Alternation Alternation

Diagram for the computation by the Engine of the Numbers of Bernoulli, See Note G. (page 722 ef sey.)
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(early computation path written by Ada Lovelace)
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Alternation Alternation

Alternating Computations

Non-deterministic TMs:
» Accept if there is an accepting run.
» Used to define classes like NP

Complements of non-deterministic classes:
» Accept if all runs are accepting.
» Used to define classes like CONP

We have seen that existential and universal modes can also alternate:
» Players take turns in games
» Quantifiers may alternate in QBF

Is there a suitable Turing Machine model to capture this?

2016-01-05

©@®® 2015 Daniel Borchmann, Markus Krétzsch

Complexity Theory

Alternation Alternation

Alternating Turing Machines: Acceptance

Acceptance is defined recursively:

Definition 14.2

A configuration C of an ATM M is accepting if one of the following is true:

» C is existential and some successor configuration of C is accepting.
» C is universal and all successor configurations of C are accepting.
M accepts a word w if the start configuration on w is accepting.

Note: configurations with no successor are the base case, since we have:

» An existential configuration without any successor configurations is
rejecting.
» A universal configuration without any successor configurations is
accepting.
Hence we don’t need to specify accepting or rejecting states explicitly.
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Alternating Turing Machines

Definition 14.1

An alternating Turing machine (ATM) M = (Q, %, T, 46, qo) is a Turing
machine with a non-deterministic transition function

§: QxTI — P(Q xT x{L,R}) whose set of states is partitioned into
existential and universal states:

Q3: set of existential states Qy: set of universal states

» Configurations of ATMs are the same as for (N)TMs:
tape(s) + state + head position

» A configuration can be universal or existential, depending on whether
its state is universal or existential

» Possible transitions between configurations are defined as for NTMs
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Nondeterminism and Parallelism

ATMs can be seen as a generalisation of non-deterministic TMs:

An NTM is an ATM where all states are existential (besides the single
accepting state, which is always universal according to our definition).

ATMs can be seen as a model of parallel computation:
In every step, fork the current process to create sub-processes that
explore each possible transition in parallel
» for universal states, combine the results of sub-processes with AND
» for existential states, combine the results of sub-processes with OR

Alternative view: an ATM accepts if its computation tree, considered as an
AND-OR tree, evaluates to TRUE
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Example: Alternating Algorithm for MinNFormuLA

MinFormuLA
Input: A propositional formula .

Problem: Is ¢ the shortest formula that is satis-
fied by the same assignments as ¢?

MinFormuLA can be solved by an alternating algorithm:

01 MinFormuLA(formula ¢)

02 universally choose ¢ := formula shorter than ¢
03 exist. guess J := assignment for variables in ¢
04 if ¢f =yt :

05 return FALSE

06 else :

07 return TRUE
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Time and Space Bounded ATMs

As before, time and space bounds apply to any computation path in the
computation tree.

Definition 14.3

Let M be an alternating Turing machine and let f : N — R™ be a function.

» Mis f-time bounded if it halts on every input w € ¥* and on every
computation path after <f(|w|) steps.

» Mis f-space bounded if it halts on every input w € >* and on every
computation path using <f(|wl|) cells on its tapes.

(Here we typically assume that Turing machines have a separate
input tape that we do not count in measuring space complexity.)
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Example: Alternating Algorithm for GEoGRAPHY

01 ALTGEoGrAPHY(directed graph G, start node s)
02 Visited := {s} // visited nodes

03 cur:=s // current node

04 while TRUE :

05 // existential move:

06 if all successors of cur are in Visited:

07 return FALSE

08 existentially guess cur:= unvisited successor of cur
09 Visited := Visited U {cur}

10 // universal move:

11 if all successors of cur are in Visited:

12 return TRUE

13 universally choose cur := unvisited successor of cur
14 Visited := Visited U {cur}
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Defining Alternating Complexity Classes

Definition 14.4
Let f : N — R be a function.

» AT1vEe(f(n)) is the class of all languages £ for which there is an
O(f(n))-time bounded alternating Turing machine deciding £, for
some k > 1.

» ASpacE(f(n)) is the class of all languages £ for which there is an
O(f(n))-space bounded alternating Turing machine deciding L.
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Common Alternating Complexity Classes Alternating Complexity Classes: Basic Properties
Nondeterminism: ATMs can do everything that the corresponding NTMs
AP = APTIME = U ATivE(n?) alternating polynomial time can do, e.g., NP € APTIME
d>1 1T -
AEXP — AEXPTIME — U ATue(2") alternating exponential time Reductions: Polynomial many-one reductions can be used to show

d>1 membership in many alternating complexity classes, e.g.,
if L€ APTIME and L' <, Lthen L' € APTIME.

A2Exp = A2ExPTIME = U ATIME(22"d) alt. double-exponential time
d>1 In particular: PSpACE C APTIME (since GeoGgraPHY € AP TIME)
AL = ALOGSPACE = ASPACE(log n) alternating logarithmic space Complementation: ATMs are easily complemented:
. > Let M be an ATM accepting language £(M)
APSPACE = | | ASPACE(n alternating polynomial space . ) ) . .
g () 9 poy P » Let M’ be obtained from M by swapping existential and universal
J _ _ states
AEXPSPACE = U ASpPACE(2™) alternating exponential space R
d>1 » Then L(M') = L(M)

For alternating algorithms this means: (1) negate all return values, (2) swap
universal and existential branching points
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Example: GeograPHY € AP TIME

Example: Complement of MiNFoOrMULA

Original algorithm:

01 MinFormurLa(formula ¢)

02 universally choose ¢ := formula shorter than ¢
03 exist. guess J := assignment for variables in ¢
04 if of =yt :

05 return FALSE

06 else :

07 return TRUE

Complemented algorithm:

01 CompLMiNFormMuLA(formula ¢) :
02 existentially guess ¢ := formula shorter than ¢

03 univ. choose I := assignment for variables in ¢
04 if of =yt :

05 return TRUE

06 else :

07 return FALSE
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