

DATABASE THEORY

Lecture 5: Complexity of FO Query Answering (II)

David Carral Knowledge-Based Systems

TU Dresden, April 21, 2020

Review: Query Complexity

Query answering as decision problem \rightsquigarrow consider Boolean queries

Various notions of complexity:

- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

 $L\subseteq NL\subseteq P\subseteq NP\subseteq PSpace\subseteq ExpTime$

Review: FO Combined Complexity

Theorem 4.1 The evaluation of FO queries is PSpace-complete with respect to combined complexity.

We have actually shown something stronger:

Theorem 4.2 The evaluation of FO queries is PSpace-complete with respect to query complexity.

This also holds true when restricting to domain-independent queries.

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L \sim can we do any better?

What could be better than L?

 $? \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \dots$

 \rightsquigarrow we need to define circuit complexities first

Boolean Circuits

Definition 5.1: A Boolean circuit is a finite, directed, acyclic graph where

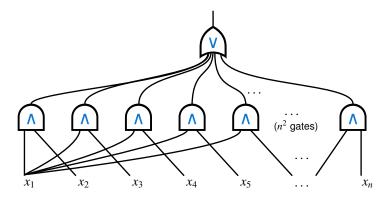
- each node that has no predecessors is an input node
- each node that is not an input node is one of the following types of logical gate: AND, OR, NOT
- one or more nodes are designated output nodes

 \rightsquigarrow we will only consider Boolean circuits with exactly one output

 \rightsquigarrow propositional logic formulae are Boolean circuits with one output and gates of fanout ≤ 1

Example

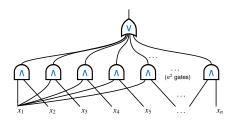
A Boolean circuit over an input string $x_1x_2...x_n$ of length n



Corresponds to formula $(x_1 \land x_2) \lor (x_1 \land x_3) \lor \ldots \lor (x_{n-1} \land x_n)$ \rightsquigarrow accepts all strings with at least two 1s

Circuits as a Model for Parallel Computation

Previous example:



 $\sim n^2$ processors working in parallel \sim computation finishes in 2 steps

- size: number of gates = total number of computing steps
- depth: longest path of gates = time for parallel computation

ightarrow circuits as a refinement of polynomial time that takes parallelizability into account

Solving Problems With Circuits

Observation: the input size is "hard-wired" in circuits \sim each circuit only has a finite number of different inputs \sim not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition 5.2: A uniform family of Boolean circuits is a set of circuits C_n ($n \ge 0$) that can easily^a be computed from n.

A language $\mathcal{L} \subseteq \{0, 1\}^*$ is decided by a uniform family $(C_n)_{n \ge 0}$ of Boolean circuits if for each word *w* of length |w|:

 $w \in \mathcal{L}$ if and only if $C_{|w|}(w) = 1$

^aWe don't discuss the details here; see course Complexity Theory.

Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

- size of the circuit: overall number of gates (as function of input size)
- depth of the circuit: longest path of gates (as function of input size)
- fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition 5.3: $(C_n)_{n\geq 0}$ is a family of small-depth circuits if

- the size of C_n is polynomial in n,
- the depth of C_n is poly-logarithmic in *n*, that is, $O(\log^k n)$.

The Complexity Classes NC and AC

Two important types of small-depth circuits:

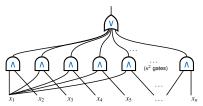
Definition 5.4: NC^{*k*} is the class of problems that can be solved by uniform families of circuits $(C_n)_{n\geq 0}$ of fan-in ≤ 2 , size polynomial in *n*, and depth in $O(\log^k n)$.

The class NC is defined as $NC = \bigcup_{k\geq 0} NC^k$. ("Nick's Class" named after Nicholas Pippenger by Stephen Cook)

Definition 5.5: AC^k and AC are defined like NC^k and NC, respectively, but for circuits with arbitrary fan-in.

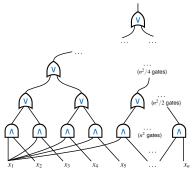
(A is for "Alternating": AND-OR gates alternate in such circuits)

Example



family of polynomial size, constant depth, arbitrary fan-in circuits \sim in AC⁰

We can eliminate arbitrary fan-ins by using more layers of gates:



David Carral, April 21, 2020

family of polynomial size, logarithmic depth, bounded fan-in circuits \rightarrow in NC¹

Database Theory

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:

$$\mathsf{NC}^0 \subseteq \mathsf{AC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{AC}^1 \subseteq \ldots \subseteq \mathsf{AC}^k \subseteq \mathsf{NC}^{k+1} \subseteq \ldots$$

Only few inclusions are known to be proper: $NC^0 \subset AC^0 \subset NC^1$ Direct consequence of above hierarchy: NC = AC

Interesting relations to other classes:

$$\mathsf{NC}^0 \subset \mathsf{AC}^0 \subset \mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{AC}^1 \subseteq \ldots \subseteq \mathsf{NC} \subseteq \mathsf{P}$$

Intuition:

- Problems in NC are parallelisable (known from definition)
- Problems in P \ NC are inherently sequential (educated guess)

However: it is not known if NC \neq P

David Carral, April 21, 2020

Theorem 5.6: The evaluation of FO queries is complete for (logtime uniform) AC^0 with respect to data complexity.

Proof:

- Membership: For a fixed Boolean FO query, provide a uniform construction for a small-depth circuit based on the size of a database
- Hardness: Show that circuits can be transformed into Boolean FO queries in logarithmic time (not on a standard TM ... not in this lecture)

From Query to Circuit

Assumptions:

- query and database schema is fixed
- database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:

- one input node for each possible database tuple (over given schema and active domain)
 → true or false depending on whether tuple is present or not
- Recursively, for each subformula, introduce a gate for each possible tuple (instantiation) of this formula

ightarrow true or false depending on whether the subformula holds for this tuple or not

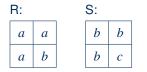
- Logical operators correspond to gate types: basic operators obvious, ∀ as generalised conjunction, ∃ as generalised disjunction
- subformula with *n* free variables → |adom|ⁿ gates
 → especially: |adom|⁰ = 1 output gate for Boolean query

Example

We consider the formula

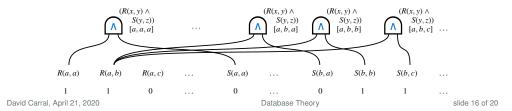
$$\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$$

Over the database instance:

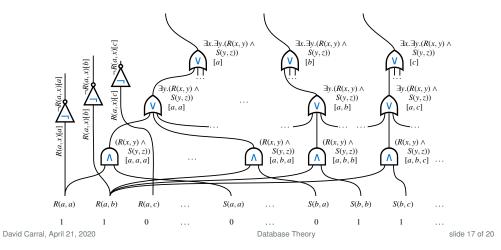


Active domain: $\{a, b, c\}$

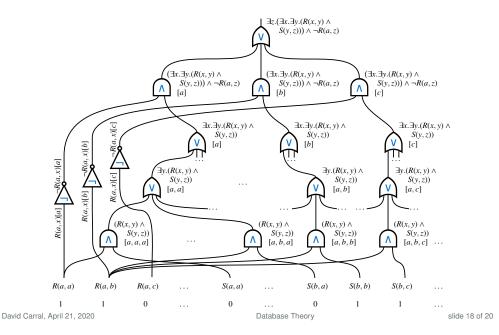
Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$



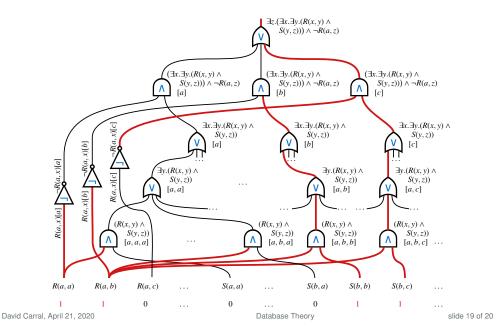
Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$



Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$



Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$



Summary and Outlook

The evaluation of FO queries is

- PSpace-complete for combined complexity
- PSpace-complete for query complexity
- AC⁰-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:

- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?
- · How can we study the expressiveness of query languages?