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Evaluation problem:  Given a query Q, a database instance db, 
                                  and a tuple t, is t ∈ Q(db) ?

� How hard is it to retrieve data?

Emptiness problem:  Given a query Q, is there a database instance db 
                                  so that Q(db) ≠ ∅ ?

� Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem:  Given queries Q1, Q2, is 
                                                   Q1(db) = Q2(db) 
                                    for all database instances db?

� Can we safely replace a query with another? (Query optimization)
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LOGSPACE ⊊ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·
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input size

usage of resources:   • time 
                               • memory

Algorithm Alg is TIME-bounded  

by a function f : N ⟶ N if 

Alg(input) uses less than f (|input|) units of TIME.

SPACE-bounded by log(n)

TIME-bounded by a polynomial

SPACE-bounded by a polynomial

K
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. . .

SPACE.

SPACE
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Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                              a graph G, and a binding α, does G ⊧α φ ?

Satis!ability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

DECIDABLE � foundations of the database industry

! UNDECIDABLE � both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                         G ⊧αφ   i$   G ⊧αψ  
                                               for all graphs G and bindings α?

! UNDECIDABLE � by reduction to the satisfiability problem
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Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Reduction from P to P':   Algorithm that solves P using a O(1) procedure  
                                                                              “  P'(x) ” 
                                                 that returns the truth value of P'(x).

Satis!ability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

! UNDECIDABLE � both for ⊧ and ⊧finite



The (undecidable) Domino problem

Input:  4-sided dominos:

 Domino 



The (undecidable) Domino problem

Input:  4-sided dominos:

Output:  Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

. . .. . .

 Domino 



The (undecidable) Domino problem

Input:  4-sided dominos:

Rules:  sides must match, 
            you can’t rotate the dominos,  but you can ‘clone’ them.
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use 4 pointers  �  LOGSPACE

�  MAX( SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')) )

�  SPACE(G ⊧α ψ))

�  2·log(|G|) + SPACE(G ⊧α' ψ )



Evaluation problem for FO

Question: 
How much space 
does it take? 44

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  i$  (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  i$  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  i$  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  i$  for some v ∈ V and α'= α ∪ {y�v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?

2·log(|G|) + ··· + 2·log(|G|) + k·log(|α|+|G|) space

≤ |φ| times

Input: Output:

use 4 pointers  �  LOGSPACE

�  MAX( SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')) )

�  SPACE(G ⊧α ψ))

�  2·log(|G|) + SPACE(G ⊧α' ψ )

in PSPACE



Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

45

Input:
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Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

database

45

query +Input:

TIME(2|query| + |data|)

TIME(|query| + 2|data|)
But we don’t distinguish this in the analysis: =



Combined, Query, and Data complexities 

46

Separation of concerns:    How the resources grow with respect to 

                                                 • the size of the data 

                                                 • the query size

Query and data play very di"erent roles.

[Vardi, 1982]



Combined, Query, and Data complexities 
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Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|



Combined, Query, and Data complexities 

47

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

O(2|query| + |data|) is 

O(|query| + 2|data|) is 

exponential in combined complexity 
exponential in query complexity 
linear in data complexity

exponential in combined complexity 
linear in query complexity 
exponential in data complexity



48

Question

What is the data, query and combined complexity 
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space



48

Question

What is the data, query and combined complexity 
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

dataquery

O(log(|data|)·|query|) space PSPACE combined and query complexity

LOGSPACE data complexity



Bounded Degree

Dk—the class of structures A in which every element has at most k
neighbours in GA.
Theorem (Seese)
For every sentence ' of FO and every k there is a linear time algorithm
which, given a structure A 2 Dk determines whether A |= '.

Note: this is not true for MSO unless P = NP.

The proof is based on locality of first-order logic. Specifically, Hanf’s
theorem.

Anuj Dawar August 2016

•
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Hanf Types

For an element a in a structure A, define
NA

r (a)—the substructure of A generated by the elements

whose distance from a (in GA) is at most r.

We say A and B are Hanf equivalent with radius r and threshold q
(A 'r,q B) if, for every a 2 A the two sets

{a0 2 A | NA
r (a) ⇠= NA

r (a
0)} and {b 2 B | NA

r (a) ⇠= NB
r (b)}

either have the same size or both have size greater than q;
and, similarly for every b 2 B.

Anuj Dawar August 2016



Hanf Locality Theorem

Theorem (Hanf)
For every vocabulary � and every p there qre r and q such that for any
�-structures A and B: if A 'r,q B then A ⌘p B.

For A 2 Dk:

NA
r (a) has at most kr + 1 elements

each 'r,q has finite index.

Each 'r,q-class t can be characterised by a finite table, It, giving
isomorphism types of neighbourhoods and numbers of their occurrences
up to threshold q.

Anuj Dawar August 2016



Satisfaction on Dk

For a sentence ' of FO, we can compute a set of tables {I1, . . . , Is}
describing 'r,q-classes consistent with it.
This computation is independent of any structure A.

Given a structure A 2 Dk,

for each a, determine the isomorphism type of NA
r (a)

construct the table describing the 'r,q-class of A.
compare against {I1, . . . , Is} to determine whether A |= '.

For fixed k, r, q, this requires time linear in the size of A.

Note: evaluation for FO is in O(f(l, k)n).

Anuj Dawar August 2016


