Exercise 9.1. Describe a polynomial-time alternating Turing machine solving EXACT INDEPENDENT SET:

Input: Given a graph G and some number k.
Question: Does there exists a maximal independent set in G of size exactly k?

Find a level of the polynomial hierarchy where this problem is contained in.

* Exercise 9.2. Show that $\Sigma_i \text{QBF}$ is complete for $\Sigma_i \text{P}$.

Exercise 9.3. Show $\text{AExpTime} = \text{ExpSpace}$.

Exercise 9.4. Show that if $P = NP$, then $P = PH$.

Exercise 9.5. Show $NP^{SAT} = \Sigma_2 \text{P}$.

* Exercise 9.6. Let A be a language and let F be a finite set such that $A \cap F = \emptyset$. Show that

$$P^A = P^{A \cup F} \quad \text{and} \quad NP^A = NP^{A \cup F}.$$

Infer that there exist infinitely many oracles A and B such that

$$P^A = NP^A \quad \text{and} \quad P^B \neq NP^B.$$