
Circuit Complexity

Complexity Theory
Circuit Complexity

Daniel Borchmann, Markus Krötzsch

Computational Logic

2016-01-13

cba

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #1

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Review

Review

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #2

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Computing with Circuits

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #3

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Motivation

Some questions:

What can complexity theory tell us about parallel computation?

Are there any meaningful complexity classes below LogSpace? Do
they contain relevant problems?

Even if it is hard to find a universal algorithm for solving all instances
of a problem, couldn’t it still be that there is a simple algorithm for
every fixed problem size?

{ circuit complexity provides some answers

Intuition: use circuits with logical gates to model computation

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #4

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Motivation

Some questions:

What can complexity theory tell us about parallel computation?

Are there any meaningful complexity classes below LogSpace? Do
they contain relevant problems?

Even if it is hard to find a universal algorithm for solving all instances
of a problem, couldn’t it still be that there is a simple algorithm for
every fixed problem size?

{ circuit complexity provides some answers

Intuition: use circuits with logical gates to model computation

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #4

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Boolean Circuits

Definition 17.1
A Boolean circuit is a finite, directed, acyclic graph where

each node that has no predecessor is an input node

each node that is not an input node is one of the following types of
logical gate:

AND with two input wires
OR with two input wires
NOT with one input wire

one or more nodes are designated output nodes

The outputs of a Boolean circuit are computed in the obvious way from the
inputs.
{ circuits with k inputs and ` outputs represent functions {0, 1}k → {0, 1}`

We often consider circuits with only one output.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #5

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Example 1

XOR function:

x1 x2

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #6

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Example 1

XOR function:

x1 x2

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #6

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Example 2

Parity function with four inputs:
(true for odd number of 1s)

x1 x2 x3 x4

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #7

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Example 2

Parity function with four inputs:
(true for odd number of 1s)

x1 x2 x3 x4

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #7

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Alternative Ways of Viewing Circuits (1)

Propositional formulae

propositional formulae are special circuits:
each non-input node has only one outgoing wire

each variable corresponds to one input node

each logical operator corresponds to a gate

each sub-formula corresponds to a wire

((¬x1 ∧ x2) ∨ (x1 ∧ ¬x2))

x1 x2

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #8

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Alternative Ways of Viewing Circuits (2)

Straight-line programs

are programs without loops and branching (if, goto, for, while, etc.)

that only have Boolean variables

and where each line can only be an assignment with a single Boolean
operator

{ n-line programs correspond to n-gate circuits

x1 x2

01 z1 := ¬x1

02 z2 := ¬x2

03 z3 := z1 ∧ x2

04 z4 := z2 ∧ x1

05 return z3 ∨ z4

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #9

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Example: Generalised AND

The function that tests if all inputs are 1 can be encoded by combining
binary AND gates:

. . .

. . .

. . .

. . .

(n/2 gates)

(n/4 gates)

. . .

x1 x2 x3 x4 x5 xn. . .

works similarly for
OR gates

number of gates:
n − 1

we can use n-way
AND and OR
(keeping the real
size in mind)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #10

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Solving Problems with Circuits

Circuits are not universal: fixed number of inputs!
How can they solve arbitrary problems?

Definition 17.2
A circuit family is an infinite list C = C1,C2,C3, . . . where each Ci is a
Boolean circuit with i inputs and one output.
We say that C decides a language L (over {0, 1}) if

w ∈ L if and only if Cn(w) = 1 for n = |w |.

Example 17.3

The circuits we gave for generalised AND are a circuit family that decides
the language {1n | n ≥ 1}.

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #11

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Circuit Complexity

To measure difficulty of problems solved by circuits, we can count the
number of gates needed:

Definition 17.4
The size of a circuit is its number of gates.

Let f : N→ R+ be a function. A circuit family C is f -size bounded if each of
its circuits Cn is of size at most f(n).

Size(f(n)) is the class of all languages that can be decided by an
O(f(n))-size bounded circuit family.

Example 17.5

Our circuits for generalised AND show that {1n | n ≥ 1} ∈ Size(n).

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #12

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Computing with Circuits

Examples

Many simple operations can be performed by circuits of polynomial size:

Boolean functions such as parity (=sum modulo 2), sum modulo n, or
majority

Airhtmetic operations such as addition, subtraction, multiplication,
division (taking two fixed-arity binary numbers as inputs)

Many matrix operations

See exercsie for some more examples

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #13

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

Polynomial Circuits

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #14

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

Polynomial Circuits

A natural class of problems to consider are those that have polynomial
circuit families:

Definition 17.6

P/poly =
⋃

d≥1 Size(nd).

Note: A language is in P/poly if it is solved by some polynomial-sized circuit
family. There may not be a way to compute (or even finitely represent) this
family.

How does P/poly relate to other classes?

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #15

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

Quadratic Circuits for Deterministic Time

Theorem 17.7

For f(n) ≥ n, we have DTime(f) ⊆ Size(f2).

Proof sketch (see also Sipser, Theorem 9.30).

We can represent the DTime computation as in the proof of Theorem 15.5: as a list
of configurations encoded as words

∗ σ1 · · · σi−1 〈q, σi〉 σi+1 · · · σm ∗

of symbols from the set Ω = {∗} ∪ Γ ∪ (Q × Γ). { tableau with O(f2) cells.

We can describe each cell with a list of bits (wires in a circuit).

We can compute one configuration from its predecessor by O(f) circuits (idea:
compute the value of each cell from its three upper neighbours as in Theorem 15.5)

Acceptance can be checked by assuming that the TM returns to a unique
configuration position/state when accepting

�
cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #16

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

From Polynomial Time to Polynomial Size

From DTime(f) ⊆ Size(f2) we get:

Corollary 17.8

P ⊆ P/poly.

This sugggests another way of approaching the P vs. NP question:

If any language in NP is not in P/poly, then P , NP.
(but nobody has found any such language yet)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #17

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

Circuit-Sat

Input: A Boolean Circuit C with one output.

Problem: Is there any input for which C returns 1?

Theorem 17.9

Circuit-Sat is NP-complete.

Proof.
Inclusion in NP is easy (just guess the input).

For NP-hardness, we use that NP problems are those with a P-verifier:

The DTM simulation of Theorem 17.7 can be used to implement a verifier (input:
(w#c) in binary)

We can hard-wire the w-inputs to use a fixed word instead (remaining inputs: c)

The circuit is satisfiable iff there is a certificate for which the verifier accepts w

�

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #18

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

Circuit-Sat

Input: A Boolean Circuit C with one output.

Problem: Is there any input for which C returns 1?

Theorem 17.9

Circuit-Sat is NP-complete.

Proof.
Inclusion in NP is easy (just guess the input).

For NP-hardness, we use that NP problems are those with a P-verifier:

The DTM simulation of Theorem 17.7 can be used to implement a verifier (input:
(w#c) in binary)

We can hard-wire the w-inputs to use a fixed word instead (remaining inputs: c)

The circuit is satisfiable iff there is a certificate for which the verifier accepts w

�
cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #18

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

A New Proof for Cook-Levin

Theorem 17.10
3Sat is NP-complete.

Proof.
Membership in NP is again easy (as before).

For NP-hardness, we express the circuit that was used to implement the
verifier in Theorem 17.9 as propositional logic formula in 3-CNF:

Create a propositional variable X for every wire in the circuit

Add clauses to relate input wires to output wires, e.g., for AND gate
with inputs X1 and X2 and output X3, we encode (X1 ∧ X2)↔ X3 as:

(¬X1 ∨ ¬X2 ∨ X3) ∧ (X1 ∨ ¬X3) ∧ (X2 ∨ ¬X3)

Fixed number of clauses per gate = linear size increase

Add a clause (X) for the output wire X .

�

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #19

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

A New Proof for Cook-Levin

Theorem 17.10
3Sat is NP-complete.

Proof.
Membership in NP is again easy (as before).

For NP-hardness, we express the circuit that was used to implement the
verifier in Theorem 17.9 as propositional logic formula in 3-CNF:

Create a propositional variable X for every wire in the circuit

Add clauses to relate input wires to output wires, e.g., for AND gate
with inputs X1 and X2 and output X3, we encode (X1 ∧ X2)↔ X3 as:

(¬X1 ∨ ¬X2 ∨ X3) ∧ (X1 ∨ ¬X3) ∧ (X2 ∨ ¬X3)

Fixed number of clauses per gate = linear size increase

Add a clause (X) for the output wire X .

�cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #19

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

Is P = P/poly?

We showed P ⊆ P/poly. Does the converse also hold?

No!

Theorem 17.11
P/poly contains undecidable problems.

Proof.
We define the unary Halting problem as the (undecidable) language:

UHalt := {1n | the binary encoding of n encodes a pair 〈M,w〉

whereM is a TM that halts on word w}

For a number 1n ∈ UHalt, let Cn be the circuit that computes a generalised
AND of all inputs. For all other numbers, let Cn be a circuit that always
returns 0. The circuit family C1,C2,C3, . . . accepts UHalt. �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #20

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

Is P = P/poly?

We showed P ⊆ P/poly. Does the converse also hold?

No!

Theorem 17.11
P/poly contains undecidable problems.

Proof.
We define the unary Halting problem as the (undecidable) language:

UHalt := {1n | the binary encoding of n encodes a pair 〈M,w〉

whereM is a TM that halts on word w}

For a number 1n ∈ UHalt, let Cn be the circuit that computes a generalised
AND of all inputs. For all other numbers, let Cn be a circuit that always
returns 0. The circuit family C1,C2,C3, . . . accepts UHalt. �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #20

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

Uniform Circuit Families

P/poly too powerful, since we do not require the circuits to be computable.
We can add this:

Definition 17.12
A circuit family C1,C2,C3, . . . is log-space-uniform if there is a log-space
computable function that maps words 1n to (an encoding of) Cn.
(We could also define similar notions of uniformity for other complexity classes.)

Theorem 17.13
The class of all languages that are accepted by a log-space-uniform circuit
family of polynomial size is exactly P.

Proof sketch.
A detailed analysis shows that out that our earlier reduction of P DTMs to circuits is
log-space-uniform. Conversely, a polynomial-time procedure can be obtained by first
computing a suitable circuit (in log-space) and then evaluating it (in polynomial time). �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #21

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

Uniform Circuit Families

P/poly too powerful, since we do not require the circuits to be computable.
We can add this:

Definition 17.12
A circuit family C1,C2,C3, . . . is log-space-uniform if there is a log-space
computable function that maps words 1n to (an encoding of) Cn.
(We could also define similar notions of uniformity for other complexity classes.)

Theorem 17.13
The class of all languages that are accepted by a log-space-uniform circuit
family of polynomial size is exactly P.

Proof sketch.
A detailed analysis shows that out that our earlier reduction of P DTMs to circuits is
log-space-uniform. Conversely, a polynomial-time procedure can be obtained by first
computing a suitable circuit (in log-space) and then evaluating it (in polynomial time). �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #21

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

Turing Machines That Take Advice

One can also describe P/poly using TMs that take “advice”:

Definition 17.14
Consider a function a : N→ N. A language L is accepted by a Turing
MachineM with a bits of advice if there is a sequence of advice strings
α0, α1, α2, . . . of length |αi | = a(i) andM accepts inputs of the form
(w#a|w |) if ad only if w ∈ L.

P/poly is equivalent to the class of problems that can be solved by a PTime
TM that takes a polynomial amount of “advice”.

(This is where the notation P/poly comes from.)

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #22

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

P/poly and NP

We showed P ⊆ P/poly. Does NP ⊆ P/poly also hold?

Nobody knows

Theorem 17.15 (Karp-Lipton Theorem)

If NP ⊆ P/poly then PH = Σp
2 .

Proof sketch (see Arora/Barak Theorem 6.19).
if NP ⊆ P/poly then there is a polysize circuit family solving Sat

Using this, one can argue that there is also a polysize circuit family that computes the
lexicographically first" satisfying assignment (k output bits for k variables)

A Π2-QBF formula ∀X.∃Y.ϕ is true if, for all values of X, ϕ[X] is satisfiable.

In ΣP
2 , we can: (1) guess the polysize circuit for SAT, (2) check for all values of X if its

output is really a satisfying assignment (to verify the guess)

This solves ΠP
2 -hard problems in ΣP

2

But then the Polynomial Hierarchy collapses at ΣP
2 , as claimed.

�

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #23

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

P/poly and NP

We showed P ⊆ P/poly. Does NP ⊆ P/poly also hold?
Nobody knows

Theorem 17.15 (Karp-Lipton Theorem)

If NP ⊆ P/poly then PH = Σp
2 .

Proof sketch (see Arora/Barak Theorem 6.19).
if NP ⊆ P/poly then there is a polysize circuit family solving Sat

Using this, one can argue that there is also a polysize circuit family that computes the
lexicographically first" satisfying assignment (k output bits for k variables)

A Π2-QBF formula ∀X.∃Y.ϕ is true if, for all values of X, ϕ[X] is satisfiable.

In ΣP
2 , we can: (1) guess the polysize circuit for SAT, (2) check for all values of X if its

output is really a satisfying assignment (to verify the guess)

This solves ΠP
2 -hard problems in ΣP

2

But then the Polynomial Hierarchy collapses at ΣP
2 , as claimed.

�
cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #23

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

P/poly and ExpTime

We showed P ⊆ P/poly. Does ExpTime ⊆ P/poly also hold?

Nobody knows

Theorem 17.16 (Meyer’s Theorem)

If ExpTime ⊆ P/poly then ExpTime = PH = Σp
2 .

See [Arora/Barak, Theorem 6.20] for a proof sketch.

Corollary 17.17

If ExpTime ⊆ P/poly then P , NP.

Proof.

If ExpTime ⊆ P/poly then ExpTime = Σp
2 (Meyer’s Theorem).

By the Time Hierarchy Theorem, P , ExpTime, so P , Σp
2 .

So the Polynomial Hierarchy doesn’t collapse completely, and P , NP. �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #24

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

P/poly and ExpTime

We showed P ⊆ P/poly. Does ExpTime ⊆ P/poly also hold?
Nobody knows

Theorem 17.16 (Meyer’s Theorem)

If ExpTime ⊆ P/poly then ExpTime = PH = Σp
2 .

See [Arora/Barak, Theorem 6.20] for a proof sketch.

Corollary 17.17

If ExpTime ⊆ P/poly then P , NP.

Proof.

If ExpTime ⊆ P/poly then ExpTime = Σp
2 (Meyer’s Theorem).

By the Time Hierarchy Theorem, P , ExpTime, so P , Σp
2 .

So the Polynomial Hierarchy doesn’t collapse completely, and P , NP. �

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #24

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

How Big a Circuit Could We Need?

We should not be surprised that P/poly is so powerful:
exponential circuit families are already enough to accept any language
Exercise: show that every Boolean function over n variables can be expressed by a circuit

of size ≤ n2n.

It turns out that these exponential circuits are really needed:

Theorem 17.18 (Shannon 1949 (!))

For every n, there is a function {0, 1}n → {0, 1} that cannot be computed by
any circuit of size 2n/(10n).

In fact, one can even show: almost every Boolean function requires
circuits of size > 2n/(10n) – and is therefore not in P/poly

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?

Nobody knows

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #25

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

Circuit Complexity Polynomial Circuits

How Big a Circuit Could We Need?

We should not be surprised that P/poly is so powerful:
exponential circuit families are already enough to accept any language
Exercise: show that every Boolean function over n variables can be expressed by a circuit

of size ≤ n2n.

It turns out that these exponential circuits are really needed:

Theorem 17.18 (Shannon 1949 (!))

For every n, there is a function {0, 1}n → {0, 1} that cannot be computed by
any circuit of size 2n/(10n).

In fact, one can even show: almost every Boolean function requires
circuits of size > 2n/(10n) – and is therefore not in P/poly

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?
Nobody knows

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 #25

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)

	Circuit Complexity
	Review
	Computing with Circuits
	Polynomial Circuits

