

FOUNDATIONS OF COMPLEXITY THEORY

Lecture 14: P vs. NP: Ladner's Theorem

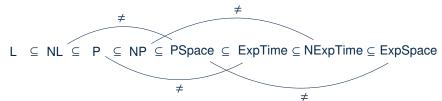
David Carral
Knowledge-Based Systems

TU Dresden, December 31, 2020

Review

Review: Hierarchies and Gaps

Hierarchy theorems tell us that more time/space leads to more power:



Gap theorems tell us that, for non-constructible functions as time/space bounds, arbitrary (constructible or not) boosts in resources may not lead to more power

Any natural problems in the hierarchy?

To show that complexity classes are different

- we have defined concrete diagonalisation languages that can show the difference (i.e., our argument was constructive),
- but these diagonalisation languages are rather artificial (i.e., not natural).

Are there, e.g., any natural ExpTime problems that are not in P?

Yes, many:

Theorem 14.1: If **L** is ExpTime-hard, then $\mathbf{L} \notin \mathsf{P}$.

Proof: We have shown that there is a language $\mathbf{D} \in \mathsf{ExpTime} \setminus \mathsf{P}$. If \mathbf{L} is $\mathsf{ExpTime}$ -hard, then there is a polynomial many-one reduction $\mathbf{D} \leq_p \mathbf{L}$. Therefore, if \mathbf{L} were in P , then so would \mathbf{D} – contradiction.

Similar results hold for other classes we separated: A problem that is hard for the larger class cannot be included in the smaller.

Ladner's Theorem

P vs. NP revisited

We have seen that a great variety of difficult problems in NP turn out to be NP-complete.

A natural question to ask is whether this apparent dichotomy is a law of nature:

Hypothesis: Every problem in NP is either in P or NP-complete.

In 1975, Richard E. Ladner showed that this is wrong, unless P = NP

(in the latter case, uninterstingly, P would turn out to be exactly the set of NP-complete problems)

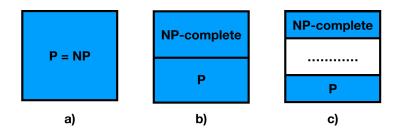
Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Such problems are called NP-intermediate.

Illustration

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

In other words, given the following illustrations of the possible relationships between P and NP:



Ladner tells us that the middle cannot be correct.

Proving the Theorem

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Proof idea: We will directly define an NP-intermediate language by defining an NTM $\mathcal K$ that recognises it.

We want to construct L(K) to be:

- (1) different from all problems in P
- (2) different from all problems that SAT can be reduced to

Observation: This is similar to two concurrent diagonalisation arguments

Moreover, the sets we diagonalise against are effectively enumerable:

- There is an effective enumeration $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \ldots$ of all polynomially time-bounded DTMs, each together with a suitable bounding function For example, enumerate all pairs of TMs and polynomials, and make the enumeration consist of the TMs obtained by artificially restricting the run of a TM with a suitable countdown.
- There is an effective enumeration $\mathcal{R}_0, \mathcal{R}_1, \mathcal{R}_2, \dots$ of all polynomial many-one reductions, each together with a suitable bounding function

This is similar to enumerating polytime TMs; we can restrict to one input alphabet that we also use for SAT

The problem with diagonalisation

How can we do two diagonalisations at once? — Simply interleave the enumerations:

- On each even number 2i, show that the ith polytime TM \mathcal{M}_i is not equivalent to \mathcal{K} : there is w such that $\mathcal{M}_i(w) \neq \mathcal{K}(w)$
- For each odd number 2i+1, show that the ith reduction \mathcal{R}_i does not reduce \mathcal{K} to SAT:

there is w such that $\mathcal{K}(\mathcal{R}_i(w)) \neq \mathbf{Sat}(w)$

Nevertheless, there is a problem: How can we flip the output of SAT?

- K is required to run in NP
- · Computing the actual result of SAT is NP-hard
- To show $\mathcal{K}(\mathcal{R}_i(w)) \neq \mathbf{Sat}(w)$, one might have to show $w \notin \mathbf{Sat}$, which is presumably not in NP
- → the required computation seems too hard!

Solution: Lazy diagonalisation

Idea: Do not attempt to show too much on small inputs, but wait patiently until inputs are large enough to show the required differences

Main ingredients:

- A very slow growing but polynomially computable function f
- A problem in NP that is NP-hard: SAT
- A problem in NP that is not NP-hard: 0

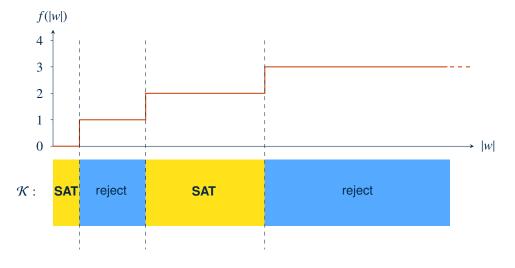
We will define a TM \mathcal{K} that does the following on input w:

- (1) Compute the value f(|w|)
- (2) If f(|w|) is even: return whether $w \in Sat$
- (3) If f(|w|) is odd: return whether $w \in \emptyset$, i.e., reject

Intuition: the NP-intermediate language $\mathbf{L}(\mathcal{K})$ is **SAT** with "holes punched out of it" (namely for all inputs where f is odd)

Illustration of \mathcal{K} 's behaviour

We can sketch the behaviour of K as follows:



What is f?

Reminder: $\mathcal{K}(w)$ is Sat(w) if f(|w|) is even, and *false* if f(|w|) is odd.

The key to the proof is the definition of f – this is where the diagonalisation happens.

Intuition: Keep the current value of *f* until progress has been made in diagonalisation

- Keep an even value f(|w|) = 2i until you can show in polynomial time (in |w|) that there is v such that $\mathcal{M}_i(v) \neq \mathcal{K}(v)$
- Keep an odd value f(|w|) = 2i + 1 until you can show in polynomial time (in |w|) that there is v such that $\mathcal{K}(\mathcal{R}_i(v)) \neq \mathbf{Sat}(v)$

If we can do this in NP, it will be enough already:

- If $\mathcal K$ were equivalent to any $\mathcal M_i$, then f would eventually become an even constant, and $\mathcal K$ would solve $\mathbf S_{\mathbf AT}$ on all but finitely many instances
 - $\sim \mathcal{K}$ would be NP-hard, and equivalent to a polytime TM $\sim P = NP$
- If $\mathcal K$ would allow $\mathbf S\mathbf A\mathbf T$ to be reduced to it by some reduction $\mathcal R_i$, then f would eventually become an odd constant, and $\mathbf L(\mathcal K)$ would be a finite language
 - $\sim \mathcal{K}$ would be in P, and **SAT** would reduce to it $\sim P = NP$

In each case, this contradicts our assumption that $P \neq NP$

What is f?

We consider some fixed deterministic TM S with L(S) = Sat, and an enumeration v_0, v_1, \ldots of all words ordered by length, and lexicographic for words of equal length.

Reminder: $\mathcal{K}(w)$ is $\mathcal{S}(w)$ if f(|w|) is even, and *false* if f(|w|) is odd.

Definition: The value of f on input w with |w| = n is defined recursively

- (1) Perform the computations of $f(0), f(1), f(2), \ldots$ in order until n computing steps have been performed in total. Store the largest value $f(\ell) = k$ that could be computed in this time (set k = 0 if no value was computed).
- (2) Determine if f(n) should remain k or increase to k + 1:
 - (2.a) If k = 2i is even: Iterate over all words v, simulate $\mathcal{M}_i(v)$, $\mathcal{S}(v)$, and (recursively) compute f(|v|). Terminate this effort after n steps. If a word is found such that $\mathcal{K}(v) \neq \mathcal{M}_i(v)$, then return k + 1; else return k
 - (2.b) If k = 2i + 1 is odd: Iterate over all words v, simulate $\mathcal{R}_i(v)$ (this produces a word), $\mathcal{S}(v)$, $\mathcal{S}(\mathcal{R}_i(v))$, and (recursively) compute $f(|\mathcal{R}_i(v)|)$. Terminate this effort after n steps. If a word is found such that $\mathcal{K}(\mathcal{R}_i(v)) \neq \mathcal{S}(v)$, then return k + 1; else return k.

Is *f* well-defined?

Our definition of *f* computes values for *f* recursively. Is this ok?

- Yes, the computation that needs to be done for each f(n) is fully defined
- All the simulated TMs are known or computable
- Since computation is time-limited to the input value n, there is no danger of endless recursion
- For example, f(0) = 0: nothing will be achieved in 0 steps

Indeed, f grows very slowly!

- A large input n might be needed to find the next counterexample word v needed in diagonalisation
- Even if such v was found in n steps (making progress from n to n + 1), it will be only
 much later that f(n) can be computed in step (1) and f will even start to look for a
 way of getting to n + 2.
- In fact, already the requirement to recompute all previous values of *f* before considering an increase ensures that *f* ∈ O(log log *n*).

Concluding the Proof

Theorem 14.2 (Ladner, 1975): If $P \neq NP$, then there are problems in NP that are neither in P nor NP-complete.

Proof: Let \mathcal{K} be defined as before.

\mathcal{K} runs in nondeterministic polynomial time:

- The computation of f is in polynomial deterministic time (since it is artificially bounded to a short time)
- The computation of **SAT** for the cases where f(|w|) is even is possible in NP

L(\mathcal{K}) is not in P: As argued before: if it were in P, it would be equivalent to some polytime TM \mathcal{M}_i , and f would eventually be constant at 2i, making \mathcal{K} equivalent to **SAT** (up to finite variations), which contradicts $P \neq NP$.

 $\mathbf{L}(\mathcal{K})$ is not in NP-hard: As argued before: if it were NP-hard, there would be a polynomial many-one reduction \mathcal{R}_i from **SAT**, and f would eventually be constant at 2i+1, making \mathcal{K} equivalent to \emptyset (up to finite variations), which contradicts $P \neq NP$.

Discussion: Proof of Ladner's Theorem

Note 1: It is interesting to meditate on the following facts:

- We have defined a rather "busy" computation of f that checks that diagonalisation (over two different sets) must happen
- This definition of computation is essential to prove the result
- Nevertheless, diagonalisation remained "internal": from the outside, $\mathcal K$ is just a TM that sometimes solves **SAT** (for a long range of inputs), and at other times just rejects every input (again for very long ranges of inputs)

Note 2: The constructed language is very artificial

 It is very "non-uniform" in terms of how hard it is, alternating between long stretches of NP-hardness and long stretches of triviality

Note 3: Are there any natural problems that are known to be NP-intermediate?

- No: finding one would prove P ≠ NP
- Candidate problems (link) include, e.g., GRAPH Isomorphism and Factoring
 Beware: the latter is not about deciding if a number is prime, but about checking something specific about its factors, e.g., whether the largest factor contains at least one 7 when written in decimal

Summary and Outlook

Ladner's theorem tells us that, in the intuitive case that $P \neq NP$, there must be (counterintuitively?) many problems in NP that are neither polynomially solvable nor NP-complete

The proof is based on a technique of lazy diagonalisation

What's next?

- Generalising Ladner's Theorem
- Computing with oracles (reprise)
- The limits of diagonalisation, proved by diagonalisation