Deduction, Abduction and Induction

Steffen Hölldobler

International Center for Computational Logic Technische Universität Dresden
Germany

- Introduction
- Deduction
- Sorts
- Abduction
- Induction

Introduction to Abduction

- Consider $\mathcal{K} \models F$ where \mathcal{K} is a set of formulas called knowledge base and F is a formula
- In the next example I will use the following propositional atoms: grasslsWet, wheelsAreWet, sprinklerlsRunning, raining
- Let $\mathcal{K}=\{g \rightarrow w, s \rightarrow w, r \rightarrow g\}$
\triangleright Does $\mathcal{K} \vDash \boldsymbol{w}$ hold?
- Idea Find an atom A such that $\mathcal{K} \cup\{A\} \models w$ and $\mathcal{K} \cup\{A\}$ is satisfiable
$\triangleright A=w$
$\triangleright A=g$
$\triangleright A=s$ or $A=r$
- This process is called abduction

Introduction to Induction

Let $\mathcal{K}_{\text {plus }}=\{\quad(\forall Y$: number $)$ plus $(0, Y) \approx Y$, $(\forall X, Y$: number) plus $(s(X), Y) \approx s(\operatorname{plus}(X, Y)) \quad\}$
\triangleright Does $\mathcal{K}_{\text {plus }} \models(\forall X, Y$: number $)$ plus $(X, Y) \approx \operatorname{plus}(Y, X)$ hold?

- Consider $\mathcal{D}=\mathbb{N} \cup\{\diamond\}$ and | I | 0 | s | plus |
| :--- | :--- | :--- | :--- |
| | 0 | f | \oplus | where

$\triangleright f(d)= \begin{cases}f(0) & \text { if } d=\diamond \\ d+f(0) & \text { if } d \in \mathbb{N}\end{cases}$
$\triangleright \boldsymbol{d} \oplus \boldsymbol{e}= \begin{cases}\boldsymbol{0} & \text { if } \boldsymbol{d}=\boldsymbol{e}=\diamond \\ \diamond & \text { if } \boldsymbol{d}=\mathbf{0} \text { and } \boldsymbol{e}=\diamond \\ \boldsymbol{d} & \text { if } \boldsymbol{d} \in \mathbb{N}^{+} \text {and } \boldsymbol{e}=\diamond \\ \boldsymbol{e} & \text { if } \boldsymbol{d}=\diamond \text { and } \boldsymbol{e} \in \mathbb{N} \\ \boldsymbol{d}+\boldsymbol{e} & \text { if } \boldsymbol{d}, \boldsymbol{e} \in \mathbb{N}\end{cases}$
$\triangleright+: \mathbb{N} \rightarrow \mathbb{N}$ is the usual addition on \mathbb{N} and $\mathbb{N}^{+}=\mathbb{N} \backslash\{0\}$

- Then $I \vDash \mathcal{K}_{\text {plus }}$ but $(\diamond \oplus \mathbf{0}) \neq(0 \oplus \diamond) \rightsquigarrow$ Exercise

The Example Continued

$\wedge_{\text {plus }}=\{\quad(\forall Y$: number) plus $(0, Y) \approx Y$, $(\forall X, Y$: number) plus $(s(X), Y) \approx s($ plus $(X, Y)) \quad\}$
\triangleright Does $\mathcal{K}_{\text {plus }} \vDash(\forall X, Y$: number $)$ plus $(X, Y) \approx$ plus (Y, X) hold?

- In order to prove the commutativity of plus add Peano's induction principle
$(P(0) \wedge(\forall M$: number $)(P(M) \rightarrow P(s(M)))) \rightarrow(\forall M$: number $) P(M)$
to $\mathcal{K}_{\text {plus }}$ (where P is a relational variable)
- For the induction base $(X=0)$ we replace $P(Y)$ by plus $(Y, 0) \approx Y$
- Let $\mathcal{K}_{\text {I }}$ be an appropriate set of induction axioms then

$$
\mathcal{K}_{\text {plus }} \cup \mathcal{K}_{I} \models(\forall X, Y: \text { number }) \operatorname{plus}(X, Y) \approx \operatorname{plus}(Y, X)
$$

\triangleright How does $\mathcal{K}_{\text {I }}$ look like? \rightsquigarrow Exercise

Deduction, Abduction and Induction

- Peirce $1931 \quad \mathcal{K}_{\text {facts }} \cup \mathcal{K}_{\text {rules }} \vDash G_{\text {result }}$
\triangleright Deduction
is an analytic process based on the application of general rules to particular facts, with the inference as a result
\triangleright Abduction
is synthetic reasoning which infers a fact from the rules and the result
\triangleright Induction
is synthetic reasoning which infers a rule from the facts and the result

Deduction

- All reasoning processes considered in the module Foundations so far are deductions
- The logics (first-order, equational) are unsorted
- They can be easily extended to sorted logics
- We will use a sorted logic in the subsection on Induction

Sorts

- $(\forall X, Y)($ number $(X) \wedge \operatorname{number}(Y) \rightarrow \operatorname{plus}(X, Y) \approx \operatorname{plus}(Y, X))$
$\triangleright(\forall X, Y$: number $)$ plus $(X, Y) \approx \operatorname{plus}(Y, X)$
- A first order language with sorts consists of
$\triangleright \mathbf{a}$ first order language $\mathcal{L}(\mathcal{R}, \mathcal{F}, \mathcal{V})$ and
\triangleright a function sort : $\mathcal{V} \rightarrow 2^{\mathcal{R}_{s}}$
where $\mathcal{R}_{\mathbf{S}} \subseteq \mathcal{R}$ is a finite set of unary predicate symbols called base sorts
- Elements of $2^{\mathcal{R}_{s}}$ are called sorts; $\emptyset \in \mathbf{2}^{\mathcal{R}_{s}}$ is called top sort
- We write $X: s$ if $\operatorname{sort}(X)=s$
- We assume that for every sort s there are countably many variables $X: s \in \mathcal{V}$

Sorts - Semantics

- Let / be an interpretation with domain \mathcal{D}

$$
I: s=\left\{p_{1}, \ldots, p_{n}\right\} \mapsto s^{\prime}=\mathcal{D} \cap p_{1}^{\prime} \cap \ldots \cap p_{n}^{\prime}
$$

$\triangleright I: \emptyset \mapsto \mathcal{D}$

- A variable assignment \mathcal{Z} is sorted iff for all $X: s \in \mathcal{V}$ we find $X^{\mathcal{Z}} \in s^{\prime}$
- We assume that all sorts are non-empty
- $F^{I, \mathcal{Z}}$ is defined as usual except for

$$
\begin{aligned}
& {[(\exists X: s) F]^{l, \mathcal{Z}}=\top \quad \text { iff } \quad \text { there exists } d \in s^{\prime} \text { such that } F^{I,\{X \mapsto d\} \mathcal{Z}}=\top} \\
& {[(\forall X: s) F]^{l, \mathcal{Z}}=\top \quad \text { iff } \quad \text { for all } d \in s^{\prime} \text { we find } F^{I,\left\{X_{\mapsto} \mapsto d\right\} \mathcal{Z}}=\top}
\end{aligned}
$$

Relativization

- Sorted formulas can be mapped onto unsorted ones by means of a relativization function rel

$$
\begin{aligned}
\operatorname{rel}\left(p\left(t_{1}, \ldots, t_{n}\right)\right) & =p\left(t_{1}, \ldots, t_{n}\right) \\
\operatorname{rel}(\neg F) & =\neg \operatorname{rel}(F) \\
\operatorname{rel}\left(F_{1} \wedge F_{2}\right) & =\operatorname{rel}\left(F_{1}\right) \wedge \operatorname{rel}\left(F_{2}\right) \\
\operatorname{rel}\left(F_{1} \vee F_{2}\right) & =\operatorname{rel}\left(F_{1}\right) \vee \operatorname{rel}\left(F_{2}\right) \\
\operatorname{rel}\left(F_{1} \rightarrow F_{2}\right) & =\operatorname{rel}\left(F_{1}\right) \rightarrow \operatorname{rel}\left(F_{2}\right) \\
\operatorname{rel}\left(F_{1} \leftrightarrow F_{2}\right) & =\operatorname{rel}\left(F_{1}\right) \leftrightarrow \operatorname{rel}\left(F_{2}\right) \\
\operatorname{rel}((\forall X: s) F) & =(\forall Y)\left(p_{1}(Y) \wedge \ldots \wedge p_{n}(Y) \rightarrow \operatorname{rel}(F\{X \mapsto Y\})\right) \\
& \operatorname{if} \operatorname{sort}(X)=s=\left\{p_{1}, \ldots, p_{n}\right\} \text { and } Y \text { is a new variable } \\
\operatorname{rel}((\exists X: s) F) & =(\exists Y)\left(p_{1}(Y) \wedge \ldots \wedge p_{n}(Y) \wedge \operatorname{rel}(F\{X \mapsto Y\})\right) \\
& \text { if } \operatorname{sort}(X)=s=\left\{p_{1}, \ldots, p_{n}\right\} \text { and } Y \text { is a new variable }
\end{aligned}
$$

Sorting Function and Relation Symbols

- Each atom of the form $p\left(t_{1}, \ldots, t_{n}\right)$ can be equivalently replaced by

$$
\left(\forall X_{1} \ldots X_{n}\right)\left(p\left(X_{1}, \ldots, X_{n}\right) \leftarrow X_{1} \approx t_{1} \wedge \ldots \wedge X_{n} \approx t_{n}\right)
$$

- Each atom $A\left\lceil f\left(t_{1}, \ldots, t_{n}\right)\right\rceil$ can be equivalently replaced by

$$
\left(\forall X_{1} \ldots X_{n}\right) A\left\lceil f\left(t_{1}, \ldots, t_{n}\right) / f\left(X_{1}, \ldots, X_{n}\right)\right\rceil \leftarrow X_{1} \approx t_{1} \wedge \ldots \wedge X_{n} \approx t_{n}
$$

- Each formula F can be transformed into an equivalent formula F^{\prime}, in which
\triangleright all arguments of function and relation symbols different from \approx are variables and
\triangleright all equations are of the form $t_{1} \approx t_{2}$ or $f\left(X_{1}, \ldots, X_{n}\right) \approx t$, where X_{1}, \ldots, X_{n} are variables and t, t_{1}, and t_{2} are variables or constants
- Sorting the variables occurring in F^{\prime} effectively sorts the function and relation symbols

Sort Declaration

- F^{\prime} is usually quite lengthy and cumbersome to read
- If $\boldsymbol{\operatorname { s o r t }}(\boldsymbol{X})=\boldsymbol{s}$ then the sort declaration for the variable \boldsymbol{X} is

$$
X: s
$$

- Let $s_{i}, 1 \leq i \leq n$, and s be sorts, f a function and p a relation symbol, both with arity n. Then

$$
f: s_{1} \times \ldots \times s_{n} \rightarrow s
$$

and

$$
p: s_{1} \times \ldots \times s_{n}
$$

are sort declarations for f and p, respectively

Abduction

- Example Starting a car
- Applications
\triangleright fault diagnosis
\triangleright medical diagnosis
\triangleright high level vision
\triangleright natural language understanding
\triangleright reasoning about states, actions, and causality
\triangleright knowledge assimilation

A First Characterization of Abduction

- Given \mathcal{K} and G; find explanation \mathcal{K}^{\prime} such that
$\triangleright \mathcal{K} \cup \mathcal{K}^{\prime} \vDash G$ and
$\triangleright \mathcal{K} \cup \mathcal{K}^{\prime}$ is satisfiable
The elements of \mathcal{K}^{\prime} are said to be abduced
- Abducing atoms is no real restriction
- Weakness of this first characterization We want to abduce causes of effects but no other effects

Restrictions

- Abducible formulas
\triangleright set of pre-specified and domain-dependent formulas
\triangleright abduction is restricted to this set
\triangleright default in logic programming: set of undefined predicates
- Typical criteria for choosing a set of abducible formulas
\triangleright an explanation should be basic, i.e., it cannot be explained by another explanation
\triangleright an explanation should be minimal, i.e., it cannot be subsumed by another explanation
\triangleright additional information
\triangleright domain-dependent preference criteria
\triangleright integrity constraints

Abductive Framework

- Abductive framework $\left\langle\mathcal{K}, \mathcal{K}_{\boldsymbol{A}}, \mathcal{K}_{I C}\right\rangle$ where
$\triangleright \mathcal{K}$ is a set of formulas
$\triangleright \mathcal{K}_{A}$ is a set of ground atoms called abducibles
$\triangleright \mathcal{K}_{I C}$ is a set of integrity constraints
- Observation G is explained by \mathcal{K}^{\prime} iff
$\triangleright \mathcal{K}^{\prime} \subseteq \mathcal{K}_{A}$
$\triangleright \mathcal{K} \cup \mathcal{K}^{\prime} \vDash G$ and
$\triangleright \mathcal{K} \cup \mathcal{K}^{\prime}$ satisfies $\mathcal{K}_{\text {IC }}$
- $\mathcal{K} \cup \mathcal{K}^{\prime}$ satisfies $\mathcal{K}_{I C}$ iff
$\triangleright \mathcal{K} \cup \mathcal{K}^{\prime} \cup \mathcal{K}_{I C}$ are satisfiable (satisfiability view) or
$\triangleright \mathcal{K} \cup \mathcal{K}^{\prime} \vDash \mathcal{K}_{I C}$ (theoremhood view)

Knowledge Assimilation

- Task assimilate new knowledge into a given knowledge base
- Example
$\triangleright \mathcal{K}=\{\operatorname{sibling}(X, Y) \leftarrow \operatorname{parents}(Z, X) \wedge \operatorname{parents}(Z, Y)$, parents $(X, Y) \leftarrow$ father (X, Y),
parents $(X, Y) \leftarrow \operatorname{mother}(X, Y)$,
father(john, mary),
mother(jane, mary)
$\triangleright \mathcal{K}_{I C}=\{X \approx Y \leftarrow$ father $(X, Z) \wedge$ father (Y, Z), $X \approx Y \leftarrow \operatorname{mother}(X, Z) \wedge \operatorname{mother}(Y, Z)\}$
$\triangleright \mathcal{K}_{A}=\{\boldsymbol{A} \mid \boldsymbol{A}$ is a ground instance of father(john, \boldsymbol{Y}) or mother(jane, $\left.\boldsymbol{Y})\right\}$
$\triangleright \approx$ is a 'built-in' predicate such that
- $X \approx X$ holds and
- $s \not \approx t$ holds for all distinct ground terms s and t
\triangleright Task assimilate sibling(mary, bob)

The Example Continued

- Two minimal explanations
$\triangleright\{$ father(john, bob) $\}$
$\triangleright\{$ mother (jane, bob) $\}$
- What happens if we additionally observe that mother(joan, bob)?
\triangleright belief revision

Theory Revision

- Default reasoning and jumping to a conclusion
- Example
$\triangleright \mathcal{K}=\{\quad \operatorname{penguin}(X) \rightarrow \operatorname{bird}(X)$,
$\operatorname{birdsFly}(X) \rightarrow(\operatorname{bird}(X) \rightarrow$ fly $(X))$,
penguin $(X) \rightarrow \neg f l y(X)$,
penguin(tweedy),
bird(john) \}
$\triangleright \mathcal{K}_{\text {IC }}=\emptyset$
$\triangleright \mathcal{K}_{A}=\{A \mid A$ is a ground instance of birdsFly $(X)\}$
- Task 1 Explain fly(john)
- Task 2 Explain fly(tweedy)
- What happens if we additionally observe penguin(john)?

Abduction and Model Generation

- Example
$\triangleright \mathcal{K}=\{\quad$ wobblyWheel \leftrightarrow brokenSpokes \vee flatTyre, flatTyre \leftrightarrow puncturedTube \vee leakyValve \}
$\triangleright \mathcal{K}_{\text {IC }}=\emptyset$
$\triangleright \mathcal{K}_{A}=\{$ brokenSpokes, puncturedTube, leakyValve\}
- $\mathcal{K}=\mathcal{K}_{\leftarrow} \cup \mathcal{K}_{\rightarrow}$ where
$\triangleright \mathcal{K}_{\leftarrow}=\{\quad$ wobblyWheel \leftarrow brokenSpokes, wobblyWheel \leftarrow flatTyre, flatTyre \leftarrow puncturedTube, flatTyre \leftarrow leakyValve $\}$
$\triangleright \mathcal{K}_{\rightarrow}=\{\quad$ wobblyWheel \rightarrow brokenSpokes \vee flatTyre, flatTyre \rightarrow puncturedTube \vee leakyValve \}

The Wobbly-Wheel Example

- Observation wobblyWheel
- What are the minimal and basic explanations?
- How can these explanation be computed?
\triangleright SLD-resolution
\triangleright Model generation

Abduction and SLD-Resolution

- Consider the SLD-derivation tree for \leftarrow wobblyWheel wrt \mathcal{K}_{\leftarrow}

Abduction and Model Generation

- Remember $\mathcal{K}_{\rightarrow}=\{\quad$ wobblyWheel \rightarrow brokenSpokes \vee flatTyre, flatTyre \rightarrow puncturedTube \vee leakyValve
- Add wobblyWheel to $\mathcal{K}_{\rightarrow}$
- What are the minimal models of the extended knowledge base?

```
{wobblyWheel, flatTyre, puncturedTube}
{wobblyWheel, flatTyre, leakyValve}
{wobblyWheel, brokenSpokes}
```

- Restrict these models to the abducible predicates

Mathematical Induction

- Essential proof technique used to verify properties about recursively defined objects like natural numbers, lists, trees, logic formulas, etc.
- Central role in the fields of mathematics, algebra, logic, computer science, formal language theory, etc.

Some Typical Questions

- Should induction be really used to prove a statement?
- Should the statement be generalized before an attempt is made to prove it by induction?
- Which variable should be the induction variable?
- What induction principle should used?
- What property should be used within the induction principle?
- Should nested induction be taken into account?

Data Structures

- Function symbols are split into constructors and defined function symbols
- Let \mathcal{F} be the set of function symbols
\triangleright Constructors $\mathcal{C} \subseteq \mathcal{F}$
\triangleright Defined function symbols $\mathcal{D} \subseteq \mathcal{F}$
$\triangleright \mathcal{C} \cap \mathcal{D}=\emptyset$
$\triangleright \mathcal{C} \cup \mathcal{D}=\mathcal{F}$
$\triangleright \mathcal{T}(\mathcal{C})$ is called the set of constructor ground terms
- Data structures (or sorts) are sets of constructor ground terms

Data Structures - Examples

- 0:number
$s:$ number \rightarrow number
$\triangleright \mathcal{T}(\{0, s\})=\{0, s(0), s(s(0)), \ldots\}$ is called the sort number
- T:bool
\perp :bool
$\triangleright \mathcal{T}(\{\top, \perp\})=\{\top, \perp\}$ is called the sort bool
- []: list(number)
: : number \times list(number) \rightarrow list(number)
$\triangleright \mathcal{T}([],:\})=\{[],[0],[0,0],[s(0)], \ldots\}$ is called the sort list(number)

Well-Sortedness and Selectors

- Well-Sortedness
\triangleright Constants and variables are well-sorted
\triangleright If $\boldsymbol{f}:$ sort $_{1} \times \ldots \times$ sort $_{\boldsymbol{n}} \rightarrow$ sort and for all $1 \leq \boldsymbol{i} \leq \boldsymbol{n}$ we find that $\boldsymbol{t}_{\boldsymbol{i}}$ is well-sorted and of sort sort $_{\boldsymbol{i}}$ then $f\left(t_{1}, \ldots, t_{n}\right)$ is well-sorted and of sort sort
- Assumption All terms are well-sorted!
- Selectors
\triangleright For each \boldsymbol{n}-ary constructor \boldsymbol{c} we have \boldsymbol{n} unary selectors s_{i} such that for all $1 \leq i \leq n$ we find $s_{i}\left(c\left(t_{1}, \ldots, t_{n}\right)\right) \approx \boldsymbol{t}_{\boldsymbol{i}}$

Data Structures - Requirements

- Different constructors denote different objects
- Constructors are injective
- Each object can be denoted as an application of some constructor to its selectors (if any exist)
- Each selector is 'inverse' to the constructor it belongs to
- Each selector returns a so-called witness term if applied to a constructor it does not belong to

Requirements for Numbers

- The requirements can be translated into first order formulas
- The requirements for number are

$$
\begin{aligned}
& \mathcal{K}_{\text {number }}=\{\quad(\forall N \text { : number }) 0 \not \approx s(N), \\
& \text { (} \forall N, M \text { : number) }(s(N) \approx s(M) \rightarrow N \approx M), \\
& \text { (} \forall N \text { : number) }(N \approx 0 \vee N \approx s(p(N))) \text {, } \\
& (\forall N \text { : number) } p(s(N)) \approx N \text {, } \\
& p(0) \approx 0 \text {, }
\end{aligned}
$$

where
$\triangleright p$ is the selector for the only argument of the constructor s and
$\triangleright 0$ is the witness term assigned to $p(0)$

- Note p is a defined function symbol!

Defined Function Symbols

- Functions are defined on top of data structures
- We define functions with the help of a set of conditional equations, i.e., universally closed equations of the form

$$
\forall I \approx r \leftarrow \operatorname{Bod} y
$$

such that I is a non-variable term (i.e. of the form $g\left(s_{1}, \ldots, s_{n}\right)$),

$$
\operatorname{var}(I) \supseteq \operatorname{var}(r) \cup \operatorname{var}(\operatorname{Bod} y)
$$

and Body denotes a conjunction of literals

- We sometimes omit the universal quantifiers in writing conditional equations
- g is a defined function symbol wrt a set \mathcal{K} of conditional equations if \mathcal{K} contains a conditional equation of the form

$$
g\left(t_{1}, \ldots, t_{n}\right) \approx r \leftarrow \operatorname{Bod} y
$$

The set of conditional equations of this form in \mathcal{K} is called definition of g wrt \mathcal{K}

Defined Function Symbols - Examples

- Predecessor on number \mathcal{K}_{p}
$(\forall N$: number) $p(s(N)) \approx N$
$p(0) \approx 0$
- Addition on number $\mathcal{K}_{\text {plus }}$
$\begin{array}{lll}(\forall X, Y: \text { number })(\operatorname{plus}(X, Y) \approx Y & \leftarrow \quad X \approx 0) \\ (\forall X, Y: \text { number })(\operatorname{plus}(X, Y) \approx s(p l u s(p(X), Y)) & \leftarrow \quad X \neq 0)\end{array}$
- Less-than on number $\mathcal{K}_{\text {It }}$
$(\forall X, Y$: number $)(\operatorname{lt}(X, Y) \approx \perp$
$\leftarrow \quad Y \approx 0)$
$(\forall X, Y$: number $)(\operatorname{lt}(X, Y) \approx \top \quad \leftarrow X \approx 0 \wedge Y \nsim 0)$
$(\forall X, Y:$ number $)(\operatorname{lt}(X, Y) \approx \operatorname{lt}(p(X), p(Y)) \leftarrow X \not \approx 0 \wedge Y \not \approx 0)$

Rewriting Extended to Conditional Equations

- Let \mathcal{K} be a finite set of conditional equations
- A term \boldsymbol{t} can be rewritten wrt $\mathcal{K} \quad$ iff
$1 \boldsymbol{t}$ is well-sorted and ground
$2 \boldsymbol{t}$ contains a subterm of the form $\boldsymbol{g}\left(\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}\right)$ where for all $1 \leq i \leq n$ we find that t_{i} is a constructor ground term
$3 \boldsymbol{g}\left(s_{1}, \ldots, s_{n}\right) \approx r \leftarrow \operatorname{Bod} y \in \mathcal{K}$ and
4 we find an mgu θ for $g\left(s_{1}, \ldots, s_{n}\right)$ and $g\left(t_{1}, \ldots, t_{n}\right)$ such that $\mathcal{K} \models B o d y \theta$
- In this case t is rewritten to the term obtained from t by replacing $\boldsymbol{g}\left(t_{1}, \ldots, t_{n}\right)$ by $r \boldsymbol{\theta}$
- Note $\boldsymbol{\theta}$ is a matcher because \boldsymbol{t} is ground

Cases

- Let $g\left(s_{1}, \ldots, s_{n}\right) \approx r \leftarrow$ Body be a rule and X_{1}, \ldots, X_{n} new variables

$$
g\left(X_{1}, \ldots, X_{n}\right) \approx r \leftarrow X_{1} \approx s_{1} \wedge \ldots \wedge X_{n} \approx s_{n} \wedge \text { Body }
$$

is called homogeneous form of this rule

- Example

$$
(\forall X, N: \text { number })(p(X) \approx N \leftarrow X \approx s(N))
$$

is the homogeneous form of

$$
(\forall N: \text { number }) p(s(N)) \approx N
$$

- Obervation A rule is semantically equivalent to its homogeneous form
- The case of a rule is the condition of its homogeneous form

Programs

- A program is a set of clauses consisting of data structure declarations and function definitions
- Example $\mathcal{K}_{\text {number }} \cup \mathcal{K}_{\text {plus }}$ is a program

Properties of Programs

- A program \mathcal{K} is
\triangleright well-formed iff it can be ordered such that each function symbol occurring in the definition of a function g in \mathcal{K} either is introduced before by a data structure declaration or another function definition or, otherwise, is g in which case the function is recursive
\triangleright well-sorted iff each term occurring in \mathcal{K} is well-sorted
\triangleright deterministic iff
for each function definition occurring in \mathcal{K} the cases are mutually exclusive
\triangleright case-complete iff for each function definition of an n-ary function g occurring in \mathcal{K} and each well-sorted n-tuple of constructor ground terms given as input to g there is at least one of the cases which is satisfied
\triangleright terminating iff
there is no infinite rewriting sequence for any well-sorted ground term
\triangleright admissible iff
it is well-formed, well-sorted, deterministic, case-complete and terminating
- The rewrite relation wrt an admissible program is confluent \rightsquigarrow Exercise

Evaluation

- Admissible programs \mathcal{K} define a unique evaluator eval ${ }_{\mathcal{K}}$ which maps terms to their normal form
- $^{\text {eval }}{ }_{\mathcal{K}}: \mathcal{T}(\mathcal{F}) \rightarrow \mathcal{T}(\mathcal{C})$
- eval $\mathcal{K}_{\mathcal{C}}(t)$ is called value of t
- eval ${ }_{\mathcal{K}}$ is an interpretation with domain $\mathcal{T}(\mathcal{C})$
- eval ${ }_{\mathcal{K}}$ is called standard interpretation of \mathcal{K}
- Example Consider $\mathcal{K}_{\text {number }} \cup \mathcal{K}_{\text {plus }}$

$$
\begin{aligned}
& \text { plus(s(0),s(0)) } \\
& \rightarrow s(\operatorname{plus}(p(s(0)), s(0))) \\
& \rightarrow s(\operatorname{plus}(0, s(0))) \\
& \rightarrow s(s(0))
\end{aligned}
$$

Evaluation - Example

- Consider $\mathcal{K}=\mathcal{K}_{\text {number }} \cup \mathcal{K}_{\text {plus }}$
\triangleright eval ${ }_{\mathcal{K}} \models \mathcal{K}$ eval $_{\mathcal{K}} \vDash(\forall X, Y$: number) plus $(X, Y) \approx \operatorname{plus}(Y, X)$, eval $_{\mathcal{K}} \vDash(\forall X$: number) $X \not \approx s(X)$

\rightsquigarrow Exercise

$\triangleright \mathcal{K} \notin(\forall X, Y$: number $)$ plus $(X, Y) \approx \operatorname{plus}(Y, X)$
$\mathcal{K} \notin(\forall X$: number) $X \not \approx s(X)$
\rightsquigarrow Exercise

Theory of Admissible Programs

- Let \mathcal{K} be an admissible program
- We consider $\left\{G \mid\right.$ eval $\left._{\mathcal{K}} \vDash G\right\}$
- In other words, we restrict us to one specific interpretation This interpretation is sometimes called standard or intended interpretation
- Idea Add formulas to \mathcal{K} such that non-standard interpretations are no longer models of \mathcal{K}
\triangleright These formulas are called induction axioms
\triangleright Let $\mathcal{K}_{\text {I }}$ be a decidable set of induction axioms such that eval $\mathcal{K} \vDash \mathcal{K}_{\text {I }}$

Induction - Example

- Let $\mathcal{K}=\mathcal{K}_{\text {number }} \cup \mathcal{K}_{\text {plus }}$
- Let \mathcal{K}_{l} be the set of all formulas of the form

$$
(P(0) \wedge(\forall X: \text { number })(P(X) \rightarrow P(s(X)))) \rightarrow(\forall X: \text { number }) P(X)
$$

- This scheme can be instantiatied by, e.g., replacing $P(X)$ by $X \not \approx s(X)$

$$
\begin{align*}
& (0 \not \approx s(0) \wedge(\forall X: \text { number })(X \not \approx s(X) \rightarrow s(X) \not \approx s(s(X)))) \\
& \rightarrow(\forall X: \text { number }) X \not \approx s(X) \tag{1}
\end{align*}
$$

- eval $_{\mathcal{K}} \vDash(1) \rightsquigarrow$ Exercise
$-\mathcal{K} \cup\{(1)\} \models(\forall X:$ number $) X \not \approx s(X) \rightsquigarrow$ Exercise
\triangleright The proof is finite (in contrast to a proof of eval $\mathcal{K}_{\mathcal{K}} \vDash(\forall X$: number) $X \not \approx s(X))$)

Inductive Theorem Proving

- Theorem proving by induction is incomplete (Gödel's incompleteness theorem)
- Induction axioms may be computed from inductively defined data structures
- Heuristics may guide selection of
\triangleright the induction variable
\triangleright the induction schema and
\triangleright the induction axiom
- Several theorem provers based on induction are available, e.g.,
\triangleright NQthm
\triangleright Oyster-Clam
\triangleright INKA

