

produced as follows:

P program and Q0 query

Start with tree TQ0
, which contains Q0 as unique node.

LD-Tree for P {Q0}:

repeatedly apply to current tree T and every unmarked leaf Q in T the operation
expand(T, Q)
(LD-Tree obeys leftmost selection rule)

Prolog Tree for P {Q0}:

repeatedly apply to current tree T and leftmost unmarked leaf Q in T the operation
expand(T, Q)
(Prolog Tree additionally obeys order of clauses and depth-first search)

6Foundations of Logic Programming Pure PROLOG

The Expand Operation

operation expand(T, Q) is defined by:

if Q = □, then mark Q with “success”

if Q has no LD-resolvents, then mark Q with “failure”

else add for each clause that is applicable to the leftmost atom of Q an LD-
resolvent as descendant of Q. If a Prolog tree is constructed, respect the
order in which the clauses appear in the program.

7Foundations of Logic Programming Pure PROLOG

Outcomes of Prolog Computations (I)

Assume here that also in LD-trees the order in which the clauses appear in the
program is respected:

Q0 universally terminates

:Û LD-tree for P {Q0} is finite

Q0 diverges

:Û LD-tree for P {Q0} contains an infinite branch to the left of any success node

Q0 potentially diverges

:Û LD-tree for P {Q0} contains a success node, all branches to its left are finite,
an infinite branch exists to its right

8Foundations of Logic Programming Pure PROLOG

Outcomes of Prolog Computations (II)

Q0 produces infinitely many answers

:Û LD-tree for P {Q0} has infinitely many success nodes, all infinite branches lie
to the right of them

Q0 fails

:Û LD-tree for P {Q0} is finitely failed

9Foundations of Logic Programming Pure PROLOG

Recap: The List Datastructure

[a1,..., an] [apples,pears,plums]

[head | tail] = [apples | [pears,plums]]

member(X, [X | List]).

member(X, [Y | List]) :- member(X, List).

10Foundations of Logic Programming Pure PROLOG

Some List Processing Predicates (I)

% app(Xs,Ys,Zs) :- Zs is the concatenation of lists Xs and Ys

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

% rev1(Xs,Ys) :- Ys is the reversal of list Xs

rev1([],[]).

rev1([X|Xs],Ys) :- rev1(Xs,Zs), app(Zs,[X],Ys).

% rev2(Xs,Ys) :- Ys is the reversal of list Xs

rev2(Xs,Ys) :- rev(Xs,[],Ys).

rev([],Ys,Ys).

rev([X|Xs],Ys,Zs) :- rev(Xs,[X|Ys],Zs).

% sub(Xs,Ys) :- Xs is a sublist of list Ys

sub(Xs,Ys) :- app(Xs,_,Zs), app(_,Zs,Ys).

11Foundations of Logic Programming Pure PROLOG

Some List Processing Predicates (II)
% perm(Xs,Ys) :- Ys is a permutation of list Xs

perm([],[]).

perm(Xs,[X|Ys]) :- app(X1s,[X|X2s],Xs), app(X1s,X2s,Zs), perm(Zs,Ys).

% quick(Xs,Ys) :- Ys is obtained by sorting Xs using quicksort

quick([],[]).

quick([X|Xs],Ys) :- smaller(Xs,X,Ss), quick(Ss,X1s),

 greater(Xs,X,Gs), quick(Gs,X2s),

 app(X1s,[X|X2s],Ys).

smaller([],_,[]).

smaller([Y|Ys],X,[Y|Zs]) :- Y<X, smaller(Ys,X,Zs).

smaller([Y|Ys],X,Zs) :- Y>=X, smaller(Ys,X,Zs).

greater([],_,[]).

greater([Y|Ys],X,[Y|Zs]) :- Y>=X, greater(Ys,X,Zs).

greater([Y|Ys],X,Zs) :- Y<X, greater(Ys,X,Zs).

12Foundations of Logic Programming Pure PROLOG

Arithmetic Expressions

arithmetic expression

:Û

term over variables and the following function symbols:

 0, 1, -1, 2, -2, ... (nullary)

 –, abs (unary)

 +, –, *, //, mod (binary)

ground arithmetic expression (GAE)

:Û variable free arithmetic expression

13Foundations of Logic Programming Pure PROLOG

Comparison Relations and GAEs (I)

Comparison relations are defined only for GAEs.

| ?- 5*2 > 3+4.

yes

| ?- [] < 5.

{DOMAIN ERROR: []<5 – arg 1: expected expression, found []}

| ?- X < 5.

{INSTANTIATION ERROR: _33<5 – arg 1}

14Foundations of Logic Programming Pure PROLOG

Comparison Relations and GAEs (II)

max(X, Y, X) :- X > Y.

max(X, Y, Y) :- X =< Y.

| ?- max(2, 3, Z).

Z = 3

| ?- max(Z, 7, 7).

{INSTANTIATION ERROR: _33=<7 – arg 1}

| ?- max(Z, 7, 8).

Z = 8

15Foundations of Logic Programming Pure PROLOG

Evaluation of GAEs

The evaluation of GAEs is triggered by the sub-query

 s is t

t is a GAE with value val(t) �

- s is a GAE syntactically identical to val(t)

 � sub-query succeeds with CAS ²

- s is a variable

� sub-query succeeds with CAS {s=val(t)}

- else � sub-query fails

t is not a GAE � runtime error

16Foundations of Logic Programming Pure PROLOG

Evaluation of GAEs - Examples

| ?- 7 is 3+4.

yes

| ?- X is 3+4.

X = 7

| ?- 8 is 3+4.

no

| ?- 3+4 is 3+4

no

| ?- X is Y+1.

{INSTANTIATION ERROR: _36 is _33+1 – arg 2}

17Foundations of Logic Programming Pure PROLOG

The Cut – Advantages and Disadvantages

Cut operator is nullary predicate symbol, denoted by “ !”, which can prune off
subtrees of Prolog trees.

Advantages:

Efficiency gain, since search space is reduced.

Simplification of programs (e.g. of programs dealing with sets).

Disadvantages:

Main source of errors in Prolog programs (e.g. if successful branches are
pruned off or wrong answers are delivered).

Harder verification of programs, since procedural interpretation must be used
(declarative interpretation cannot be used, since the semantics of the cut
depends on leftmost selection rule and clause ordering).

18Foundations of Logic Programming Pure PROLOG

Informal Semantics of Cut

Let P be a Prolog program containing exactly the following k clauses for a predicate p:

 p(t1,1, ..., t1,n) ← A1

 ...

 p(ti,1, ..., ti,n) ← B, !, C

 ...

 p(tk,1, ..., tk,n) ← Ak

Let some atom p(t1, ..., tn) in a query be resolved using the i-th clause for p and
suppose that later the cut atom thus introduced become the leftmost atom. Then:

The indicated occurrence of ! succeeds immediately.

All other ways of resolving the atoms in B are discarded.

All derivations of p(t1, ..., tn) using the (i + 1)-st to k-th clause for p are discarded.

19Foundations of Logic Programming Pure PROLOG

Formal Semantics of Cut

Let Q be a node in an initial fragment of a Prolog tree T with the cut as leftmost atom.
Origin of this cut-occurrence :Û

youngest ancestor of Q in T that contains less cut atoms than Q

Construction of Prolog trees with cuts by extending the operation expand(T, Q) (cf. Slide 6):

if Q = !, A and Q' is origin of this cut-occurrence, then add A as only direct descendant

of Q and remove from T all the nodes that are descendants of Q' and lie to the right of
the path connecting Q' and Q.

20Foundations of Logic Programming Pure PROLOG

Using the Cut: Sets in Prolog (I)

member(X,[X|_]).

member(X,[_|Xs]) :- member(X,Xs).

set([],[]).

set([X|Xs],Ys) :- member(X,Xs), !, set(Xs,Ys).

set([X|Xs],[X|Ys]) :- set(Xs,Ys).

| ?- set([1,2,1],Us).

Us = [2,1] ? ;

no

| ?- set([1,2,1],[2,1]).

yes

| ?- set([1,2,1],[1,2]).

no

21Foundations of Logic Programming Pure PROLOG

Using the Cut: Sets in Prolog (II)

member(X,[X|_]).

member(X,[_|Xs]) :- member(X,Xs).

union([],Ys,Ys).

union([X|Xs],Ys,Zs) :- member(X,Ys), !, union(Xs,Ys,Zs).

union([X|Xs],Ys,[X|Zs]) :- union(Xs,Ys,Zs).

| ?- union([1,2],[1,3],Us).

Us = [2,1,3] ? ;

no

22Foundations of Logic Programming Pure PROLOG

Incorrect Use of Cut: Successful Branches Pruned off

only_b(a) :- !,test(a).

only_b(b) :- !,test(b).

test(b).

| ?- only_b(a).

no

| ?- only_b(b).

yes

| ?- only_b(X).

no

23Foundations of Logic Programming Pure PROLOG

Incorrect Use of Cut: Wrong Answers

% max(X,Y,Z) :- Z is the maximum of X and Y

max(X,Y,Y) :- X=<Y,!.

max(X,_,X).

| ?- max(2,5,Z).

Z = 5

| ?- max(2,1,Z).

Z = 2

| ?- max(2,5,2).

yes

24Foundations of Logic Programming Pure PROLOG

Objectives

Pure PROLOG vs. logic programming

Lists in Pure PROLOG

Adding Arithmetics to Pure PROLOG

Adding the Cut to Pure PROLOG

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

