Complexity Theory Nondeterministic Polynomial Time

Daniel Borchmann, Markus Krötzsch

Computational Logic

2015-11-11

©•••

The Class NP

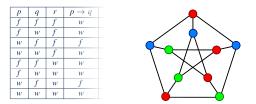
Beyond PTIME

- ► We have seen that the class PTIME provides a useful model of "tractable" problems
- This includes 2-Sat and 2-Colourability
- But what about 3-SAT and 3-COLOURABILITY?
- No polynomial time algorithms for these problems are known
- On the other hand ...

The Class NP

Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a "solution" if given.



- SATISFIABILITY a satisfying assignment
- ► *k*-Colourability a *k*-colouring
- Suboku a completed puzzle

Verifiers

Definition 7.1

► A Turing machine *M* which halts on all inputs is called a verifier for a language *L* if

 $\mathcal{L} = \{w \mid \mathcal{M} \text{ accepts } (w \# c) \text{ for some string } c\}$

The string *c* is called a certificate (or witness) for *w*.

► M is a polynomial-time verifier for L if M is polynomially time bounded and

 $\mathcal{L} = \{w \mid \mathcal{M} \text{ accepts } (w \# c) \text{ for some string } c \text{ with } |c| \le p(|w|)\}$

for some fixed polynomial *p*.

Notation: # is a new separator symbol not used in words or certificates.

The Class NP

NP: "The class of dashed hopes and idle dreams."1

More formally: the class of problems for which a possible solution can be verified in ${\rm P}$

Definition 7.2

The class of languages that have polynomial-time verifiers is called NP.

In other words: NP is the class of all languages \mathcal{L} such that:

- ▶ for every $w \in \mathcal{L}$, there is a certificate $c_w \in \Sigma^*$, where
- the length of c_w is polynomial in the length of w, and
- the language $\{(w \# c_w) \mid w \in \mathcal{L}\}$ is in P

¹https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np

More Examples of Problems in NP

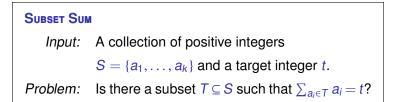
HAMILTONIAN PATH

Input: An undirected graph G

Problem: Is there a path in *G* that contains each vertex exactly once?

<i>k</i>-Clique	
Input:	An undirected graph G
Problem:	Does <i>G</i> contain a fully connected graph (clique) with <i>k</i> vertices?

More Examples of Problems in NP



TRAVELLING SALESPERSON

Input: A weighted graph G and a target number *t*.

Problem: Is there a simple path in G with weight $\leq t$?

Complements of NP are often not known to be in NP

No Hamiltonian Path			
Input:	An undirected graph G		
Problem:	Is there no path in <i>G</i> that contains each vertex exactly once?		

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.

More Examples

COMPOSITE (NON-PRIME) NUMBER

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that $u \cdot v = n$?

Prime Number				
Input:	A positive integer $n > 1$			
Problem:	Is <i>n</i> a prime number?			

Surprisingly: both are in NP (see Wikipedia "Primality certificate")

In fact: Composite Number (and thus Prime Number) was shown to be in ${\rm P}$

${\rm N}$ is for Nondeterministic

Reprise: Nondeterministic Turing Machines

A nondeterministic Turing Machine (NTM) $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept})$ consists of

- ▶ a finite set *Q* of *states*,
- an *input alphabet* Σ not containing \Box ,
- a tape alphabet Γ such that $\Gamma \supseteq \Sigma \cup \{\Box\}$.
- a transition function $\delta: Q \times \Gamma \to \mathfrak{P}(Q \times \Gamma \times \{L, R\})$
- an initial state $q_0 \in Q$,
- an accepting state $q_{\text{accept}} \in Q$.

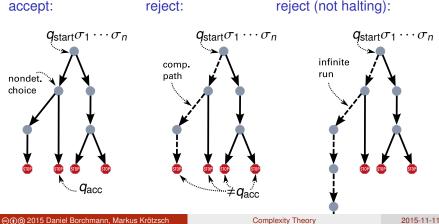
Note

An NTM can halt in any state if there are no options to continue \rightsquigarrow no need for a special rejecting state

Reprise: Runs of NTMs

An (N)TM configuration can be written as a word uqv where $q \in Q$ is a state and $uv \in \Gamma^*$ is the current tape contents.

NTMs produce configuration trees that contain all possible runs:

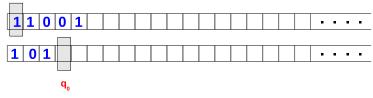


Example: Multi-Tape NTM

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \Box\}, q_0, \Delta, q_{accept})$ where

$$\Delta = \left\{ \begin{array}{l} \left(q_{0}, \ (\bar{_}), q_{0}, (\bar{_{0}}), \binom{N}{R} \right) \\ \left(q_{0}, \ (\bar{_}), q_{0}, (\bar{_{1}}), \binom{N}{R} \right) \\ \left(q_{0}, \ (\bar{_}), q_{check}, (\bar{_}), \binom{N}{N} \right) \\ \dots \\ \text{transition rules for } \mathcal{M}_{check} \end{array} \right\}$$

and where \mathcal{M}_{check} is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.



Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to? A: To all of them!

Definition 7.3

Let \mathcal{M} be a nondeterministic Turing machine and let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

- M is *f*-time bounded if it halts on every input w ∈ Σ* and on every computation path after ≤*f*(|w|) steps.
- M is *f*-space bounded if it halts on every input w ∈ Σ* and on every computation path using ≤*f*(|w|) cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)

Nondeterministic Complexity Classes

Definition 7.4

- Let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.
 - ▶ NTIME(f(n)) is the class of all languages \mathcal{L} for which there is an O(f(n))-time bounded nondeterministic Turing machine deciding \mathcal{L} , for some $k \ge 1$.
 - ▶ NSPACE(f(n)) is the class of all languages \mathcal{L} for which there is an O(f(n))-space bounded nondeterministic Turing machine deciding \mathcal{L} .

All Complexity Classes Have a Nondeterministic Variant

$$NPTIME = \bigcup_{d \ge 1} NTIME(n^d)$$
nondet. polynomial time

$$NEXP = NEXPTIME = \bigcup_{d \ge 1} NTIME(2^{n^d})$$
nondet. exponential time

$$N2EXP = N2EXPTIME = \bigcup_{d \ge 1} NTIME(2^{2^{n^d}})$$
nond. double-exponential time

$$NL = NLOGSPACE = NSPACE(\log n)$$
nondet. logarithmic space

$$NPSPACE = \bigcup_{d \ge 1} NSPACE(n^d)$$
nondet. polynomial space

$$NEXPSPACE = \bigcup_{d \ge 1} NSPACE(2^{n^d})$$
nondet. exponential space

Equivalence of NP and NPTIME

Theorem 7.5 NP = NPTIME.

Proof.

- Suppose $\mathcal{L} \in \text{NPTIME}$.
- Then there is an NTM M such that

 $w \in \mathcal{L} \iff$ there is an accepting run of \mathcal{M} of length $O(n^d)$

for some d.

- This path can be used as a certificate for w.
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore NP \supseteq NPTIME.

Equivalence of NP and NPTIME

Proof of the converse direction:

- Assume *L* has a polynomial-time verifier *M* with certificates of length at most *p*(*n*) for a polynomial *p*.
- Then we can construct an NTM \mathcal{M}^* deciding \mathcal{L} as follows:
 - (1) \mathcal{M}^* guesses a string of length p(n)
 - (2) \mathcal{M}^* checks in deterministic polynomial time if this is a certificate.

Therefore NP \subseteq NPTIME.

NP and coNP

Note: Definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or propositional logic unsatisfiability ...
- converse of an NP problem is coNP
- ▶ similar for NExpTIME and N2ExpTIME

Other complexity classes are symmetric:

- Deterministic classes (COP = P etc.)
- Space classes mentioned above (esp. CONL = NL)

Deterministic vs. Nondeterminsitic Time

Theorem 7.6

 $P \subseteq NP$, and also $P \subseteq CONP$.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

- Put differently: "If it is easy to check a candidate solution to a problem, is it also easy to find one?"
- Unresolved since over 30 years of effort
- One of the major problems in computer science and math of our time
- 1,000,000 USD prize for resolving it ("Millenium Problem"); might not be much money at the time it is actually solved

Status of P vs. NP

- It is often said: "Most experts think $P \neq NP$ "
 - Main argument: "If NP = P, someone ought to have found some polynomial algorithm by now."
 - "This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration." (Moshe Vardi, 2002)
- Results of a poll among 100 experts [Gasarch 2002]:
 - ▶ P ≠ NP: 61
 - ▶ P = NP: 9
 - No comment: 22
 - Other: independent (4), not independent (3), it depends (1)
- Over 100 "proofs" show P = NP to be true/false/both/neither: https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
- \blacktriangleright Many solutions conceivable, e.g., $\mathrm{P}=\mathrm{NP}$ could be shown with a non-constructive proof

N is for Nondeterministic

A Simple Proof for P = NP

Clearly	$\mathcal{L} \in \mathbf{P}$	implies	$\mathcal{L} \in \mathrm{NP}$	
therefore	$\mathcal{L} \notin \mathrm{NP}$	implies	$\mathcal{L} \notin \mathbf{P}$	
hence	$\mathcal{L}\in\mathrm{coNP}$	implies	$\mathcal{L} \in \mathrm{COP}$	
that is	CON	$\operatorname{coNP} \subseteq \operatorname{coP}$		
using $\operatorname{COP} = \operatorname{P}$	CON			
and hence	N			
so by $\mathrm{P}\subseteq\mathrm{NP}$	N	$\mathbf{P} = \mathbf{P}$		

q.e.d.?

#23

2015-11-11