Algorithmic problems for query languages

Evaluation problem: Given a query \mathbf{Q}, a database instance $\mathbf{d b}$, and a tuple \mathbf{t}, is $\mathbf{t} \in \mathbf{Q}(\mathbf{d b})$?
$w \rightarrow$ How hard is it to retrieve data?
Based on slides by D. Figueira, G. Puppis, A.Dawar

Algorithmic problems for query languages

Evaluation problem: Given a query \mathbf{Q}, a database instance $\mathbf{d b}$, and a tuple \mathbf{t}, is $\mathbf{t} \in \mathbf{Q}(\mathbf{d b})$?
\sim How hard is it to retrieve data?

Emptiness problem: Given a query \mathbf{Q}, is there a database instance db so that $\mathbf{Q}(\mathbf{d b}) \neq \varnothing$?
\leadsto Does Q make sense? Is it a contradiction? (Query optimization)

Algorithmic problems for query languages

Evaluation problem: Given a query \mathbf{Q}, a database instance $\mathbf{d b}$, and a tuple \mathbf{t}, is $\mathbf{t} \in \mathbf{Q}(\mathbf{d b})$?
\rightarrow How hard is it to retrieve data?

Emptiness problem: Given a query \mathbf{Q}, is there a database instance db so that $\mathbf{Q}(\mathbf{d b}) \neq \varnothing$?
\rightsquigarrow Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem: Given queries $\mathbf{Q}_{1}, \mathbf{Q}_{2}$, is

$$
\mathrm{Q}_{1}(\mathrm{db})=\mathrm{Q}_{2}(\mathrm{db})
$$

for all database instances $d b$?
\leadsto Can we safely replace a query with another? (Query optimization)

Complexity theory

What can be mechanized? \leadsto decidable/undecidable
How hard is it to mechanise? \leadsto complexity classes

Complexity theory

How hard is it to mechanise? \leadsto complexity classes

Complexity theory

What can be mechanized? \leadsto decidable/undecidable
How hard is it to mechanise? \leadsto complexity classes
\rightarrow usage of resources:

- time
- memory

Complexity theory

Domino

What can be mechanized? \leadsto decidable/undecidable
How hard is it to mechanise? \leadsto complexity classes
\rightarrow usage of resources:

- time
- memory

Algorithm Alg is TIME-bounded
by a function $f: \mathrm{N} \longrightarrow \mathrm{N}$ if
$\operatorname{Alg}($ input $)$ uses less than $f(\mid$ input $\mid)$ units of TIME.

Complexity theory

Domino

What can be mechanized? \leadsto decidable/undecidable
How hard is it to mechanise? \rightarrow complexity classes
\rightarrow usage of resources:

- time
- memory

Algorithm Alg is TIME-bounded by a function $f: \mathrm{N} \longrightarrow \mathrm{N}$ if
$\operatorname{Alg}($ input $)$ uses less than $f(\mid$ input $\mid)$ units of TIME.

Complexity theory

Domino

What can be mechanized? \leadsto decidable/undecidable
How hard is it to mechanise? \rightarrow complexity classes

- usage of resources:
- time
- memory

SPACE

Algorithm Alg is LWE-bounded by a function $f: \mathrm{N} \longrightarrow \mathrm{N}$ if

SPACE.
$\operatorname{Alg}($ input $)$ uses less than $f(\mid$ input $\mid)$ units of FHinE.

Complexity theory

What can be mechanized? \leadsto decidable/undecidable
How hard is it to mechanise? \leadsto complexity classes
usage of resources: • time

- memory

SPACE

Algorithm Alg is TLME-bounded by a function $f: \mathrm{N} \longrightarrow \mathrm{N}$ if SPACE. $\operatorname{Alg}($ input $)$ uses less than $f(\mid$ input $\mid)$ units of FHinE.

LOGSPACE \subseteq PTIME \subseteq PSPACE \subseteq EXPTIME $\subseteq \ldots$

Complexity theory

What can be mechanized? \leadsto decidable/undecidable
How hard is it to mechanise? \leadsto complexity classes
usage of resources:

- time
- memory

SPACE

Algorithm Alg is TLME-bounded by a function $f: \mathrm{N} \longrightarrow \mathrm{N}$ if

SPACE.
$\operatorname{Alg}($ input $)$ uses less than $f(\mid$ input $\mid)$ units of FHinE.

[^0]
Algorithmic problems for FO

Evaluation problem: Given a FO formula $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$, a graph G , and a binding α, does $\mathrm{G} \xi_{\alpha} \phi$?

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $\mathrm{G} \xi_{\alpha} \phi$?

Equivalence problem: Given FO formulae ϕ, ψ, is

$$
\mathrm{G} \vDash_{\alpha} \phi \text { iff } G F_{\alpha} \psi
$$

for all graphs G and bindings α ?

Algorithmic problems for FO

Evaluation problem: Given a FO formula $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$, a graph G , and a binding α, does $\mathrm{G} F_{\alpha} \phi$?

DECIDABLE \leadsto foundations of the database industry

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $\mathrm{G} \xi_{\alpha} \phi$?

Equivalence problem: Given FO formulae ϕ, ψ, is

$$
\mathrm{G} F_{\alpha} \phi \text { iff } G F_{\alpha} \psi
$$

for all graphs G and bindings α ?

Algorithmic problems for FO

Evaluation problem: Given a FO formula $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$, a graph G , and a binding α, does $\mathrm{G} \xi_{\alpha} \phi$?

DECIDABLE \leadsto foundations of the database industry

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $\mathrm{G} \vDash_{\alpha} \phi$?
© UNDECIDABLE \rightsquigarrow both for k and $\xi_{\text {finite }}$

Equivalence problem: Given FO formulae ϕ, ψ, is

$$
\mathrm{G} F_{\alpha} \phi \text { iff } G F_{\alpha} \psi
$$

for all graphs G and bindings α ?

Algorithmic problems for FO

Evaluation problem: Given a FO formula $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$, a graph G , and a binding α, does $\mathrm{G} \xi_{\alpha} \phi$?

DECIDABLE \leadsto foundations of the database industry

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $G{ }_{\alpha} \phi$?

웅 UNDECIDABLE m both for k and $k_{\text {finite }}$

Equivalence problem: Given FO formulae ϕ, ψ, is

$$
\mathrm{G} F_{\alpha} \phi \text { iff } G F_{\alpha} \psi
$$

for all graphs G and bindings α ?
© UNDECIDABLE \rightarrow by reduction to the satisfiability problem

Algorithmic problems for FO

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $\mathrm{G} \xi_{\alpha} \phi$?
© UNDECIDABLE \rightarrow both for F and $\xi_{\text {finite }} \quad$ [Trakhtenbrot ${ }^{\prime} 50$]

Algorithmic problems for FO

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $\mathrm{G} \xi_{\alpha} \phi$?
© UNDECIDABLE \rightarrow both for F and $F_{\text {finite }} \quad$ [Trakhtenbrot ${ }^{\prime} 50$]

Proof: By reduction from the Domino (aka Tiling) problem.

Algorithmic problems for FO

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $\mathrm{G} \xi_{\alpha} \phi$?
© UNDECIDABLE \leadsto both for k and ffinite $^{\text {[Trakhtenbrot }}{ }^{\prime} 50$]

Proof: By reduction from the Domino (aka Tiling) problem.
Reduction from P to P^{\prime} : Algorithm that solves P using a $\mathrm{O}(1)$ procedure
" $P^{\prime}(x)$ "
that returns the truth value of $\mathrm{P}^{\prime}(\mathrm{x})$.

The (undecidable) Domino problem

Domino
Input: 4-sided dominos:

The (undecidable) Domino problem

Domino
Input: 4-sided dominos:

Output: Is it possible to form a white-bordered rectangle? (of any size)

The (undecidable) Domino problem

Domino
Input: 4-sided dominos:

Output: Is it possible to form a white-bordered rectangle? (of any size)

Rules: sides must match, you can't rotate the dominos, but you can 'clone' them.

The (undecidable) Domino problem

- Domino - Why is it undecidable?

It can easily encode halting computations of Turing machines:

The (undecidable) Domino problem

- Domino - Why is it undecidable?

It can easily encode halting computations of Turing machines:

(head is elsewhere,
symbol is not modified)

The (undecidable) Domino problem

- Domino - Why is it undecidable?

It can easily encode halting computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)

The (undecidable) Domino problem

- Domino - Why is it undecidable?

It can easily encode halting computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)

(head is here, symbol is rewritten, head moves left)

The (undecidable) Domino problem

- Domino - Why is it undecidable?

It can easily encode halting computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)
(head is here, symbol is rewritten, head moves left)

(initial configuration)

The (undecidable) Domino problem

- Domino - Why is it undecidable?

It can easily encode halting computations of Turing machines:

(head is elsewhere, symbol is not modified)

(head is here, symbol is rewritten, head moves right)
(head is here, symbol is rewritten, head moves left)

(halting configuration)

Domino \leadsto Sat-FO (domino has a solution iff ϕ satisfiable)

1. There is a grid: $\mathrm{H}($,$) and \mathrm{V}($,$) are relations representing bijections such that...$

Domino \leadsto Sat-FO (domino has a solution iff ϕ satisfiable)

1. There is a grid: $\mathrm{H}($,$) and V($,$) are relations representing bijections such that...$

Domino \leadsto Sat-FO (domino has a solution iff ϕ satisfiable)

1. There is a grid: $\mathrm{H}($,$) and V($,$) are relations representing bijections such that...$

Domino \leadsto Sat-FO (domino has a solution iff ϕ satisfiable)

1. There is a grid: $\mathrm{H}($,$) and V($,$) are relations representing bijections such that...$

Domino \rightarrow Sat-FO (domino has a solution iff ϕ satisfiable)

1. There is a grid: $\mathrm{H}($,$) and V($,$) are relations representing bijections such that...$

2. Assign one domino to each node: a unary relation

$$
D_{E}(x)
$$

for each domino

Domino \leadsto Sat-FO (domino has a solution iff ϕ satisfiable)

1. There is a grid: $\mathrm{H}($,$) and V($,$) are relations representing bijections such that...$

2. Assign one domino to each node: a unary relation

$$
\mathrm{D}_{\mathrm{z}}(\mathrm{x})
$$

for each domino
3. Match the sides $\quad \forall \mathrm{x}, \mathrm{y}$
if $H(x, y)$, then $D_{a}(x) \wedge D_{b}(y)$
for some dominos \mathbf{a}, \mathbf{b} that 'match' horizontally (Idem vertically)

Domino \rightarrow Sat-FO (domino has a solution iff ϕ satisfiable)

1. There is a grid: $\mathrm{H}($,$) and V($,$) are relations representing bijections such that...$

2. Assign one domino to each node: a unary relation

$$
\mathrm{D}_{\mathrm{z}}(\mathrm{x})
$$

for each domino
3. Match the sides $\quad \forall \mathrm{x}, \mathrm{y}$
if $H(x, y)$, then $D_{a}(x) \wedge D_{b}(y)$
for some dominos \mathbf{a}, \mathbf{b} that 'match' horizontally (Idem vertically)
4. Borders are white.

Evaluation problem for FO

$$
\text { Input: } \quad\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array}\right.
$$

Evaluation problem for FO

$$
\text { Input: }\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array} \quad \text { Output: } \mathrm{G} \vDash_{\alpha} \phi\right. \text { ? }
$$

Encoding of G $=(\mathrm{V}, \mathrm{E})$

- each node is coded with a bit string of size $\log (|\mathrm{V}|)$,
- edge set is encoded by its tuples, e.g. $(100,101),(010,010), \ldots$

Cost of coding: $||\mathrm{G}||=|\mathrm{E}| \cdot 2 \cdot \log (|\mathrm{~V}|) \approx|\mathrm{V}|(\bmod$ a polynomial $)$

Evaluation problem for FO

$$
\text { Input: }\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array} \quad \text { Output: } \mathrm{G} \xi_{\alpha} \phi\right. \text { ? }
$$

Encoding of G $=(\mathrm{V}, \mathrm{E})$

- each node is coded with a bit string of size $\log (|\mathrm{V}|)$,
- edge set is encoded by its tuples, e.g. $(100,101),(010,010), \ldots$

Cost of coding: $||\mathrm{G}||=|\mathrm{E}| \cdot 2 \cdot \log (|\mathrm{~V}|) \approx|\mathrm{V}|(\bmod$ a polynomial $)$

Encoding of $\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}$

- each node is coded with a bit string of size $\log (|\mathrm{V}|)$,

Cost of coding: $\|\alpha\|=n \cdot \log (|\mathrm{~V}|)$

Evaluation problem for FO

$$
\text { Input: } \quad\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array}\right.
$$

Evaluation problem for FO

$$
\text { Input: } \quad\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array}\right.
$$

Output: $G \vDash_{\alpha} \phi$?

- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$: answer YES iff $\left(\alpha\left(x_{i}\right), \alpha\left(x_{j}\right)\right) \in E$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \psi^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer YES iff $G \xi_{\alpha} \psi$ and $G \xi_{\alpha} \psi^{\prime}$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\neg \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer NO iff $G F_{\alpha} \psi$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\exists \mathrm{y} . \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)$: answer YES iff for some $v \in V$ and $\alpha^{\prime}=\alpha \cup\{y \mapsto v\}$ we have $G F_{\alpha^{\prime}} \psi$.

Evaluation problem for FO

$$
\text { Input: } \quad\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array}\right.
$$

Output: $G \vDash_{\alpha} \phi$?

- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$:
answer YES iff $\left(\alpha\left(\mathrm{x}_{\mathrm{i}}\right), \alpha\left(\mathrm{x}_{\mathrm{j}}\right)\right) \in \mathrm{E}$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \psi^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer YES iff $G \xi_{\alpha} \psi$ and $G \xi_{\alpha} \psi^{\prime}$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\neg \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer NO iff $G \not \vDash_{\alpha} \psi$
- If $\phi\left(x_{1}, \ldots, x_{n}\right)=\exists y . \psi\left(x_{1}, \ldots, x_{n}, y\right)$:
answer YES iff for some $v \in V$ and $\alpha^{\prime}=\alpha \cup\{y \mapsto v\}$ we have $G F_{\alpha^{\prime}} \psi$.

Question:

How much space does it take?

Evaluation problem for FO

$$
\text { Input: } \quad\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array}\right.
$$

Output: $G \vDash_{\alpha} \phi$?

- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$: answer YES iff $\left(\alpha\left(\mathrm{x}_{\mathrm{i}}\right), \alpha\left(\mathrm{x}_{\mathrm{j}}\right)\right) \in \mathrm{E}$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \psi^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer YES iff $G \xi_{\alpha} \psi$ and $G \xi_{\alpha} \psi^{\prime}$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\neg \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer NO iff $G \not \vDash_{\alpha} \psi$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\exists \mathrm{y} \cdot \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)$:
answer YES iff for some $v \in V$ and $\alpha^{\prime}=\alpha \cup\{y \mapsto v\}$ we have $G F_{\alpha^{\prime}} \psi$.

Question:

How much space does it take?

Evaluation problem for FO

$$
\text { Input: } \quad\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array}\right.
$$

Output: $G \vDash_{\alpha} \phi$?

use 4 pointers \rightsquigarrow LOGSPACE

- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \psi^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer YES iff $G F_{\alpha} \psi$ and $G \xi_{\alpha} \psi^{\prime}$

```
\leadsto MAX( SPACE (G F }\mp@subsup{|}{\alpha}{}\psi)),\operatorname{SPACE}(G\mp@subsup{F}{\alpha}{\prime}\mp@subsup{\psi}{}{\prime}))
```

- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\neg \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer NO iff $G F_{\alpha} \psi$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\exists \mathrm{y} . \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)$:
answer YES iff for some $v \in V$ and $\alpha^{\prime}=\alpha \cup\{y \mapsto v\}$ we have $G F_{\alpha^{\prime}} \psi$.

Question:

How much space does it take?

Evaluation problem for FO

$$
\text { Input: } \quad\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array}\right.
$$

Output: $G \vDash_{\alpha} \phi$?

use 4 pointers \rightsquigarrow LOGSPACE

- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \psi^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer YES iff $G F_{\alpha} \psi$ and $G \xi_{\alpha} \psi^{\prime}$
$\left.\left.\leadsto \operatorname{MAX}\left(\operatorname{SPACE}\left(G \vDash_{\alpha} \psi\right)\right), \operatorname{SPACE}\left(G \vDash_{\alpha} \psi^{\prime}\right)\right)\right)$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\neg \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer NO iff $G \vDash_{\alpha} \psi$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\exists \mathrm{y} \cdot \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)$:
answer YES iff for some $v \in V$ and $\alpha^{\prime}=\alpha \cup\{y \mapsto v\}$ we have $G F_{\alpha^{\prime}} \psi$.

Question:

How much space does it take?

Evaluation problem for FO

$$
\text { Input: } \quad\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array}\right.
$$

Output: $G \vDash_{\alpha} \phi$?

use 4 pointers \leadsto LOGSPACE

- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \psi^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer YES iff $G F_{\alpha} \psi$ and $G F_{\alpha} \psi^{\prime}$
$\left.\left.\leadsto \operatorname{MAX}\left(\operatorname{SPACE}\left(\mathrm{G} \vDash_{\alpha} \psi\right)\right), \operatorname{SPACE}\left(\mathrm{G} \vDash_{\alpha} \psi^{\prime}\right)\right)\right)$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\neg \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer NO iff $G \not \vDash_{\alpha} \psi$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\exists \mathrm{y} \cdot \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)$:
answer YES iff for some $v \in V$ and $\alpha^{\prime}=\alpha \cup\{y \mapsto v\}$
$\leadsto 2 \cdot \log (|\mathrm{G}|)+\operatorname{SPACE}\left(\mathrm{G} \vDash_{\alpha^{\prime}} \psi\right)$ we have $G F_{\alpha^{\prime}} \psi$.

Question:

How much space does it take?

Evaluation problem for FO

$$
\text { Input: }\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array} \quad \text { Output: } \mathrm{G} \xi_{\alpha} \phi\right. \text { ? }
$$

use 4 pointers \rightsquigarrow LOGSPACE

- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \psi^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer YES iff $G F_{\alpha} \psi$ and $G \xi_{\alpha} \psi^{\prime}$
$\left.\left.\leadsto \operatorname{MAX}\left(\operatorname{SPACE}\left(G \vDash_{\alpha} \psi\right)\right), \operatorname{SPACE}\left(G \vDash_{\alpha} \psi^{\prime}\right)\right)\right)$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\neg \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer NO iff $G \not \vDash_{\alpha} \psi$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\exists \mathrm{y} . \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)$:
answer YES iff for some $v \in V$ and $\alpha^{\prime}=\alpha \cup\{y \mapsto v\}$
$\rightarrow 2 \cdot \log (|\mathrm{G}|)+\operatorname{SPACE}\left(\mathrm{G} \vDash_{\alpha^{\prime}} \psi\right)$ we have $G F_{\alpha^{\prime}} \psi$.

Question:

$2 \cdot \log (|\mathrm{G}|)+\cdots+2 \cdot \log (|\mathrm{G}|)+\mathrm{k} \cdot \log (|\alpha|+|\mathrm{G}|)$ space
How much space does it take?

Evaluation problem for FO in PSPACE

$$
\text { Input: }\left(\begin{array}{l}
\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
\alpha=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \longrightarrow \mathrm{V}
\end{array} \quad \text { Output: } \mathrm{G} \xi_{\alpha} \phi\right. \text { ? }
$$

use 4 pointers \leadsto LOGSPACE

- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \wedge \psi^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer YES iff $G F_{\alpha} \psi$ and $G F_{\alpha} \psi^{\prime}$
$\left.\left.\leadsto \operatorname{MAX}\left(\operatorname{SPACE}\left(G \vDash_{\alpha} \psi\right)\right), \operatorname{SPACE}\left(G \vDash_{\alpha} \psi^{\prime}\right)\right)\right)$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\neg \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: answer NO iff $G \not \vDash_{\alpha} \psi$
- If $\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\exists \mathrm{y} \cdot \psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)$:
answer YES iff for some $v \in V$ and $\alpha^{\prime}=\alpha \cup\{y \mapsto v\}$
$\rightarrow 2 \cdot \log (|\mathrm{G}|)+\operatorname{SPACE}\left(\mathrm{G} \vDash_{\alpha^{\prime}} \psi\right)$ we have $G F_{\alpha^{\prime}} \psi$.

Question:

$2 \cdot \log (|\mathrm{G}|)+\cdots+2 \cdot \log (|\mathrm{G}|)+\mathrm{k} \cdot \log (|\alpha|+|\mathrm{G}|)$ space
How much space does it take?

Combined, Query, and Data complexities

A database of size 10^{6}
Problem: Usual scenario in database
A query of size 100

Input:

Combined, Query, and Data complexities

A database of size 10^{6}
Problem: Usual scenario in database
A query of size 100

Input: • query +

Combined, Query, and Data com

Problem: Usual scen
 Input: • query +

 database
Combined, Query, and Data com

database

But we don't distinguish this in the analysis:

TIME(2|query $+\mid$ data $\mid)$
 $$
=
$$
 TIME (|query $\left.\mid+2^{\text {data }}\right)$

Combined, Query, and Data complexities

Query and data play very different roles.

Separation of concerns: How the resources grow with respect to

- the size of the data
- the query size

Combined, Query, and Data complexities

Combined complexity: input size is \mid query $|+|$ data \mid
Query complexity (|data| fixed): input size is |query|
Data complexity (|query| fixed): input size is |data|

Combined, Query, and Data complexities

Combined complexity: input size is \mid query $|+|$ data \mid
Query complexity (|data| fixed): input size is |query|
Data complexity (|query| fixed): input size is |data|

$$
\left.\begin{array}{ll}
& \begin{array}{l}
\text { exponential in combined complexity } \\
\mathrm{O}\left(2^{\mid q u e r y} \mid\right. \\
\text { exponential in query complexity }
\end{array} \\
& \text { linear in data complexity }
\end{array}\right) \text { is } \begin{aligned}
& \text { exponential in combined complexity } \\
& \mathrm{O}\left(\mid \text { query } \left\lvert\,+2^{\mid \text {data| }) \text { is }} \begin{array}{l}
\text { linear in query complexity } \\
\text { exponential in data complexity }
\end{array}\right.\right.
\end{aligned}
$$

Question

What is the data, query and combined complexity for the evaluation problem for FO?

Remember: data complexity, input size: |data| query complexity, input size: |query|
combined complexity, input size: \mid data \mid + |query \mid

$$
|\phi| \cdot 2 \cdot \log (|G|)+k \cdot \log (|\alpha|+|G|) \text { space }
$$

Question

What is the data, query and combined complexity for the evaluation problem for FO ?

Remember: data complexity, input size: |data| query complexity, input size: |query| combined complexity, input size: |data| + |query|

$\mathrm{O}(\log (\mid$ data $\mid) \cdot \mid$ query $\mid)$ space
PSPACE combined and query complexity
LOGSPACE data complexity

Bounded Degree

\mathcal{D}_{k}-the class of structures \mathbb{A} in which every element has at most k neighbours in $G \mathbb{A}$.
Theorem (Seese)

For every sentence φ of FO and every k there is a linear time algorithm which, given a structure $\mathbb{A} \in \mathcal{D}_{k}$ determines whether $\mathbb{A} \vDash \varphi$.

Note: this is not true for MSO unless $P=N P$.
The proof is based on locality of first-order logic. Specifically, Hanf's theorem.

Hanf Types

For an element a in a structure \mathbb{A}, define $N_{r}^{\mathbb{A}}(a)$ —the substructure of \mathbb{A} generated by the elements whose distance from $a(i n G \mathbb{A}$) is at most r.

We say \mathbb{A} and \mathbb{B} are Hanf equivalent with radius r and threshold q $\left(\mathbb{A} \simeq_{r, q} \mathbb{B}\right)$ if, for every $a \in A$ the two sets

$$
\left\{a^{\prime} \in A \mid N_{r}^{\mathbb{A}}(a) \cong N_{r}^{\mathbb{A}}\left(a^{\prime}\right)\right\} \quad \text { and } \quad\left\{b \in B \mid N_{r}^{\mathbb{A}}(a) \cong N_{r}^{\mathbb{B}}(b)\right\}
$$

either have the same size or both have size greater than q; and, similarly for every $b \in B$.

Hanf Locality Theorem

Theorem (Hanf)
For every vocabulary σ and every p there qre r and q such that for any σ-structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_{r, q} \mathbb{B}$ then $\mathbb{A} \equiv p \mathbb{B}$.

For $\mathbb{A} \in \mathcal{D}_{k}$:
$N_{r}^{\mathbb{A}}(a)$ has at most $k^{r}+1$ elements
each $\simeq_{r, q}$ has finite index.
Each $\simeq_{r, q^{-}}$class t can be characterised by a finite table, I_{t}, giving isomorphism types of neighbourhoods and numbers of their occurrences up to threshold q.

Satisfaction on \mathcal{D}_{k}

For a sentence φ of FO, we can compute a set of tables $\left\{I_{1}, \ldots, I_{s}\right\}$ describing $\simeq_{r, q}$-classes consistent with it.
This computation is independent of any structure \mathbb{A}.
Given a structure $\mathbb{A} \in \mathcal{D}_{k}$,
for each a, determine the isomorphism type of $N_{r}^{\mathbb{A}}(a)$
construct the table describing the $\simeq_{r, q}$-class of \mathbb{A}.
compare against $\left\{I_{1}, \ldots, I_{s}\right\}$ to determine whether $\mathbb{A} \models \varphi$.
For fixed k, r, q, this requires time linear in the size of \mathbb{A}.
Note: evaluation for FO is in $O(f(l, k) n)$.

[^0]: \longrightarrow TIME-bounded by a polynomial
 LOGSPACE \subseteq PTIME \subseteq PSPACE \subseteq EXPTIME $\subseteq \ldots$
 \longrightarrow SPACE-bounded by $\log (\mathrm{n})$

