TU Dresden, Fakultät Informatik David Carral, Markus Krötzsch

Complexity Theory Exercise 6: Space Complexity 5 December 2015

Exercise 6.1. Show that the word problem of deterministic finite automata

 $\mathsf{A}_{\mathsf{DFA}} = \{ \langle \mathcal{A}, w \rangle \mid \mathcal{A} \text{ a DFA accepting } w \}$

can be decided in logarithmic space.

Exercise 6.2. Show that the composition of logspace reductions again yields a logspace reduction.

Exercise 6.3. Show that the word problem $\mathsf{A}_{\mathsf{NFA}}$ of non-deterministic finite automata is NL-complete.

Exercise 6.4. Show that

 $\mathsf{BIPARTITE} = \{ \langle G \rangle \mid G \text{ a finite bipartite graph} \}$

is in NL. For this show that $\overline{\mathsf{BIPARTITE}} \in \mathsf{NL}$ and use $\mathsf{NL} = \mathsf{coNL}$.

Hint:

Show that a graph G is bipartite if and only if it does not contain a cycle of odd length.

Exercise 6.5. Find the fault in the following proof of $P \neq NP$.

Assume that P = NP. Then SAT $\in P$ and thus there exists a $k \in \mathbb{N}$ such that SAT \in DTime (n^k) . Because every language in NP is polynomial-time reducible to SAT we have NP \subseteq DTime (n^k) . It follows that $P \subseteq$ DTime (n^k) . But by the Time Hierarchy Theorem there exist languages in DTime (n^{k+1}) that are not in DTime (n^k) , contradicting $P \subseteq$ DTime (n^k) . Therefore, $P \neq$ NP.