
Extending Two-Variable Logic on Trees∗†

Bartosz Bednarczyk1, Witold Charatonik2, and Emanuel Kieroński3

1 University of Wrocław, Wrocław, Poland
bbednarczyk@stud.cs.uni.wroc.pl

2 University of Wrocław, Wrocław, Poland
wch@cs.uni.wroc.pl

3 University of Wrocław, Wrocław, Poland
kiero@cs.uni.wroc.pl

Abstract
The finite satisfiability problem for the two-variable fragment of first-order logic interpreted
over trees was recently shown to be ExpSpace-complete. We consider two extensions of this
logic. We show that adding either additional binary symbols or counting quantifiers to the logic
does not affect the complexity of the finite satisfiability problem. However, combining the two
extensions and adding both binary symbols and counting quantifiers leads to an explosion of this
complexity. We also compare the expressive power of the two-variable fragment over trees with
its extension with counting quantifiers. It turns out that the two logics are equally expressive,
although counting quantifiers do add expressive power in the restricted case of unordered trees.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Languages

Keywords and phrases two-variable logic, trees, satisfiability, expressivity, counting quantifiers

Digital Object Identifier 10.4230/LIPIcs.CSL.2017.11

1 Introduction

Two-variable logics. Two-variable logic, FO2, is one of the most prominent decidable
fragments of first-order logic. It is important in computer science because of its decidability
and connections with other formalisms like modal, temporal and description logics or query
languages. For example, it is known that FO2 over words can express the same properties as
unary temporal logic [10] and FO2 over trees is precisely as expressive as the navigational
core of XPath, a query language for XML documents [20]. The complexity of the satisfiability
problem for FO2 over words and trees, respectively, is studied in [10], and [2]. Namely,
it is shown that its satisfiability problem over words is NExpTime-complete and over
trees—ExpSpace-complete.

On the other hand, FO2 cannot express that a structure is a word or a tree and it cannot
express that a relation is transitive, an equivalence or an order. This led to extensive studies
of FO2 over various classes of structures, where some distinguished relational symbols are
interpreted in a special way, e.g., as equivalences or linear orders. The finite satisfiability
problem for FO2 remains decidable over structures where one [17] or two relation symbols
[18] are interpreted as equivalence relations; where one [21] or two relations are interpreted
as linear orders [25, 27]; where two relations are interpreted as successors of two linear
orders [19, 11, 8]; where one relation is interpreted as linear order, one as its successor

∗ Supported by the Polish National Science Centre grant No. 2016/21/B/ST6/01444.
† For missing proofs see [1].

© Bartosz Bednarczyk, Witold Charatonik, and Emanuel Kieronski;
licensed under Creative Commons License CC-BY

26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Editors: Valentin Goranko and Mads Dam; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Extending Two-Variable Logic on Trees

and another one as equivalence [3]; where an equivalence closure can be applied to two
binary predicates [16]; where deterministic transitive closure can be applied to one binary
relation [6]. It is known that the finite satisfiability problem is undecidable for FO2 with two
transitive relations [14], with three equivalence relations [17], with one transitive and one
equivalence relation [18], with three linear orders [15], with two linear orders and their two
corresponding successors [19]. A summary of complexity results for extensions of FO2 with
binary predicates being the order relations can be found in [27].

In the context of extensions of FO2 it is enough to consider relational signatures with
symbols of arity at most two [12]. Some of the above mentioned decidability results,
e.g., [2, 25, 19, 11, 3, 6], are obtained under the restriction that besides the distinguished
binary symbols interpreted in a special way there are no other binary predicates in the
signature; some, like [17, 18, 21, 8, 16, 27] are valid in the general setting. In undecidability
results additional binary predicates are usually not necessary.

Another decidable extension of FO2 is the two-variable fragment with counting quantifiers,
C2, where quantifiers of the form ∃≤k, ∃=k, ∃≥k are allowed. The finite satisfiability problem
for C2 was proved to be decidable and NExpTime-complete (both under unary and binary
encoding of numbers in counting quantifiers) in [13, 22, 23]. There are also decidable
extensions of C2 with special interpretations of binary symbols: in [8] two relation symbols
are interpreted as child relations in two forests (which subsumes the case of two successor
relations on two linear orders), in [24] one symbol is interpreted as equivalence relation
and in [7] one symbol is interpreted as linear order (and the case with two linear orders is
undecidable).

Our contribution. In this paper we extend the main result from [2], namely ExpSpace-
completeness of the satisfiability problem for FO2 interpreted over finite trees without
additional binary symbols. We consider two extensions of this logic. We show that adding
either additional, uninterpreted binary symbols or counting quantifiers to the logic does
not increase the complexity of the satisfiability problem. However, when we combine the
two extensions and add both binary symbols and counting quantifiers then the complexity
explodes and the problem is at least as hard as the emptiness problem for vector addition
tree automata [9]. Since decidability of emptiness of vector addition tree automata is a long-
standing open problem, showing decidability of C2 over trees with additional binary symbols
is unlikely in nearest future.

Let us recall that the situation is similar to the case of finite words: FO2 with a linear
order and the induced successor relation remains NExpTime-complete when extended
either with additional binary relations [27] or with counting quantifiers [7]. Combining
both additional ingredients gives a logic which is equivalent to the emptiness problem of
multicounter automata [7], a problem which is known to be decidable, but for which no
algorithm of elementary complexity is known.

We additionally compare the expressive power of the two-variable fragment over trees
with its extension with counting quantifiers. It is not difficult to see that FO2 over unordered
trees cannot count and thus C2 is strictly more expressive in this case. However, the presence
of order in form of sibling relations gives FO2 the ability of counting and makes the two
logics equally expressive.

B. Bednarczyk, W. Charatonik, and E. Kieroński 11:3

2 Preliminaries

2.1 Logics, trees and atomic types
We work with signatures of the form τ = τ0 ∪ τnav ∪ τcom, where τ0 is a set of unary
symbols, and τnav ⊆ {↓, ↓+,→,→+} and τcom are sets of binary symbols called, respectively,
navigational binary symbols and common binary symbols. Over such signatures we consider
two fragments of first-order logic: FO2, i.e., the restriction of first-order logic in which only
variables x and y are available, and its extension with counting quantifiers, C2, in which
quantifiers of the form ∃≥n, ∃≤n, for n ∈ N are allowed. We assume that the reader is
familiar with their standard semantics. When measuring the length of formulas we assume
binary encodings of numbers n in superscripts of quantifiers.

We write FO2[τbin] or C2[τbin] where τbin ⊆ τnav ∪ τcom to denote that the only binary
symbols that are allowed in signatures are from τbin. We will mostly work with two logics:
FO2[↓, ↓+,→,→+, τcom], for τcom being an arbitrary set of common binary symbols, and
C2[↓, ↓+,→,→+], i.e., the fragment with counting quantifiers with no common binary symbols.

We are interested in finite unranked, ordered tree structures, in which the interpretation
of the symbols from τnav is fixed: ↓ is interpreted as the child relation, → as the right
sibling relation, and ↓+ and →+ as their respective transitive closures. We read u ↓ w
as “w is a child of u” and u → w as “w is the right sibling of u”. We will also use other
standard terminology like ancestor, descendant, preceding-sibling, following-sibling, etc. The
interpretation of symbols from τcom (if present) is not restricted.

We use x 6∼y to abbreviate the formula stating that x and y are in free position, i.e., that
they are related by none of the navigational binary predicates available in the signature. Let
us call the formulas specifying the relative position of a pair of elements in a tree with respect
to binary navigational predicates order formulas. There are ten possible order formulas: x↓y,
y↓x, x↓+y ∧ ¬(x↓y), y↓+x ∧ ¬(y↓x), x→y, y→x, x→+y ∧ ¬(x→y), y→+x ∧ ¬(y→x), x6∼y,
x=y. They are denoted, respectively, as: θ↓, θ↑, θ↓↓+ , θ↑↑+ , θ→, θ←, θ⇒+ , θ⇔+ , θ 6∼, θ=. Let
Θ be the set of these ten formulas.

We use symbol T (possibly with sub- or superscripts) to denote tree structures. For a
given tree T we denote by T its universe. A tree frame is a tree over a signature containing no
unary predicates and no common binary predicates. We will sometimes say that a tree frame
Tf is the tree frame of T, or that T is based on Tf if Tf is obtained from T by dropping
the interpretation of all unary and common binary symbols. We say that a formula ϕ is
satisfiable over a tree frame if it has a model based on this tree frame.

Given a tree T, we say that a node v ∈ T is a minimal node (having some fixed property)
if there is no w ∈ T (having this property) such that T |= w↓+v. A ↓-path (→-path) is
a sequence of nodes v1, . . . , vk such that T |= vi↓vi+1 (T |= vi→vi+1), for i = 1, . . . , k − 1.
Given a ↓-path (→-path) P we say that distinct nodes v1, . . . , vl (having some fixed property)
are the l smallest elements (having this property) on P if for any other v ∈ P (having this
property) we have T |= vi↓+v (T |= vi→+v) for i = 1, . . . , l. Analogously we define maximal
and greatest elements.

An (atomic) 1-type is a maximal satisfiable set of atoms or negated atoms with free
variable x. Similarly, an (atomic) 2-type is a maximal satisfiable set of atoms or negated
atoms with free variables x, y. Note that the numbers of atomic 1- and 2-types are bounded
exponentially in the size of the signature. We often identify a type with the conjunction of
all its elements. If we work with a signature with empty τcom then 1-types correspond to
subsets of τ0. We denote by αϕ the set of 1-types over the signature consisting of symbols
appearing in ϕ.

CSL 2017

11:4 Extending Two-Variable Logic on Trees

For a given τ -tree T, and a node v ∈ T we say that v realizes a 1-type α if α is the unique
1-type such that T |= α[v]. We denote by tpT(v) the 1-type realized by v. Similarly, for
distinct u, v ∈ T , we denote by tpT(u, v) the unique 2-type realized by the pair u, v, i.e. the
type β such that T |= β[u, v].

2.2 Normal forms
As usual when working with satisfiability of two-variable logics we employ a Scott-type
normal form [26]. We start with its adaptation for the case of FO2[↓, ↓+,→,→+, τcom].

I Definition 1. We say that an FO2[↓, ↓+,→,→+, τcom] formula ϕ is in normal form if

ϕ = ∀xyχ(x, y) ∧
m∧
i=1
∀x(λi(x)⇒ ∃y(θi(x, y) ∧ χi(x, y))),

where λi(x) is an atomic formula A(x) for some unary symbol A, χ(x, y) and χi(x, y) are
quantifier-free, χi(x, y) do not use symbols from τnav, and θi(x, y) is an order formula.

We remark that the equality symbol may be used in χ, e.g., we can force a model to
contain at most one node satisfying A: ∀xy(A(x) ∧A(y)⇒ x=y). The following lemma can
be proved in a standard fashion (cf. e.g., [2]).

I Lemma 2. Let ϕ be an FO2[↓, ↓+,→,→+, τcom] formula over a signature τ . There exists
a polynomially computable FO2[↓, ↓+,→,→+, τcom] normal form formula ϕ′ over signature
τ ′ consisting of τ and some additional unary symbols, such that ϕ and ϕ′ are satisfiable over
the same tree frames.

Consider a conjunct ϕi = ∀x(λi(x)⇒ ∃y(θi(x, y)∧χi(x, y))) of an FO2[↓, ↓+,→,→+, τcom]
normal form formula ϕ. Let T |= ϕ, and let v ∈ T be an element such that T |= λi[v]. Then
an element w ∈ T such that T |= θi[v, w]∧χi[v, w] is called a witness for v and ϕi. We call w
an upper witness if θi(v, w) |= w↓+v, a lower witness if θi(v, w) |= v↓+w, a sibling witness if
θi(v, w) |= v→+w ∨ w→+v, and a free witness if θi(v, w) |= v 6∼w. We also sometimes simply
speak about →+-witnesses, ↑-witnesses, etc.

For C2 we use a similar but slightly different normal form. One obvious difference is that
it uses counting quantifiers, the other is that its ∀∃-conjuncts do not need to contain the
θi-components, specifying the position of the required witnesses. Refining the normal form
by incorporating those components is possible but seems to require an exponential blow-up.

I Definition 3. We say that a formula ϕ ∈ C2[↓, ↓+,→,→+] is in normal form, if:

ϕ = ∀x∀y χ(x, y) ∧
m∧
i=1

(
∀x ∃./iCiy χi(x, y)

)
,

where ./i∈ {≤,≥}, each Ci is a natural number, and χ(x, y) and all χi(x, y) are quantifier-free.

I Lemma 4 ([13]). Let ϕ be a formula from C2[↓, ↓+,→,→+] over a signature τ . There
exists a polynomially computable C2[↓, ↓+,→,→+] normal form formula ϕ′ over signature τ ′
consisting of τ and some additional unary symbols, such that ϕ and ϕ′ are satisfiable over
the same tree frames.

As in the case of FO2[↓, ↓+,→,→+, τcom] we speak about witnesses. Given a normal form
C2[↓, ↓+,→,→+] formula ϕ and a tree T |= ϕ, we say that a node w ∈ T is a witness for
v ∈ T and a conjunct ∀x ∃./iCiy χi(x, y) of ϕ if T |= χi[v, w]. If additionally T |= w↓+v then
w is an upper witness, if T |= v↓+w then w is a lower witness, and so on.

B. Bednarczyk, W. Charatonik, and E. Kieroński 11:5

In Section 3, when a normal form formula ϕ is considered we always assume that it is
as in Definition 1. In particular we allow ourselves, without explicitly recalling the shape
of ϕ, to refer to its parameter m and components χ, χi, λi, θi. Analogously, in Section 4 we
assume that any normal form ϕ is as in Definition 3.

3 FO2 on trees with additional binary relations

In this section we show that the complexity of the satisfiability problem for FO2[↓, ↓+,→,→+]
[2] is retained when the logic is extended with additional, uninterpreted binary relations.
Thus we combine here the logic from [2] with the logic from [12]. It means that we need not
only to ensure that an element can see realizations of appropriate 1-types in appropriate
positions, but also that it is related to them by uninterpreted binary relations in a specific
way. In our approach we combine the cutting arguments from [2] with the careful strategy of
ensuring witnesses, similar to that from [12] or [27].

I Theorem 5. The satisfiability problem for FO2[↓, ↓+,→,→+, τcom] over finite trees is
ExpSpace-complete.

The lower bound is inherited from FO2[↓, ↓+,→,→+]. For the upper bound we show that
any satisfiable formula ϕ has a model of depth and degree bounded exponentially in |ϕ|.
Then we show an auxiliary result allowing us to restrict attention to models in which there
is a small number of elements that serve as free witnesses for all elements of the tree. We
finally design an alternating exponential time procedure searching for such small models.

3.1 Small model property
Let f be a fixed function, which for a given normal form FO2[↓, ↓+,→,→+, τcom] formula ϕ
returns 96m3|αϕ|3. Recall that m is the number of ∀∃-conjuncts of ϕ and αϕ is the set of
1-types over the signature of ϕ. We will use f to estimate the length of paths and the degree
of nodes in models. Note that for a given ϕ the value returned by f is exponentially bounded
in |ϕ|. It should be mentioned that by a more careful analysis one could obtain slightly
better bounds (still exponential in |ϕ|), but f is sufficient for our purposes and allows for a
reasonably simple presentation. The following small model property is crucial for obtaining
an ExpSpace-upper bound on the complexity of the satisfiability problem. It can be seen as
an extension of Theorem 3.3 from [2], where a similar result was proved for FO2 over trees
without additional binary relations.

I Theorem 6 (Small model theorem). Let ϕ be a satisfiable normal form formula from
FO2[↓, ↓+,→,→+, τcom]. Then ϕ has a model in which the length of every ↓-path and the
degree of each node are bounded exponentially in |ϕ| by f(ϕ).

The proof is split into two lemmas. In the first one we show how to shorten the ↓-paths
and in the second how to reduce the degree of nodes, i.e., to shorten →-paths.

I Lemma 7. Let ϕ be a normal form FO2[↓, ↓+,→,→+, τcom] formula and T its model.
Then there exists a tree model T′ for ϕ whose every ↓-path has length at most f(ϕ).

Proof. Assume that T contains a ↓-path P = (v1, v2, . . . , vn) longer than f(ϕ). We show that
then it is possible to remove some nodes from T and obtain a smaller model T0. For a node
u ∈ T we define its projection onto P as the greatest node v ∈ P , such that T |= v ↓+ u.

We first distinguish a set W of some relevant elements of T. W will consist of four disjoint
sets W0, W1, W2, W3. For each 1-type α we mark:

CSL 2017

11:6 Extending Two-Variable Logic on Trees

(i) m greatest and m smallest realizations of α on P (or all realizations of α on P if there
are less than m of them);

(ii) m realizations of α outside P having greatest projections onto P and m realizations
of α outside P having smallest projections onto P (or all realizations of α outside P if
there are less than m of them).

Let W0 be the set consisting of all the marked elements. Let W1 be a minimal (in the sense
of ⊆) set of nodes of T such that all the elements from W0 have all the required witnesses
in W0 ∪W1. Similarly, let W2 be a minimal set of nodes of T such that all the elements
from W1 have all the required witnesses in W0 ∪W1 ∪W2. Finally, let W3 be the set of
those projections onto P of elements of W0 ∪W1 ∪W2 which are not in W0 ∪W1 ∪W2.
Let W := W0 ∪W1 ∪W2 ∪W3. To estimate the size of W , observe that |W0| ≤ 4m|αϕ|,
|W1| ≤ m|W0|, |W2| ≤ m|W1| and |W3| ≤ |W0 ∪W1 ∪W2|. Thus |W | ≤ 24m3|αϕ|.

An interval of P of length s is a sequence of nodes of the form (vi, vi+1, . . . , vi+s−1) for
some i. We claim that P contains an interval I of length at least 2|αϕ|2 + 2 having no
elements in W . For assume to the contrary that there there is no such interval. Note that
the extremal points of P (which are the root and a leaf of T) are members of W . Hence the
points ofW ∩P determine at most |W |−1 maximal (possibly empty) intervals not containing
elements of W . It follows that |P | ≤ (|W | − 1)(2|αϕ|2 + 1) + |W | < |W |(2|αϕ|2 + 2), which
by routine calculations gives |P | < 96m3|αϕ|3, a contradiction.

Using the pigeonhole principle we can easily see that in I there are two disjoint pairs of
nodes vk, vk+1 and vl, vl+1, for some k < l such that tpT(vl+i) = tpT(vk+i), for i = 0, 1. We
build a tree T0 by replacing in T the subtree rooted at vk+1 by the subtree rooted at vl+1,
setting tpT0(vk, vl+1) := tpT(vk, vk+1) and for each v being a sibling of vk+1 in T setting
tpT0(v, vl+1) := tpT(v, vk+1) (all the remaining 2-types are retained from T). In effect, all
the subtrees rooted at elements of P between vk+1 and vl are removed from T. Note that all
elements of W survive our surgery. This guarantees that the elements of W0 ∪W1 retain all
their witnesses. However, some nodes v from T0 \ (W0 ∪W1) could lose their witnesses. We
can now reconstruct them using the nodes from W0. This is done by distinguishing several
cases. Here we analyse just one of them.

Case 1: v = vk. All the siblings, ancestors and elements in free position to vk from
T are retained in T0. Thus vk retains all its sibling, ancestor and free witnesses. There
is also no problem with ↓-witnesses, as vk retains all its children except vk+1, and vk+1 is
replaced by vl+1 having the same 1-type and connected to vk exactly as vk+1 was. Some
↓↓+-witnesses for vk could be lost however. Let B be a minimal (in the sense of ⊆) set of
elements providing the required ↓↓+-witnesses for vk in T. Note that |B| ≤ m. Let α be a
1-type realized in B. If all elements of 1-type α from B are in W0 then there is nothing to
do: they survive, and serve as proper ↓↓+-witnesses for vk in T0. Otherwise, there must be
at least m realizations of α in W0 (on P or outside P) whose projections onto P in T are
below vl+2. We can modify the 2-types joining vk with some of them securing the required
↓↓+-witnesses for vk. This can be done without conflicts, since vk 6∈W0 ∪W1 and hence it is
not required as a witness by any element of W0.

The remaining cases can be treated similarly.
After the described adjustments all the elements of T0 have appropriate witnesses. Since

all the 2-types realized in T0 are also realized in T this ensures that the ∀∀ conjunct of ϕ is
not violated in T0. Thus T0 |= ϕ.

Note that the number of nodes of T0 is strictly smaller than the number of nodes of
T. We can repeat the same shrinking process starting from T0, and continue it, obtaining
eventually a model T′ whose paths are bounded as required. J

B. Bednarczyk, W. Charatonik, and E. Kieroński 11:7

I Lemma 8. Let ϕ be a normal form FO2[↓, ↓+,→,→+, τcom] formula and T |= ϕ. Then
there exists a model T′ |= ϕ, obtained by removing some subtrees from T such that the degree
of its every node is bounded by f(ϕ).

Proof. Assume that T contains a node v having more than f(ϕ) children. We show that
then it is possible to remove some of these children together with the subtrees rooted at
them and obtain a smaller model T′ |= ϕ. The process is similar to the one described in the
proof of Lemma 7. Let P = (v1, . . . , vk) be the →-path in T consisting of all the children of
v. We first distinguish a set W of some relevant elements of T. It will consist of four disjoint
sets W0, W1, W2, W3.

For each 1-type α we mark m greatest and m smallest realizations of α on P (or all
realizations of α on P if there are less than m of them). Further we choose m+ 1 elements of
P having a realization of α as a descendant (or all such elements if there are less than m+ 1
of them) and for each of them mark one descendant of 1-type α. Let W0 be the set consisting
of all the marked elements. Let W1 be a minimal set of nodes such that all the elements from
W0 have all the required witnesses in W0 ∪W1. Similarly, let W2 be a minimal set of nodes
such that all the elements from W1 have all the required witnesses in W0 ∪W1 ∪W2. Finally,
let W3 be the set of those elements of P which are not in W0 ∪W1 ∪W2 but have an element
from W0 ∪W1 ∪W2 in their subtree. Let W := W0 ∪W1 ∪W2 ∪W3. To estimate the size of
W , observe that |W0| ≤ (3m+ 1)|αϕ|, |W1| ≤ m|W0|, |W2| ≤ m|W1| |W3| ≤ |W0 ∪W1 ∪W2|.
Thus, after simple estimations, we have |W | ≤ 24m3|αϕ|.

An interval of P of length s is a sequence of nodes of the form (vi, vi+1, . . . , vi+s−1) for
some i. Using arguments similar to those from the proof of Lemma 7 we can show that
P contains an interval I with no elements in W , in which there are two disjoint pairs of
nodes vk, vk+1 and vl, vl+1, for some k < l such that tpT(vl+i) = tpT(vk+i), for i = 0, 1.
We build an auxiliary tree T0 by removing the subtrees rooted at vk+1, . . . , vl and setting
tpT0(vk, vl+1) := tpT(vk, vk+1) (all the remaining 2-types are retained from T). Again the
elements which lost their witnesses in our construction can regain them by changing their
connections to elements from W0. And again, as in the proof of Lemma 7, the process can
be continued until a model with appropriately bounded degree of nodes is obtained. J

3.2 Global free witnesses

The small model property from the previous subsection is a crucial step towards an exponential
space algorithm for satisfiability. However, it allows for models having doubly exponentially
many nodes, which thus cannot be stored in memory. In the case of FO2 without additional
binary relations [2] the corresponding algorithm traversed ↓-paths guessing for each node
v its full type storing the sets of 1-types of elements above, below, and in free position to
v, similarly to the case of FO2 with counting from Section 4. Then it took care of realizing
such full types. This approach would not be sufficient for our current purposes, since the
presence of additional binary relations requires us not only to ensure that appropriate 1-types
of elements will appear above, below and in free position to a node but also that appropriate
2-types will be realized. This is especially awkward when dealing with free witnesses, since
for a given node they are located on different paths. To overcome this difficulty we show that
we always can assume that all elements have their free witnesses in a small, exponentially
bounded fragment of some model.

I Lemma 9. Let ϕ be a normal form FO2[↓, ↓+,→,→+, τcom] formula and T its model. Let
h be the length of the longest ↓-path in T and d the maximal number of ↓-successors of a node.

CSL 2017

11:8 Extending Two-Variable Logic on Trees

Then there exists a tree T′ and a set of nodes F ⊆ T ′, called a global set of free witnesses
such that:

the universes, the 1-types of all elements and the tree frames of T and T′ are identical,

T′ |= ϕ,

the size of F is bounded by 3(m+ 1)3h2d2|αϕ|,

F is closed under ↑, ← and →,

for each conjunct of ϕ of the form ϕi = ∀x(λi(x)→ ∃y(x 6∼y ∧ χ(x, y))) and each node
v ∈ T ′, if T′ |= λi[v] then there is a witness for v and ϕi in F .

Proof. We first describe a procedure which distinguishes in T the desired set F . This will
contain three disjoint subsets F0, F1, F2. Start with F0 = F1 = F2 = ∅. For each 1-type α
choose m+ 1 maximal elements of type α in T (or all of them if there are less than m+ 1
such elements) and make them members of F0. Close F0 under ↑, ← and →, i.e., for each
member of F0 add to F0 also all its ancestors, siblings and all the siblings of its ancestors.
This finishes the construction of F0. Observe that |F0| ≤ (m+ 1)hd|αϕ|.

For each v ∈ F0 and each conjunct of ϕ of the form ϕi = ∀x(λi(x)→ ∃y(x 6∼y ∧ χ(x, y)))
if T |= λi[v] and there is no witness for v and ϕi in F0 then find one in T and add it
to F1. Similarly, For each v ∈ F1 and each conjunct of ϕ of the form ϕi = ∀x(λi(x) →
∃y(x 6∼y ∧ χ(x, y))) if T |= λi[v] and there is no witness for v and ϕi in F0 ∪ F1 then find one
in T and add it to F2.

Take as F the smallest set containing F0 ∪ F1 ∪ F2 and closed under the relations ↑,
← and →. Note that |F1| ≤ m|F0| ≤ m(m+1)hd|αϕ|, and similarly |F2| ≤ m|F1| ≤
m2(m+1)hd|αϕ|. This allows us to estimate the size of F as follows, |F | ≤ (m+1)hd|αϕ|+(
m(m+1)hd|αϕ|+m2(m+1)hd|αϕ|

)
hd ≤ 3(m+1)3h2d2|αϕ|, as required.

To obtain T′ we modify some 2-types joining pairs of elements in free position, one of
which is in T \ (F0 ∪ F1) and the other in F0. Consider any element v ∈ T \ (F0 ∪ F1) and
let B be a minimal (with respect to ⊆) set of elements providing the required free witnesses
for v in T. Note that |B| ≤ m. Let α be a 1-type realized in B. If all elements of 1-type α
from B are in F0 then there is nothing to do: we just retain the connections of v with the
elements of type α in F0. Otherwise there are m+ 1 maximal realizations of α in F0, and at
least m of them is in free position to v. Indeed, v 6∈ F0 and thus it cannot be an ancestor
or a sibling of any of those m+ 1 maximal realizations of α (since F0 is closed under ↑, ←
and →), so if it is not in free position to all then it is a descendant of one of them. But in
this case it is in free position to all the other (since maximal realizations of α are in free
position to each other). Thus, in this case, for any w ∈ B of type α we can choose a fresh w′
of type α in F0 in free position to v and set tpT′(v, w′) := tpT(v, w). We repeat this step for
all 1-types of elements of B, thus ensuring that v has all the required free witnesses in F0.
We repeat this process for all elements of T \ (F0 ∪ F1).

This finishes our construction of T′. Note that our surgery does not affect the 2-types
inside T�(F0∪F1) and the 2-types joining the elements of F1 with the elements of T \(F0∪F1).
Thus in T′ all elements of F0 ∪ F1 retain their free witnesses in F and all the remaining
elements have appropriate free witnesses in F0 due to our construction. As we do not change
the 2-types joining the elements which are not in free position thus all the upper, lower and
sibling witnesses are retained in T′. Since T′ realizes only 2-types realized in T the universal
conjunct of ∀xyχ(x, y) of ϕ is satisfied in T′. Hence, T′|=ϕ. J

B. Bednarczyk, W. Charatonik, and E. Kieroński 11:9

3.3 The algorithm
We are now ready to present an alternating algorithm for the finite satisfiability problem for
FO2[↓, ↓+,→,→+, τcom], working in exponential time. Since AExpTime=ExpSpace this
justifies Thm. 5. Due to Lemma 2 we can assume that the input formula is given in normal
form.

We first sketch our approach. For a given normal form ϕ the algorithm attempts to build a
model T |= ϕ. It first guesses its fragment F, of size exponentially bounded in |ϕ|, intended to
provide free witnesses for all elements of T, and then expands it down. Namely, it universally
chooses one of the leaves v of F, guesses all its children w1, . . . , wk (at most exponentially
many), and guesses 2-types joining wi-s with all their ancestors, with all elements of F, and
among each other. The algorithm verifies that the guessed elements are consistent with the
partial model constructed so far, and if so it universally chooses one of wi and proceeds with
wi analogously like with v. This process is continued until the algorithm decides that a leaf
of T is reached.

We must ensure that the structure T which is constructed by our algorithm is indeed
a model of ϕ, i.e., all elements of T have appropriate witnesses for ∀∃ conjuncts, and that
no pair of elements of T violates the ∀∀ conjunct. Note that when the algorithm inspects a
node v all its siblings and ancestors are present in the memory. This allows to verify that v
has the required upper and sibling witnesses. Checking the existence of free witnesses is not
problematic too, because, owing to Lemma 9 we assume that they are provided by F, which
is never removed from the memory. Verifying ↓-witnesses is also straightforward, since we
guess all the children w1, . . . , wk of v at once. To deal with ↓+-witnesses the algorithm stores
some additional data. Namely, together with each wi it guesses the list of all 2-types (called
promised 2-types) which will be assigned to the pairs consisting of v or its ancestor and a
descendant of wi. This is obviously sufficient to see if v will have the required ↓+-witnesses.
The algorithm will take care of the consistency of the information about promised types
stored in various nodes, and then ensure that all the promised 2-types will indeed be realized.

Turning to the problem of verifying that the universal conjunct of ϕ is not violated by
any pair of elements of T note that it is easy for pairs of elements which are not in free
position, since at some point during the execution of the algorithm they are both present in
the memory and their 2-type is then available. For a pair of elements u1, u2 in free position
there is an element v such that u1, u2 are descendants of two different children of v from the
list w1, . . . , wk. From information about the promised 2-types guessed together with wi-s, we
can extract the list of 1-types that will appear below each of wi. Reading this information
we see that the 1-types of u1 and u2 will appear in free position, and we just need to verify
that there is a 2-type consistent with the ∀∀-conjunct which can join them.

A more detailed description of the algorithm together with arguments for its correctness
is given in Appendix A.

4 C2[↓, ↓+,→,→+] on trees

In this section we prove that the finite satisfiability problem for C2[↓, ↓+,→,→+] over trees
is ExpSpace-complete. Intuitively, the upper bound proof is a combination of the two
proofs from [5] and [7] that solve the problem for FO2 on trees and for C2 on linear orders
respectively (note that a linear order is just a tree whose each node has at most one child).
However, the method in [5] heavily depends on the normal form from Definition 1 where
each conjunct corresponds to at most one relative position θ ∈ Θ. Although it is possible to
bring a C2[↓, ↓+,→,→+] formula into an analogous normal form, it seems to require a doubly

CSL 2017

11:10 Extending Two-Variable Logic on Trees

exponential blowup (recall that we assume binary coding of the numbers Ci and observe that
the number of possible divisions of a set of Ci witnesses into 10 subsets corresponding to
10 order formulas is exponential in Ci). Therefore, to keep the complexity under control,
we stay with the usual, less refined normal form from Definition 3, but to compensate it we
introduce a new idea combining type information with witness counting.

4.1 Multisets
Any element of a model of a normal form conjunct ∀x∃./Ciy χ may require up to Ci witnesses,
so we are interested in multisets counting these witnesses. To simulate counting up to the
value k, we use the function cutk : N→ {0, 1, 2, . . . , k,∞}, where cutk(i) = i for i ≤ k and
cutk(i) =∞ otherwise.

Formally, for a given k ∈ N, a k-multiset M of elements from a set S is a function
M : S → {0, 1, 2, . . . , k,∞}. For every element e ∈ S we interpretM(e), called themultiplicity
of e in M , as the number of occurrences of e in the multiset M , counted up to k. We employ
standard set-theoretic operations, i.e., union ∪ and intersection ∩ with their natural semantics
defined as follows: for given multisets A and B and an arbitrary element e from their domains,
we define (A ∪B)(e) = cutk (A(e) +B(e)) and (A ∩B)(e) = min(A(e), B(e)). Additionally,
we define the empty multiset ∅ as the function that for any argument returns 0 and the
singleton {e} of e as the function such that {e}(e) = 1 and {e}(e′) = 0 for all e′ 6= e.

4.2 Full types, witness counting and reduced types
We abstract information about nodes in a tree using the following notion.

I Definition 10 (Full type). A k-full type α (over a signature τ = τ0 ∪ τnav) is a function of
type α : Θ→ {0, 1, 2, . . . , k,∞}2τ0 (a function which takes a position from Θ and returns a
k-multiset of 1-types over τ), that satisfies the following conditions:

α(θ↑), α(θ→), α(θ←) is either empty or a singleton,
α(θ=) is a singleton, and
if α(θ↑) (respectively, α(θ↓), α(θ→), α(θ←)) is empty, then also the multiset α(θ↑↑+)
(respectively, α(θ↓↓+), α(θ⇒+), α(θ⇔+)) is empty.

Let C be the function that for a given normal form ϕ (cf. Def. 3) returns C(ϕ) =
max{Ci}1≤i≤m. We work with k-full types usually in contexts in which a normal form ϕ is
fixed, and we are then particularly interested in C(ϕ)-full types. The purpose of a k-full type
is to say for a given node v, for each θ ∈ Θ and each 1-type α′, how many vertices (counting
up to k) of 1-type α′ are in position θ to v. Formally:

I Definition 11. For a given tree T and v ∈ T we denote by ftpT
k (v) the unique k-full type

realized by v, i.e., the k-full type α such that α(θ=) contains the 1-type of v and for all
positions θ ∈ Θ and for all atomic 1-types α′ we have that

α(θ)(α′) = cutk
(
#{w ∈ T : T |= θ[v, w] ∧ tpT(w) = α′}

)
where #S denotes the cardinality of the set S.

We next define functions which for a normal form ϕ and a C(ϕ)-full type α say how
many witnesses a realization of α has for each of the ∀∃ conjuncts of ϕ (recall that m is the
number of such conjuncts) in all possible positions θ.

B. Bednarczyk, W. Charatonik, and E. Kieroński 11:11

I Definition 12 (Witness counting functions). Let ϕ be a normal form formula, and let α
be a C(ϕ)-full type. Assume that α(θ=) = {α}. We associate with ϕ and α a function
Wϕ
α : {1, . . . ,m} ×Θ→ {0, 1, . . . , C(ϕ),∞}, whose values are defined in the following way:
for θ ∈ {θ=, θ→, θ←, θ↓, θ↑} and any i:

Wϕ
α (i, θ) =

{
1 if α(θ)={α′} and α(x)∧α′(y)∧θ(x, y)|=χi(x, y)
0 otherwise,

for θ ∈ {θ⇔+ , θ⇒+ , θ↓↓+ , θ↑↑+ , θ6∼} and any i:

Wϕ
α (i, θ) = cutC(ϕ)

 ∑
α′∈Aα,θ,i

(α(θ))(α′)

 ,

where Aα,θ,i = {α′ : α(x)∧α′(y)∧θ(x, y) |= χi(x, y)}.

This way Wϕ
α (i, θ) is the number of witnesses (counted up to C(ϕ)), in relative position

θ, for a node of full type α and the formula χi from ϕ.
Now we relate the notion of full types with the satisfaction of normal form formulas.

I Definition 13 (ϕ-consistency). Let ϕ be a C2[↓, ↓+,→,→+] formula in normal form. Let α
be a C(ϕ)-full type. Assume that α(θ=) consists of a 1-type α. We say that α is ϕ-consistent
if it satisfies the following conditions.

α(x) |= χ(x, x),
α(x) ∧ α′(y) ∧ θ(x, y) |= χ(x, y) for all θ ∈ Θ and all α′ ∈ α(θ), and
for all 1 ≤ i ≤ m the inequality

∑
θ∈ΘW

ϕ
α (i, θ) ./i Ci holds.

Proving the following lemma is routine.

I Lemma 14. Assume that a formula ϕ ∈ C2[↓, ↓+,→,→+] is in normal form. Then T |= ϕ

iff every C(ϕ)-full type realized in T is ϕ-consistent.

The next notion will be used to describe information from full types in a (lossy) compressed
form. We need this form to obtain tight complexity bounds.

I Definition 15 (ϕ-reduced type). Let ϕ be a normal form C2[↓, ↓+,→,→+] formula. For a
given C(ϕ)-full type α, its ϕ-reduced form, rftpϕ(α), is the tuple

(
α,Wϕ

α , A,B, F
)
, where

A = α(θ↑) ∪ α(θ↑↑+), B = α(θ↓) ∪ α(θ↓↓+), F = α(θ→) ∪ α(θ←) ∪ α(θ⇒+) ∪ α(θ⇔+) ∪ α(θ 6∼)
and α(θ=) is the singleton of the 1-type α. If the C(ϕ)-full type α is realized by a vertex v
in T then we say that rftpϕ(α) is the ϕ-reduced type of v. This reduced full type will be
denoted also as rftpT

ϕ(v).

Intuitively, if a k-full type α is realized by a vertex v in a structure T then the multisets
A,B, F in rftpϕ(α) are respectively the k-multisets of 1-types realized in T above, below and
in a “non-vertical” position to v.

Let α, β be k-full types. A combined k-full type is a k-full type γ, such that γ(θ) = α(θ)
or γ(θ) = β(θ) for all positions θ ∈ Θ.

I Lemma 16. Let α, β be ϕ-consistent C(ϕ)-full types such that their ϕ-reduced forms
are equal. Then the combined C(ϕ)-full type γ of the form γ(θ) = α(θ) for θ ∈ {θ↑, θ↑↑+ ,

θ→, θ⇒+ , θ6∼, θ←, θ⇔+} and γ(θ) = β(θ) for θ ∈ {θ=, θ↓, θ↓↓+} is also ϕ-consistent.

Proof. Obviously γ satisfies the first two conditions from Definition 13 because α and β do.
The third condition is guaranteed by the equality of the witness counting components. J

CSL 2017

11:12 Extending Two-Variable Logic on Trees

u

v

v

Figure 1 Naive combination of full types.

I Example 17. Let us observe that in the above lemma the assumption about equality of
ϕ-reduced full types, and in particular their witness counting components, is essential. In [5,
Proposition 2] the authors prove that in the setting without counting quantifiers a combined
type remains ϕ-consistent without the assumption about equality of the reduced forms of
the original types. The following example shows that in our scenario it is no longer true.

Let ϕ be a formula saying that every green vertex has at most three direct black neighbors
below, on the left or on the right; formally ϕ is defined as
∀x∃≤3y (green(x)⇒ (black(y) ∧ (x ↓ y ∨ x→ y ∨ y → x))).
Let T be a tree model from Fig. 1. Denote α = ftpT

C(ϕ)(u) and β = ftpT
C(ϕ)(v). Because

T |= ϕ, the C(ϕ)-full types α and β are ϕ-consistent. However the combined C(ϕ)-full type γ,
in form described in Lemma 16, is not ϕ-consistent (the black nodes appear in γ at positions
θ↓, θ←, θ→ four times in total).

4.3 Small model theorem
The general scheme of the decidability proof of finite satisfiability of C2[↓, ↓+,→,→+] is
similar to the one from Section 3. Namely, we demonstrate the small-model property of the
logic, showing that every satisfiable formula ϕ has a tree model of depth and degree bounded
exponentially in |ϕ|. It is also obtained in a similar way, by first shortening ↓-paths and then
shortening the →-paths. The technical details differ however.

Recall that given a normal form ϕ we denote by m the number of its ∀∃ conjuncts, and
by αϕ the set of 1-types over the signature consisting of the symbols appearing in ϕ.

I Theorem 18 (Small model theorem). Let ϕ be a formula of C2[↓, ↓+,→,→+] in normal
form. If ϕ is satisfiable then it has a a tree model in which every path has length bounded by
3 · (C(ϕ) + 2)10m+1 · |αϕ|2 and every vertex has degree bounded by (4C(ϕ)2 + 8C(ϕ)) · |αϕ|5.

We split the proof of this theorem into two parts. First, in Lemmas 19 and 20, we show
how to reduce the length of paths in a tree and then, in Lemma 21, we show how to reduce
the degree of every vertex. We skip most of the details of the proofs due to the space limit.

I Lemma 19 (Cutting lemma). Let ϕ ∈ C2[↓, ↓+,→,→+] be a formula in normal form and T

be its model. If there are two vertices u, v ∈ T , such that v is below u and rftpT
ϕ(u) = rftpT

ϕ(v),

B. Bednarczyk, W. Charatonik, and E. Kieroński 11:13

then the tree T′, obtained by replacing the subtree rooted at u by the subtree rooted at v, is
also a model of ϕ.

To show this we observe that the C(ϕ)-full type of u in tree T′ is a combination of the
C(ϕ)-full types of u and v in T and thus, by Lemma 16, it is ϕ-consistent. Then we show that
for every other vertex w in T′ we have ftpT

C(ϕ)(w) = ftpT′

C(ϕ)(w). Then Lemma 14 guarantees
that the obtained tree T′ is indeed a model of ϕ.

I Lemma 20. Let ϕ be a satisfiable formula of C2[↓, ↓+,→,→+] in normal form. Then there
exists a tree model of ϕ whose every ↓-path has length bounded by 3 · (C(ϕ) + 2)10m+1 · |αϕ|2.

Proof. According to Lemma 19 we can restrict attention to models with the property that
every ϕ-reduced full type appears only once on every ↓-path. Let T |= ϕ be a tree model with
this property. Let v1, v2, . . . , vn be a ↓-path in T. Observe that the ϕ-reduced full types on
this path behave in a monotonic way in the sense that for every i and the ϕ-reduced full types
of the i, (i+1)-th vertices Ri = (αi,Wi, Ai, Bi, Fi) and Ri+1 = (αi+1,Wi+1, Ai+1, Bi+1, Fi+1),
we have Ai⊆Ai+1, Bi+1⊆Bi and Fi⊆Fi+1. A 1-type α can occur in a multiset from 0 to
C(ϕ) times. If α appears more than C(ϕ) times, its multiplicity is ∞. Hence the number
of modifications of each multiset from A,B, F is bounded by (C(ϕ) + 2) · |αϕ|. There
are up to |αϕ| · (C(ϕ) + 2)10m ϕ-reduced full types with fixed multisets A,B, F (because
it is the number of all possible 1-types multiplied by the number of all possible witness-
counting functions). Combination of these two observations gives us the desired estimation
(C(ϕ) + 2)10m+1 · |αϕ|2 · 3. J

I Lemma 21. Let ϕ be a formula in normal form of C2[↓, ↓+,→,→+] satisfied in a finite
tree T. Then there exists a tree model of ϕ, obtained by removing some subtrees from T, such
that the degree of every vertex is bounded by (4C(ϕ)2 + 8C(ϕ)) · |αϕ|5.

To prove this lemma, we first limit the degree of a single vertex. Given a vertex v from
T , we mark a small number of children of v as important vertices. Marked vertices are then
used as required witnesses for v. Then the reasoning is similar to that of Lemma 19. We
introduce an appropriate notion of type and remove all nodes on the horizontal path between
two children of the same type, provided that the path does not contain any marked vertex.
By repeating this procedure as long as there are vertices of high degree we obtain a desired
model of ϕ.

4.4 Algorithm
In this section we design an algorithm checking if a given formula ϕ ∈ C2[↓, ↓+,→,→+] has
a finite tree model. First, by Lemma 4, we can assume that ϕ is in normal form. Second, by
Theorem 18, we can restrict attention to models with exponentially bounded vertex degree
and ↓-path length. The algorithm works in alternating exponential time. The idea of the
algorithm is quite simple (see Procedure 4.2 below). For each vertex v we will guess its
C(ϕ)-full type and check if it is ϕ-consistent. If it is, we guess the v’s children and their full
types. After that, we check if their C(ϕ)-full types are locally consistent, i.e., if the guessed
types coincide with the types realized in the constructed model (see Procedure 4.1). The
algorithm starts with v = root and works recursively with its children. The procedure is an
adaptation of the one from [5] used in the context of FO2 without counting quantifiers.

Let us now sketch the arguments for the correctness of Procedure 4.2.

I Lemma 22. Procedure 4.2 accepts its input ϕ iff ϕ is satisfiable.

CSL 2017

11:14 Extending Two-Variable Logic on Trees

Procedure 4.1 Checking if given C(ϕ)-full types are locally-consistent
Input: C(ϕ)-full types α, α1, . . ., αk

1: Return True if all of the statements below are true. Return False otherwise.
2: αi(θ←) = αi−1(θ=) for i > 1 and α1(θ←) = ∅
3: αi(θ⇔+) = αi−1(θ←) ∪ αi−1(θ⇔+) for i > 1 and α1(θ⇔+) = ∅
4: αi(θ→) = αi+1(θ=) for i < k and αk(θ→) = ∅
5: αi(θ⇒+) = αi+1(θ→) ∪ αi+1(θ⇒+) for i < k and αk(θ⇒+) = ∅
6: α(θ↓) =

⋃k
j=1 αj(θ=)

7: α(θ↓↓+) =
⋃k
i=1
(
αi(θ↓) ∪ αi(θ↓↓+)

)
8: for 1 ≤ i ≤ k : αi(θ↑) = α(θ=)
9: for 1 ≤ i ≤ k :
αi(θ 6∼) = α(θ 6∼) ∪ α(θ←) ∪ α(θ→) ∪ α(θ⇔+) ∪ α(θ⇒+) ∪

⋃
j 6=i
(
αj(θ↓) ∪ αj(θ↓↓+)

)

Procedure 4.2 Satisfiability test for C2[↓, ↓+,→,→+]

Input: Formula ϕ ∈ C2[↓, ↓+,→,→+] in normal form.
1: Let MaxDepth := 3 · (C(ϕ) + 2)10m+1 · |αϕ|2
2: Let MaxDeg := (4C(ϕ)2 + 8C(ϕ)) · |αϕ|5
3: Lvl := 0.
4: guess a C(ϕ)-full type α s.t. α(θ) = ∅ for all θ ∈ {θ↑, θ↑↑+ , θ→, θ←, θ⇒+ , θ⇔+ , θ6∼}.
5: while Lvl < MaxDepth do
6: if α is not ϕ-consistent then reject
7: if α(θ↓) = α(θ↓↓+) = ∅ then accept
8: guess an integer 1 ≤ k ≤ MaxDeg
9: guess C(ϕ)-full types α1, α2, . . ., αk

10: if not locally-consistent(α, α1, α2, . . . , αk) then reject
11: Lvl := Lvl + 1
12: universally choose 1 ≤ i ≤ k; let α = αi
13: reject

Proof. Assume ϕ is satisfiable. Then there exists a small tree model T as guaranteed by
Theorem 18. We can run the algorithm and guess exactly the same C(ϕ)-full types as in T.
The guessed C(ϕ)-full types are locally-consistent and ϕ-consistent, so Procedure 4.2 accepts.

Assume that Procedure 4.2 accepts its input ϕ. Then we can reconstruct the tree T from
the received C(ϕ)-full types. The guessed C(ϕ)-full types are ϕ-consistent, which guarantees
that we have the right number of witnesses to satisfy the formula. Moreover, the function
locally-consistent ensures that the C(ϕ)-full types realized in T are indeed as we guessed. By
Lemma 14, T is a tree model for ϕ and thus ϕ is satisfiable. J

As AExpTime=ExpSpace, and the corresponding lower bound follows from [2] we can
conclude this section with the following result.

I Theorem 23. The satisfiability problem for C2[↓, ↓+,→,→+] over finite trees is ExpSpace-
complete.

B. Bednarczyk, W. Charatonik, and E. Kieroński 11:15

5 Expressive power

A natural question is whether adding counting quantifiers increases the expressive power
of two-variable logic over trees. We answer this question concentrating on the classical
scenario assuming that signatures contain no common binary symbols. Under this scenario
FO2[↓, ↓+,→,→+] is known to be expressively equivalent to the navigational core of XPath
[20]. Here we show that C2[↓, ↓+,→,→+] shares the same expressivity. However, it is the
presence of the sibling relations which makes FO2 and C2 equivalent. Indeed, over unordered
trees FO2 cannot count:

I Theorem 24. FO2[↓, ↓+] is less expressive than C2[↓, ↓+].

Proof. Let us assume that the signature contains no unary predicates and for i ∈ N let Ti
denote the tree consisting just of a root and its i children. Obviously T3 |= ∃x∃≥3y x↓+y

while T2 6|= ∃x∃≥3y x↓+y. On the other hand, T2 and T3 are indistinguishable in FO2[↓, ↓+].
This can be seen by observing that Duplicator has a simple winning strategy in the standard
two-pebble game of any length played on T2 and T3. J

Now we turn to the case of full navigational signature.

I Theorem 25. FO2[↓, ↓+,→,→+] and C2[↓, ↓+,→,→+] are expressively equivalent.

The core of the proof is the following technical result, allowing us to translate formulas
of a simple shape.

I Lemma 26. Let ϕ be a formula of shape ∃≥ky(θ(x, y)∧ψ(y)), where θ is an order formula,
ψ is an FO2[↓, ↓+,→,→+, τcom] formula with at most one free variable y. Then there exists
an FO2[↓, ↓+,→,→+] formula trans(ϕ) such that for any tree T, and any v ∈ T we have
T |= ϕ[v] iff T |= trans(ϕ)[v].

This lemma is proved by induction on k. E.g., trans(∃≥ky((y↓+x∧¬y↓x)∧ψ(y))) can be
simply defined as ∃y((y↓+x ∧ ¬y↓x) ∧ ψ(y) ∧ trans(∃≥k−1x(x↓+y ∧ ψ(x)))). Note that x↓+y

is not an order formula and indeed, to make the induction work we need to formulate the
thesis for a wider class of possible specifications of the related position of x and y, including
not only the order formulas, but also some simple navigational atoms and, more importantly,
even some much more complicated descriptions of the relation between x and y. Intuitively,
this allows us always to say where the “first” witness is and how the remaining k−1 witnesses
are related to it.

Lemma 26 can be then generalized to arbitrary formulas with one free variable. This
gives Theorem 25. We skip the details due to the space limit.

6 Combining the two extensions

We have proved that two extensions of two-variable logic on trees: the extension with
counting quantifiers, C2[↓, ↓+,→,→+] , and the extension with additional uninterpreted
binary relations, FO2[↓, ↓+,→,→+, τcom], remain decidable and retain ExpSpace-complexity
of FO2[→,→+, ↓, ↓+]. It is tempting to combine both variants into a single logic, i.e., to
consider C2[↓, ↓+,→,→+, τcom], the two-variable logic with counting quantifiers and additional
binary relation over trees. However, this turns out to lead to a very difficult formalism.
Namely, we can reduce to it the long standing open problem of checking non-emptiness of
vector addition tree automata.

CSL 2017

11:16 Extending Two-Variable Logic on Trees

I Theorem 27. The satisfiability problem for C2[↓, ↓+,→,→+, τcom] is at least as hard as
checking non-emptiness of vector addition tree automata.

Proof. To prove the theorem we can mimic the reduction of vector addition tree automata
to two-variable logic on data trees given in Thm. 4.1 in [4]. Data trees are just trees with an
additional, uninterpreted equivalence relation on nodes. In the reduction there the intended
equivalence classes are of size at most two. We can easily simulate this by using a common
binary symbol E ∈ τcom, constraining it to be reflexive and symmetric (which is naturally
expressible in FO2), and using counting quantifiers to force each element to be connected by
E to at most one other element. The remaining details of the proof remain unchanged. In
the proof we do not need to use → nor →+. J

References
1 Bartosz Bednarczyk, Witold Charatonik, and Emanuel Kieronski. Extending two-variable

logic on trees. CoRR, abs/1611.02112, 2016. URL: http://arxiv.org/abs/1611.02112.
2 Saguy Benaim, Michael Benedikt, Witold Charatonik, Emanuel Kieroński, Rastislav Len-

hardt, Filip Mazowiecki, and James Worrell. Complexity of two-variable logic on finite trees.
ACM Transactions on Computational Logic, 17(4):32:1–32:38, 2017. Extended abstract in
ICALP 2013.

3 M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic
on data words. ACM Transactions on Computational Logic, 12(4):27, 2011.

4 M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data
trees and XML reasoning. Journal of the ACM, 56(3), 2009.

5 Witold Charatonik, Emanuel Kieronski, and Filip Mazowiecki. Satisfiability of the two-
variable fragment of first-order logic over trees. CoRR, abs/1304.7204, 2013.

6 Witold Charatonik, Emanuel Kieroński, and Filip Mazowiecki. Decidability of weak logics
with deterministic transitive closure. In Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS’14, Vienna, Austria, July
14-18, 2014, page 29, 2014. doi:10.1145/2603088.2603134.

7 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and a linear
order. Logical Methods in Computer Science, 12(2), 2016. doi:10.2168/LMCS-12(2:8)
2016.

8 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and trees. ACM
Transactions on Computational Logic, 17(4):31:1–31:27, 2017. Extended abstract in LICS
2013.

9 Philippe de Groote, Bruno Guillaume, and Sylvain Salvati. Vector addition tree automata.
In 19th IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July 2004,
Turku, Finland, Proceedings, pages 64–73. IEEE Computer Society, 2004. doi:10.1109/
LICS.2004.1319601.

10 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. Inf. Comput., 179(2):279–295, 2002. doi:10.1006/inco.2001.
2953.

11 Diego Figueira. Satisfiability for two-variable logic with two successor relations on finite
linear orders. Computing Research Repository, abs/1204.2495, 2012.

12 E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order
logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

13 E. Grädel, M. Otto, and E. Rosen. Two-variable logic with counting is decidable. In LICS
1997, Proceedings, pages 306–317, 1997.

http://arxiv.org/abs/1611.02112
http://dx.doi.org/10.1145/2603088.2603134
http://dx.doi.org/10.2168/LMCS-12(2:8)2016
http://dx.doi.org/10.2168/LMCS-12(2:8)2016
http://dx.doi.org/10.1109/LICS.2004.1319601
http://dx.doi.org/10.1109/LICS.2004.1319601
http://dx.doi.org/10.1006/inco.2001.2953
http://dx.doi.org/10.1006/inco.2001.2953

B. Bednarczyk, W. Charatonik, and E. Kieroński 11:17

14 Emanuel Kieroński. Results on the guarded fragment with equivalence or transitive rela-
tions. In C.-H. Luke Ong, editor, CSL, volume 3634 of Lecture Notes in Computer Science,
pages 309–324. Springer, 2005. doi:10.1007/11538363_22.

15 Emanuel Kieroński. Decidability issues for two-variable logics with several linear orders.
In Marc Bezem, editor, CSL, volume 12 of LIPIcs, pages 337–351. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.CSL.2011.337.

16 Emanuel Kieroński, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-
variable first-order logic with equivalence closure. In LICS, pages 431–440. IEEE Computer
Society, 2012. doi:10.1109/LICS.2012.53.

17 Emanuel Kieroński and Martin Otto. Small substructures and decidability issues for first-
order logic with two variables. In LICS, pages 448–457. IEEE Computer Society, 2005.
doi:10.1109/LICS.2005.49.

18 Emanuel Kieroński and Lidia Tendera. On finite satisfiability of two-variable first-order
logic with equivalence relations. In LICS, pages 123–132. IEEE Computer Society, 2009.
doi:10.1109/LICS.2009.39.

19 Amaldev Manuel. Two variables and two successors. In Petr Hlinený and Antonín Kucera,
editors,MFCS, volume 6281 of Lecture Notes in Computer Science, pages 513–524. Springer,
2010. doi:10.1007/978-3-642-15155-2_45.

20 Maarten Marx and Maarten de Rijke. Semantic characterization of navigational XPath. In
First Twente Data Management Workshop (TDM 2004) on XML Databases and Informa-
tion Retrieval, pages 73–79, 2004.

21 Martin Otto. Two variable first-order logic over ordered domains. J. Symb. Log., 66(2):685–
702, 2001.

22 Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of two-variable logic
with counting. In LICS, pages 318–327, 1997. doi:10.1109/LICS.1997.614958.

23 I. Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers.
Journal of Logic, Language and Information, 14(3):369–395, 2005.

24 I. Pratt-Hartmann. Logics with counting and equivalence. In CSL-LICS 2014, Proceedings,
page 76, 2014.

25 Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations
– (extended abstract). In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247
of Lecture Notes in Computer Science, pages 499–513. Springer, 2010. doi:10.1007/
978-3-642-15205-4_38.

26 Dana Scott. A decision method for validity of sentences in two variables. Journal of
Symbolic Logic, 27:477, 1962.

27 Thomas Zeume and Frederik Harwath. Order-invariance of two-variable logic is decid-
able. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS’16, pages 807–816, New York, NY, USA, 2016. ACM. doi:10.1145/2933575.
2933594.

A Algorithm for two-variable logic over trees

In this section we give a more detailed description of the algorithm solving the satisfiability
problem for FO2[↓, ↓+,→,→+, τcom]. Then we explain that it has the desired complexity
and sketch the argument for its correctness.

The algorithm employs a data structure, storing for each node v the following three
components:

v.1tp – the 1-type of v,
v.2tp() – the function which for each w being a sibling of v, an ancestor of v or a member
of F , returns the 2-type of (v, w),

CSL 2017

http://dx.doi.org/10.1007/11538363_22
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.337
http://dx.doi.org/10.1109/LICS.2012.53
http://dx.doi.org/10.1109/LICS.2005.49
http://dx.doi.org/10.1109/LICS.2009.39
http://dx.doi.org/10.1007/978-3-642-15155-2_45
http://dx.doi.org/10.1109/LICS.1997.614958
http://dx.doi.org/10.1007/978-3-642-15205-4_38
http://dx.doi.org/10.1007/978-3-642-15205-4_38
http://dx.doi.org/10.1145/2933575.2933594
http://dx.doi.org/10.1145/2933575.2933594

11:18 Extending Two-Variable Logic on Trees

Procedure A.1 FO2[↓, ↓+,→,→+, τcom]-sat-test

Input: a formula ϕ in FO2[↓, ↓+,→,→+, τcom] normal form
1: guess a tree F of depth and degree of nodes bounded by f(ϕ) and the number of nodes

bounded by 3(m+1)3(f(ϕ))4|αϕ|
2: for each v ∈ F do
3: if v is not a leaf in F then
4: if not consistent-with-ancestors-siblings-F(v) then reject
5: if not has-upper-sibling-free-witnesses(v) then reject
6: Let w1, . . . , wk be the list of the children of v
7: if not ensure-lower-witnesses(v, w1, . . . , wk) then reject
8: if not propagates-promised-2-types(v, w1, . . . , wk) then reject
9: if not respects-universal-conjunct(v, w1, . . . , wk) then reject

10: universally choose a leaf v of F; let l be the depth of v in F

11: while l ≤ f(ϕ) do
12: if not consistent-with-ancestors-siblings-F(v) then reject
13: if not has-upper-sibling-free-witnesses(v) then reject
14: guess a list w1, . . . , wk of children of v; if k > f(ϕ) then reject
15: if not ensure-lower-witnesses(v, w1, . . . , wk) then reject
16: if not propagates-promised-2-types(v, w1, . . . , wk) then reject
17: if not respects-universal-conjunct(v, w1, . . . , wk) then reject
18: if k = 0 then accept % v is a leaf
19: universally choose 1 ≤ j ≤ k and set v := wj
20: reject

v.p2tp() – a function which for each ancestor w of v returns a list of promised 2-types,
intended to contain all the 2-types which will be realized by w with descendants of v.

We assume that if a node v is guessed during the execution of our procedure then all the
above components are constructed.

To avoid presentational clutter in the description of our algorithm we omit some natural
conditions on 2-types guessed during its execution, always assuming that they contain the
intended navigational atoms, i.e., the 2-type joining an element with its child contains x↓y,
with its right sibling x→y, and so on.

The algorithm is presented as a main Procedure A.1 employing five auxiliary Functions
(A.2, A.3, A.4, A.5, A.6).

Function A.2 checks if all guessed components of v are consistent with the information
about v’s siblings, its ancestors and all the elements of the substructure F of global free
witnesses.

The next function A.3 checks if v has the required upper, sibling and free witnesses.
Function A.4 checks if the guess of the v’s children w1, . . . , wk guarantees lower witnesses

for v.
Function A.5 checks if the guess of v.p2tp() is propagated to the children of v and

consistent with wi.p2tp().
The last function A.6 checks if the 2-types formed by v with all elements of the constructed

model (existing or promised) respect the ∀∀ conjunct.
Using the introduced functions we build our main procedure FO2[↓, ↓+,→,→+, τcom]-

sat-test (Procedure A.1). We now sketch the arguments showing that it has the advertised
complexity and returns correct results.

B. Bednarczyk, W. Charatonik, and E. Kieroński 11:19

Function A.2 consistent-with-ancestors-siblings-F(v)
1: for each w being a sibling of v do
2: let β = v.2tp(w)

if w.2tp(v) 6= β−1 then return false
3: if v ∈ F then
4: for each w ∈ F do
5: let β = v.2tp(w)

if w.2tp(v) 6= β−1 then return false
6: if v is the root then return true
7: let u be the father of v
8: for each w being an ancestor of u do
9: if w.2tp(v) 6∈ u.p2tp(w) then return false

10: return true

Function A.3 has-upper-sibling-free-witnesses(v)
for each conjunct ∀x(λi(x)→∃y(θi(x, y)∧χi(x, y))) of ϕ
with θi ∈ {θ↓, θ↓↓+ , θ→, θ←, θ⇒+ , θ⇔+ , θ6∼} do

if v.1tp |= λi(x) and there is no element w being an ancestor or a sibling of v or a
member of F such that v.2tp(w) |= θi(x, y) ∧ χi(x, y) then return false

return true

Function A.4 ensure-lower-witnesses(v, w1, . . . , wk)
1: for each conjunct ∀x(λi(x)→ ∃y θ↓(x, y) ∧ χi(x, y)) of ϕ do
2: if v.1tp |= λi(x) and there is no wi such that v.2tp(wi) |= χi(x, y) then
3: return false
4: for each conjunct ∀x(λi(x)→ ∃y θ↓↓+(x, y) ∧ χi(x, y)) of ϕ do
5: if v.1tp |= λi(x) and there is no wi such that for some β ∈ wi.p2tp(v) : β |= χi(x, y)

then return false
6: return true

Function A.5 propagates-promised-2-types(v, w1, . . . , wk)
1: for each u being an ancestor of v do
2: if v.p2tp(u) 6=

⋃k
i=1
(
{wi.2tp(u)−1} ∪ wi.p2tp(u)

)
then return false

3: return true

I Lemma 28. The procedure FO2[↓, ↓+,→,→+, τcom]-sat-test works in alternating expo-
nential time.

Proof. During its execution the algorithm guesses F, and builds a single path P in T together
with the siblings of the elements from P . The size of F is bounded by 3(m+ 1)3(f(ϕ))4|αϕ|,
the length of P and the degree of nodes are bounded by f(ϕ), where m is linear in |ϕ| and
f(ϕ) and |αϕ| are exponential in |ϕ|. Thus the algorithm constructs exponentially many
nodes. For each node it guesses its 1-type, 2-types joining it with its siblings, ancestors and
the elements of F (exponentially many in total) and promised 2-types for each of its ancestors
(again, information about the 2-types for a single ancestor is bounded exponentially, since
the total number of possible 2-types is so bounded). The algorithm makes some consistency

CSL 2017

11:20 Extending Two-Variable Logic on Trees

Function A.6 respects-universal-conjunct(v, w1, . . . , wk)
1: for each u being an ancestor of v, a sibling of v, a member of F do
2: if v.2tp(u) 6|= χ(x, y) then return false
3: if (v.2tp(u))−1 6|= χ(x, y) then return false
4: if v is the root then return true else let u be the father of v
5: for each wi do
6: let descwi := {α : ∃β ∈ wi.p2tp(u) ∧ α = β�y}.

% descwi is the list of promised 1-types of descendants of wi
7: for each i 6= j do
8: for each 1-type α from descwi do
9: for each 1-type α′ ∈ descwj ∪ {wj .1tp} do

10: if there is no 2-type β such that β � x = α′ and β � y = α and β(x, y) |=
θ 6∼(x, y) ∧ χ(x, y) then return false

11: return true

and correctness checking, which can be easily done in time polynomial in the size of the
guesses. Hence the lemma follows. J

I Lemma 29. The procedure FO2[↓, ↓+,→,→+, τcom]-sat-test accepts its input ϕ iff ϕ is
satisfiable.

Proof. (Sketch.) Assume ϕ has a model. By Theorem 6 it has a model T whose depth
and degree of nodes are bounded by f(ϕ). By Lemma 9 there is a model T′ based on the
same frame as T, in which one can distinguish a set F , of size at most 3(m+ 1)3(f(ϕ))4|αϕ|,
providing free witnesses for all elements of T′. Our algorithm can just take F := T′�F and
make all its guesses in accordance with T.

For the opposite direction assume that our algorithm has an accepting run. From this
run we can naturally extract a partially defined tree structure T and its substructure F. T
has defined its tree frame, 1-types of all nodes (v.1tp components), 2-types of nodes not
in free position and 2-types of nodes in free position at least one of which is in F : the
2-type joining v and w is stored in v.2tp(w) if v is a descendant of w, or if w ∈ F and
v 6∈ F , and in both v.2tp(w) and w.2tp(v) if v and w are siblings or v, w ∈ F . Note that
the function consistent-with-ancestors-siblings-F ensures that the 2-types can be assigned
without conflicts. This function, together with function propagates-promised-2-types ensures
also the consistency of the information about promised 2-types.

What is missing is 2-types of pairs of elements u1, u2 in free position none of which is in F .
In this case there is an element v such that u1, u2 are descendants of two different children of
v from the list w1, . . . , wk. Then, due to lines 7-10 of the function respects-universal-conjunct,
there exists a 2-type consistent with the ∀∀-conjunct which can join them.

The constructed tree T is indeed a model of ϕ: respects-universal-conjunct takes care of ∀∀
constraint of ϕ, the sibling, upper and free witnesses are ensured due to function has-upper-
sibling-free-witnesses and lower witnesses are guaranteed by function ensure-lower-witnesses
which uses the information about promised-2-types. J

	Introduction
	Preliminaries
	Logics, trees and atomic types
	Normal forms

	FO2 on trees with additional binary relations
	Small model property
	Global free witnesses
	The algorithm

	C2 on trees
	Multisets
	Full types, witness counting and reduced types
	Small model theorem
	Algorithm

	Expressive power
	Combining the two extensions
	Algorithm for two-variable logic over trees

