

DATABASE THEORY

Lecture 2: First-Order Queries

Markus Krötzsch Knowledge-Based Systems

TU Dresden, 10th Apr 2018

Generic Queries

We only consider queries that do not depend on the concrete names given to constants in the database:

Definition 2.2: A query q is generic if, for every bijective renaming function μ : dom \rightarrow dom and database instance I:

$$\mu(M[q](I)) = M[\mu(q)](\mu(I)).$$

In this case, M[q] is closed under isomorphisms.

What is a Query?

The relational queries considered so far produced a result table from a database. We generalize slightly.

Definition 2.1:

- Syntax: a query expression *q* is a word from a query language (algebra expression, logical expression, etc.)
- Semantics: a query mapping M[q] is a function that maps a database instance I to a database instance M[q](I)
- → a "result table" is a result database instance with one table.
- → for some semantics, query mappings are not defined on all database instances

Markus Krötzsch, 10th Apr 2018 Database Theory slide 2 of 29

Review: Example from Previous Lecture

Lines:

Line	Туре
85	bus
3	tram
F1	ferry

Stops:

•		
SID	Stop	Accessible
17	Hauptbahnhof	true
42	Helmholtzstr.	true
57	Stadtgutstr.	true
123	Gustav-Freytag-Str.	false

Connect:

From	То	Line
57	42	85
17	789	3

Every table has a schema:

- Lines[Line:string, Type:string]
- Stops[SID:int, Stop:string, Accessible:bool]
- Connect[From:int, To:int, Line:string]

Markus Krötzsch, 10th Apr 2018 Database Theory slide 3 of 29 Markus Krötzsch, 10th Apr 2018 Database Theory slide 4 of 29

First-order Logic as a Query Language

Idea: database instances are finite first-order interpretations

- → use first-order formulae as query language
- → use unnamed perspective (more natural here)

Examples (using schema as in previous lecture):

- Find all bus lines: Lines(x, "bus")
- Find all possible types of lines: ∃y.Lines(y, x)
- Find all lines that depart from an accessible stop:

$$\exists y_{SID}, y_{Stop}, y_{To}.(Stops(y_{SID}, y_{Stop}, "true") \land Connect(y_{SID}, y_{To}, x_{Line}))$$

Markus Krötzsch, 10th Apr 2018

Database Theory

slide 5 of 29

First-order Logic Syntax: Simplifications

We use the usual shortcuts and simplifications:

- flat conjunctions $(\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \text{ instead of } (\varphi_1 \wedge (\varphi_2 \wedge \varphi_3)))$
- flat disjunctions (similar)
- flat quantifiers $(\exists x, y, z.\varphi \text{ instead of } \exists x.\exists y.\exists z.\varphi)$
- $\varphi \to \psi$ as shortcut for $\neg \varphi \lor \psi$
- $\varphi \leftrightarrow \psi$ as shortcut for $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
- $t_1 \not\approx t_2$ as shortcut for $\neg (t_1 \approx t_2)$

But we always use parentheses to clarify nesting of \wedge and $\vee\colon$

No "
$$\varphi_1 \wedge \varphi_2 \vee \varphi_3$$
"!

First-order Logic with Equality: Syntax

Basic building blocks:

- Predicate names with an arity ≥ 0 : p, q, Lines, Stops
- Variables: x, y, z
- Constants: a, b, c
- Terms are variables or constants: s, t

Formulae of first-order logic are defined as usual:

$$\varphi ::= p(t_1, \ldots, t_n) \mid t_1 \approx t_2 \mid \neg \varphi \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \exists x. \varphi \mid \forall x. \varphi$$

where p is an n-ary predicate, t_i are terms, and x is a variable.

- An atom is a formula of the form $p(t_1, \ldots, t_n)$
- · A literal is an atom or a negated atom
- Occurrences of variables in the scope of a quantifier are bound; other occurrences of variables are free

Markus Krötzsch, 10th Apr 2018 Database Theory

First-order Logic with Equality: Semantics

First-order formulae are evaluated over interpretations $\langle \Delta^I, \cdot^I \rangle$, where Δ^I is the domain. To interpret formulas with free variables, we need a variable assignment $\mathcal{Z}: \text{Var} \to \Delta^I$.

slide 6 of 29

- constants a interpreted as $a^{I,Z} = a^I \in \Delta^I$
- variables x interpreted as $x^{I,Z} = Z(x) \in \Delta^I$
- *n*-ary predicates *p* interpreted as $p^{\mathcal{I}} \subseteq (\Delta^{\mathcal{I}})^n$

A formula φ can be satisfied by I and \mathcal{Z} , written $I, \mathcal{Z} \models \varphi$:

- $I, \mathcal{Z} \models p(t_1, \ldots, t_n) \text{ if } \langle t_1^{I,\mathcal{Z}}, \ldots, t_n^{I,\mathcal{Z}} \rangle \in p^I$
- $I, Z \models t_1 \approx t_2 \text{ if } t_1^{I,Z} = t_2^{I,Z}$
- $I, Z \models \neg \varphi \text{ if } I, Z \not\models \varphi$
- $I, Z \models \varphi \land \psi$ if $I, Z \models \varphi$ and $I, Z \models \psi$
- $I, Z \models \varphi \lor \psi$ if $I, Z \models \varphi$ or $I, Z \models \psi$
- $I, Z \models \exists x. \varphi$ if there is $\delta \in \Delta^I$ with $I, \{x \mapsto \delta\}, Z \models \varphi$
- $I, Z \models \forall x. \varphi$ if for all $\delta \in \Delta^I$ we have $I, \{x \mapsto \delta\}, Z \models \varphi$

Markus Krötzsch, 10th Apr 2018 Database Theory slide 7 of 29 Markus Krötzsch, 10th Apr 2018 Database Theory slide 8 of 29

First-order Logic Queries

Definition 2.3: An *n*-ary first-order query q is an expression $\varphi[x_1, \ldots, x_n]$ where x_1, \ldots, x_n are exactly the free variables of φ (in a specific order).

Definition 2.4: An answer to $q = \varphi[x_1, \dots, x_n]$ over an interpretation I is a tuple $\langle a_1, \dots, a_n \rangle$ of constants such that

$$\mathcal{I} \models \varphi[x_1/a_1,\ldots,x_n/a_n]$$

where $\varphi[x_1/a_1,\ldots,x_n/a_n]$ is φ with each free x_i replaced by a_i .

The result of q over I is the set of all answers of q over I.

Markus Krötzsch, 10th Apr 2018

Database Theory

slide 9 of 29

and of the state o

Domain Dependence

We have defined FO queries over interpretations

- \rightarrow How exactly do we get from databases to interpretations?
 - Constants are just interpreted as themselves: $a^{I} = a$
 - Predicates are interpreted according to the table contents
 - But what is the domain of the interpretation?

What should the following queries return?

- (1) $\neg Lines(x, "bus")[x]$
- (2) $(Connect(x_1, "42", "85") \lor Connect("57", x_2, "85"))[x_1, x_2]$
- (3) $\forall y.p(x,y)[x]$
- → Answers depend on the interpretation domain, not just on the database contents

Boolean Queries

A Boolean query is a query of arity 0

- \rightarrow we simply write φ instead of $\varphi[]$
- $\rightarrow \varphi$ is a closed formula (a.k.a. sentence)

What does a Boolean query return?

Two possible cases:

- $I \not\models \varphi$, then the result of φ over I is \emptyset (the empty table)
- $I \models \varphi$, then the result of φ over I is $\{\langle \rangle \}$ (the unit table)

Interpreted as Boolean check with result true or false (match or no match)

Markus Krötzsch, 10th Apr 2018

Database Theory

slide 10 of 29

Natural Domain

First possible solution: the natural domain

Natural domain semantics (ND):

- fix the interpretation domain to **dom** (infinite)
- query answers might be infinite (not a valid result table)
- \sim query result undefined for such databases

Markus Krötzsch, 10th Apr 2018 Database Theory slide 11 of 29 Markus Krötzsch, 10th Apr 2018 Database Theory slide 12 of 29

Natural Domain: Examples

Query answers under natural domain semantics:

- (1) ¬Lines(x, "bus")[x]Undefined on all databases
- (2) $(Connect(x_1, "42", "85") \lor Connect("57", x_2, "85"))[x_1, x_2]$ Undefined on databases with matching x_1 or x_2 in Connect, otherwise empty
- (3) $\forall y.p(x,y)[x]$ Empty on all databases

Markus Krötzsch, 10th Apr 2018

Database Theory

slide 13 of 29

Markus Krötzsch, 10th Apr 2018

Database Theory

slide 14 of 29

Active Domain: Examples

Query answers under active domain semantics:

- (1) $\neg \text{Lines}(x, \text{"bus"})[x]$ Let q' = Lines(x, "bus")[x]. The answer is $\mathbf{adom}(I, q) \setminus M[q'](I)$
- (2) $(\underbrace{\mathsf{Connect}(x_1, "42", "85")}_{\varphi_1[x_1]} \vee \underbrace{\mathsf{Connect}("57", x_2, "85")}_{\varphi_2[x_2]})[x_1, x_2]$

The answer is $M[\varphi_1](I) \times \operatorname{adom}(I,q) \cup \operatorname{adom}(I,q) \times M[\varphi_2](I)$

(3) $\forall y.p(x,y)[x] \sim$ see board

Active Domain

Alternative: restrict to constants that are really used

→ active domain

- for a database instance I, adom(I) is the set of constants used in relations of I
- for a query q, $\mathbf{adom}(q)$ is the set of constants in q
- $adom(I, q) = adom(I) \cup adom(q)$

Active domain semantics (AD):

consider database instance as interpretation over adom(I, q)

Domain Independence

Observation: some queries do not depend on the domain

- Stops(*x*, *y*, "true")[*x*, *y*]
- $(x \approx a)[x]$
- $p(x) \land \neg q(x)[x]$
- $\forall y.(q(x, y) \rightarrow p(x, y))[x]$ (exercise: why?)

In contrast, all example queries on the previous few slides are not domain independent

Domain independent semantics (DI):

consider only domain independent queries use any domain $\mathbf{adom}(I,q) \subseteq \Delta^I \subseteq \mathbf{dom}$ for interpretation

 Markus Krötzsch, 10th Apr 2018
 Database Theory
 slide 15 of 29
 Markus Krötzsch, 10th Apr 2018
 Database Theory
 slide 16 of 29

How to Compare Query Languages

We have seen three ways of defining FO query semantics → how to compare them?

Definition 2.5: The set of query mappings that can be described in a query language L is denoted $\mathbf{QM}(L)$.

- L_1 is subsumed by L_2 , written $L_1 \sqsubseteq L_2$, if $\mathbf{QM}(L_1) \subseteq \mathbf{QM}(L_2)$
- L_1 is equivalent to L_2 , written $L_1 \equiv L_2$, if $\mathbf{QM}(L_1) = \mathbf{QM}(L_2)$

We will also compare query languages under named perspective with query languages under unnamed perspective.

This is possible since there is an easy one-to-one correspondence between query mappings of either kind (see exercise).

Markus Krötzsch, 10th Apr 2018

Database Theory

slide 17 of 29

$RA_{named} \subseteq DI_{unnamed}$

For a given RA query $q[a_1, \ldots, a_n]$, we recursively construct a DI query $\varphi_a[x_{a_1}, \ldots, x_{a_n}]$ as follows:

We assume without loss of generality that all attribute lists in RA expressions respect the global order of attributes.

- if q = R with signature $R[a_1, \ldots, a_n]$, then $\varphi_q = R(x_{a_1}, \ldots, x_{a_n})$
- if n = 1 and $q = \{\{a_1 \mapsto c\}\}\$, then $\varphi_q = (x_{a_1} \approx c)$
- if $q = \sigma_{a_i=c}(q')$, then $\varphi_q = \varphi_{q'} \wedge (x_{a_i} \approx c)$
- if $q = \sigma_{a_i = a_i}(q')$, then $\varphi_q = \varphi_{q'} \wedge (x_{a_i} \approx x_{a_i})$
- if $q = \delta_{b_1,\dots,b_n \to a_1,\dots,a_n} q'$, then $\varphi_q = \exists y_{b_1},\dots,y_{b_n}.(x_{a_1} \approx y_{b_1}) \wedge \dots \wedge (x_{a_n} \approx y_{b_n}) \wedge \varphi_{q'}[y_{B_1},\dots,y_{B_n}]$

(Here we assume that the a_1,\ldots,a_n in $\delta_{b_1,\ldots,b_n\to a_1,\ldots,a_n}$ are written in the order of attributes, while b_1,\ldots,b_n might be in another order. We use $(B_1,\ldots,B_n)=(b_1,\ldots,b_n)$ to denote the ordered version of the b_i attributes. $\varphi_{q'}[y_{B_1},\ldots,y_{B_n}]$ is like $\varphi_{q'}$ but using variables y_{B_i} .)

Equivalence of Relational Query Languages

Theorem 2.6: The following query languages are equivalent:

- Relational algebra RA
- FO gueries under active domain semantics AD
- Domain independent FO queries DI

This holds under named and under unnamed perspective.

To prove it, we will show:

$$RA_{named} \sqsubseteq DI_{unnamed} \sqsubseteq AD_{unnamed} \sqsubseteq RA_{named}$$

Markus Krötzsch, 10th Apr 2018

Database Theory

slide 18 of 29

$RA_{named} \sqsubseteq DI_{unnamed}$ (cont'd)

Remaining cases:

- if $q=\pi_{a_1,\dots,a_n}(q')$ for a subquery $q'[b_1,\dots,b_m]$ with $\{b_1,\dots,b_m\}=\{a_1,\dots,a_n\}\cup\{c_1,\dots,c_k\},$ then $\varphi_q=\exists x_{c_1},\dots,x_{c_k}.\varphi_{q'}$
- if $q = q_1 \bowtie q_2$ then $\varphi_q = \varphi_{q_1} \wedge \varphi_{q_2}$
- if $q=q_1\cup q_2$ then $\varphi_q=\varphi_{q_1}\vee \varphi_{q_2}$
- if $q = q_1 q_2$ then $\varphi_q = \varphi_{q_1} \wedge \neg \varphi_{q_2}$

One can show that $\varphi_q[x_{a_1},\dots,x_{a_n}]$ is domain independent and equivalent to q \leadsto exercise

Markus Krötzsch, 10th Apr 2018 Database Theory slide 19 of 29 Markus Krötzsch, 10th Apr 2018 Database Theory slide 20 of 29

This is easy to see:

- Consider an FO guery q that is domain independent
- The semantics of q is the same for any domain $\mathbf{adom} \subseteq \Delta^I \subseteq \mathbf{dom}$
- In particular, the semantics of q is the same under active domain semantics
- Hence, for every DI query, there is an equivalent AD query

Markus Krötzsch, 10th Apr 2018 Database Theory slide 21 of 29

$AD_{unnamed} \sqsubseteq RA_{named}$ (cont'd)

Remaining cases:

- if $\varphi = \neg \psi$, then $E_{\varphi} = (E_{a_{x_1}, adom} \bowtie \ldots \bowtie E_{a_{x_n}, adom}) E_{\psi}$
- if $\varphi = \varphi_1 \wedge \varphi_2$, then $E_{\varphi} = E_{\varphi_1} \bowtie E_{\varphi_2}$
- if $\varphi = \exists y.\psi$ where ψ has free variables y, x_1, \ldots, x_n , then $E_{\varphi} = \pi_{a_1, \ldots, a_{n_n}} E_{\psi}$

The cases for \vee and \forall can be constructed from the above \rightarrow exercise

A note on order: The translation yields an expression $E_{\varphi}[a_{x_1},\ldots,a_{x_n}]$. For this to be equivalent to the query $\varphi[x_1,\ldots,x_n]$, we must choose the attribute names such that their global order is a_{x_1},\ldots,a_{x_n} . This is clearly possible, since the names are arbitrary and we have infinitely many names available.

 $AD_{unnamed} \sqsubseteq RA_{named}$

Consider an AD query $q = \varphi[x_1, \dots, x_n]$.

For an arbitrary attribute name a, we can construct an RA expression $E_{a, \mathbf{adom}}$ such that $E_{a, \mathbf{adom}}(\mathcal{I}) = \{\{a \mapsto c\} \mid c \in \mathbf{adom}(\mathcal{I}, q)\}$ \leadsto exercise

For every variable x, we use a distinct attribute name a_x

- if $\varphi = R(t_1, \ldots, t_m)$ with signature $R[a_1, \ldots, a_m]$ with variables $x_1 = t_{v_1}, \ldots, x_n = t_{v_n}$ and constants $c_1 = t_{w_1}, \ldots, c_k = t_{w_k}$, then $E_{\varphi} = \delta_{a_v, \ldots a_{v_n} \to a_{x_1} \ldots a_{x_n}} (\sigma_{a_{w_1} = c_1}(\ldots \sigma_{a_{w_n} = c_k}(R) \ldots))$
- if $\varphi = (x \approx c)$, then $E_{\varphi} = \{\{a_x \mapsto c\}\}$
- if $\varphi = (x \approx y)$, then $E_{\varphi} = \sigma_{a_x = a_y}(E_{a_x, adom} \bowtie E_{a_y, adom})$
- · other forms of equality atoms are similar

Markus Krötzsch, 10th Apr 2018 Database Theory slide 22 of 29

How to find DI queries?

Domain independent queries are arguably most intuitive, since their result does not depend on special assumptions.

→ How can we check if a query is in DI? Unfortunately, we can't:

Theorem 2.7: Given a FO query q, it is undecidable if $q \in DI$.

ightarrow find decidable sufficient conditions for a query to be in DI

Markus Krötzsch, 10th Apr 2018 Database Theory slide 23 of 29 Markus Krötzsch, 10th Apr 2018 Database Theory slide 24 of 29

A Normal Form for Queries

We first define a normal form for FO queries:

Safe-Range Normal Form (SRNF)

- Rename variables apart (distinct quantifiers bind distinct variables, bound variables distinct from free variables)
- Eliminate all universal quantifiers: $\forall y.\psi \mapsto \neg \exists y. \neg \psi$
- Push negations inwards:

$$-\neg(\varphi \land \psi) \mapsto (\neg \varphi \lor \neg \psi)$$
$$-\neg(\varphi \lor \psi) \mapsto (\neg \varphi \land \neg \psi)$$
$$-\neg \neg \psi \mapsto \psi$$

Markus Krötzsch, 10th Apr 2018

Database Theory

slide 25 of 29

Safe-Range Queries

Definition 2.8: An FO query $q = \varphi[x_1, \dots, x_n]$ is a safe-range query if

$$\operatorname{rr}(\mathsf{SRNF}(\varphi)) = \{x_1, \ldots, x_n\}.$$

Safe-range queries are domain independent.

One can show a much stronger result:

Theorem 2.9: The following query languages are equivalent:

- Safe-range queries SR
- Relational algebra RA
- FO queries under active domain semantics AD
- Domain independent FO queries DI

Safe-Range Queries

Let φ be a formula in SRNF. The set $rr(\varphi)$ of range-restricted variables of φ is defined recursively:

$$\begin{split} \operatorname{rr}(R(t_1,\ldots,t_n)) &= \{x \mid x \text{ a variable among the } t_1,\ldots,t_n\} \\ \operatorname{rr}(x \approx a) &= \{x\} \\ \operatorname{rr}(x \approx y) &= \emptyset \\ \operatorname{rr}(\varphi_1 \wedge \varphi_2) &= \begin{cases} \operatorname{rr}(\varphi_1) \cup \{x,y\} & \text{if } \varphi_2 = (x \approx y) \text{ and } \{x,y\} \cap \operatorname{rr}(\varphi_1) \neq \emptyset \\ \operatorname{rr}(\varphi_1) \cup \operatorname{rr}(\varphi_2) & \text{otherwise} \end{cases} \\ \operatorname{rr}(\varphi_1 \vee \varphi_2) &= \operatorname{rr}(\varphi_1) \cap \operatorname{rr}(\varphi_2) \\ \operatorname{rr}(\exists y.\psi) &= \begin{cases} \operatorname{rr}(\psi) \setminus \{y\} & \text{if } y \in \operatorname{rr}(\psi) \\ \text{throw new NotSafeException() if } y \notin \operatorname{rr}(\psi) \end{cases} \\ \operatorname{rr}(\neg \psi) &= \emptyset & \text{if } \operatorname{rr}(\psi) \text{ is defined (no exception)} \end{cases}$$

Markus Krötzsch, 10th Apr 2018

Database Theory

slide 26 of 29

Tuple-Relational Calculus

There are more equivalent ways to define a relational query language

Example: Codd's tuple calculus

- Based on named perspective
- Use first-order logic, but variables range over sorted tuples (rows) instead of values
- Use expressions like x : From, To, Line to declare sorts of variables in gueries
- Use expressions like x. From to access a specific value of a tuple
- Example: Find all lines that depart from an accessible stop

$$\{x : \mathsf{Line} \mid \exists y : \mathsf{SID}, \mathsf{Stop}, \mathsf{Accessible}.(\mathsf{Stops}(y) \land y. \mathsf{Accessible} \approx \texttt{"true"} \\ \land \exists z : \mathsf{From}, \mathsf{To}, \mathsf{Line}.(\mathsf{Connect}(z) \land z. \mathsf{From} \approx y. \mathsf{SID} \\ \land z. \mathsf{Line} \approx x. \mathsf{Line})) \}$$

Markus Krötzsch, 10th Apr 2018 Database Theory slide 27 of 29 Markus Krötzsch, 10th Apr 2018 Database Theory slide 28 of 29

Summary and Outlook

First-order logic gives rise to a relational query language

The problem of domain dependence can be solved in several ways

All common definitions lead to equivalent calculi

 \sim "relational calculus"

Open questions:

- How hard is it to actually answer such queries? (next lecture)
- How can we study the expressiveness of query languages?
- Are there interesting query languages that are not equivalent to RA?

Markus Krötzsch, 10th Apr 2018 Database Theory slide 29 of 29