
Algorithmic problems for query languages

33

Evaluation problem: Given a query Q, a database instance db,
 and a tuple t, is t ∈ Q(db) ?

� How hard is it to retrieve data?

Bartosz Bednarczyk
Based on slides by D. Figueira, G. Puppis, A.Dawar

Algorithmic problems for query languages

33

Evaluation problem: Given a query Q, a database instance db,
 and a tuple t, is t ∈ Q(db) ?

� How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db
 so that Q(db) ≠ ∅ ?

� Does Q make sense? Is it a contradiction? (Query optimization)

Algorithmic problems for query languages

33

Evaluation problem: Given a query Q, a database instance db,
 and a tuple t, is t ∈ Q(db) ?

� How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db
 so that Q(db) ≠ ∅ ?

� Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem: Given queries Q1, Q2, is
 Q1(db) = Q2(db)
 for all database instances db?

� Can we safely replace a query with another? (Query optimization)

Complexity theory

34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

Complexity theory

34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

K

H’s 10th PCPDomino
. . .

Complexity theory

34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes
usage of resources: • time
 • memory

K

H’s 10th PCPDomino
. . .

Complexity theory

34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes
usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

Complexity theory

34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

Complexity theory

34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE

Complexity theory

34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

LOGSPACE ⊊ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE

Complexity theory

34

 What can be mechanized? ⤳ decidable/undecidable

How hard is it to mechanise? ⤳ complexity classes

LOGSPACE ⊊ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources: • time
 • memory

Algorithm Alg is TIME-bounded

by a function f : N ⟶ N if

Alg(input) uses less than f (|input|) units of TIME.

SPACE-bounded by log(n)

TIME-bounded by a polynomial

SPACE-bounded by a polynomial

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE

Algorithmic problems for FO

35

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satis!ability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ i$ G ⊧αψ
 for all graphs G and bindings α?

Algorithmic problems for FO

35

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satis!ability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE � foundations of the database industry

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ i$ G ⊧αψ
 for all graphs G and bindings α?

Algorithmic problems for FO

35

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satis!ability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE � foundations of the database industry

! UNDECIDABLE � both for ⊧ and ⊧finite

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ i$ G ⊧αψ
 for all graphs G and bindings α?

Algorithmic problems for FO

35

Evaluation problem: Given a FO formula φ(x1, …, xn),
 a graph G, and a binding α, does G ⊧α φ ?

Satis!ability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

DECIDABLE � foundations of the database industry

! UNDECIDABLE � both for ⊧ and ⊧finite

Equivalence problem: Given FO formulae φ,ψ, is
 G ⊧αφ i$ G ⊧αψ
 for all graphs G and bindings α?

! UNDECIDABLE � by reduction to the satisfiability problem

Algorithmic problems for FO

36

[Trakhtenbrot ’50]

Satis!ability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

! UNDECIDABLE � both for ⊧ and ⊧finite

Algorithmic problems for FO

36

Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Satis!ability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

! UNDECIDABLE � both for ⊧ and ⊧finite

Algorithmic problems for FO

36

Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Reduction from P to P': Algorithm that solves P using a O(1) procedure
 “ P'(x) ”
 that returns the truth value of P'(x).

Satis!ability problem: Given a FO formula φ, is there a graph G
 and binding α, such that G ⊧αφ ?

! UNDECIDABLE � both for ⊧ and ⊧finite

The (undecidable) Domino problem

Input: 4-sided dominos:

 Domino

The (undecidable) Domino problem

Input: 4-sided dominos:

Output: Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

.

 Domino

The (undecidable) Domino problem

Input: 4-sided dominos:

Rules: sides must match, 
 you can’t rotate the dominos, but you can ‘clone’ them.

Output: Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

.

 Domino

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 0
(initial configuration)

s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. .
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino - Why is it undecidable?

i

i

i

i

i

i (head is elsewhere, 
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 0
(initial configuration)

h 0 0 0

. . .

(halting configuration)

Domino � Sat-FO (domino has a solution i" φ satis!able)

1. $ere is a grid: H(,) and V(,) are relations representing bijections such that…

Domino � Sat-FO (domino has a solution i" φ satis!able)

1. $ere is a grid: H(,) and V(,) are relations representing bijections such that…

H
V

∀

Domino � Sat-FO (domino has a solution i" φ satis!able)

1. $ere is a grid: H(,) and V(,) are relations representing bijections such that…

H

V

∃

H
V

∀

Domino � Sat-FO (domino has a solution i" φ satis!able)

1. $ere is a grid: H(,) and V(,) are relations representing bijections such that…

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V
H

V

Domino � Sat-FO (domino has a solution i" φ satis!able)

1. $ere is a grid: H(,) and V(,) are relations representing bijections such that…

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V

2. Assign one domino to each node:

 a unary relation 

 
 
 
 for each domino

D (x)
H

V

Domino � Sat-FO (domino has a solution i" φ satis!able)

1. $ere is a grid: H(,) and V(,) are relations representing bijections such that…

3. Match the sides ∀x,y
 if H(x,y), then Da(x) ⋀ Db(y)
 for some dominos a,b that ‘match’ 
 horizontally (Idem vertically)

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V

2. Assign one domino to each node:

 a unary relation 

 
 
 
 for each domino

D (x)
H

V

Domino � Sat-FO (domino has a solution i" φ satis!able)

1. $ere is a grid: H(,) and V(,) are relations representing bijections such that…

3. Match the sides ∀x,y
 if H(x,y), then Da(x) ⋀ Db(y)
 for some dominos a,b that ‘match’ 
 horizontally (Idem vertically)

. . .

. .
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

4. Borders are white.

H

V

2. Assign one domino to each node:

 a unary relation 

 
 
 
 for each domino

D (x)
H

V

Evaluation problem for FO

43

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V
G ⊧α φ ?Input: Output:

Evaluation problem for FO

43

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|),
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V
G ⊧α φ ?Input: Output:

Evaluation problem for FO

43

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|),
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

Encoding of α = {x1,…,xn} ⟶ V

• each node is coded with a bit string of size log(|V|),

Cost of coding: ||α|| = n·log(|V|)

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V
G ⊧α φ ?Input: Output:

Evaluation problem for FO

44

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V
G ⊧α φ ?Input: Output:

Evaluation problem for FO

44

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES i$ (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES i$ G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO i$ G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES i$ for some v ∈ V and α'= α ∪ {y�v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

Evaluation problem for FO

Question: 
How much space 
does it take? 44

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES i$ (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES i$ G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO i$ G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES i$ for some v ∈ V and α'= α ∪ {y�v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

Evaluation problem for FO

Question: 
How much space 
does it take? 44

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES i$ (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES i$ G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO i$ G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES i$ for some v ∈ V and α'= α ∪ {y�v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers � LOGSPACE

Evaluation problem for FO

Question: 
How much space 
does it take? 44

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES i$ (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES i$ G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO i$ G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES i$ for some v ∈ V and α'= α ∪ {y�v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers � LOGSPACE

� MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

Evaluation problem for FO

Question: 
How much space 
does it take? 44

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES i$ (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES i$ G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO i$ G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES i$ for some v ∈ V and α'= α ∪ {y�v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers � LOGSPACE

� MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

� SPACE(G ⊧α ψ))

Evaluation problem for FO

Question: 
How much space 
does it take? 44

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES i$ (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES i$ G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO i$ G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES i$ for some v ∈ V and α'= α ∪ {y�v} 
 we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers � LOGSPACE

� MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

� SPACE(G ⊧α ψ))

� 2·log(|G|) + SPACE(G ⊧α' ψ)

Evaluation problem for FO

Question: 
How much space 
does it take? 44

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES i$ (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES i$ G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO i$ G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES i$ for some v ∈ V and α'= α ∪ {y�v} 
 we have G ⊧α' ψ.

G ⊧α φ ?

2·log(|G|) + ··· + 2·log(|G|) + k·log(|α|+|G|) space

≤ |φ| times

Input: Output:

use 4 pointers � LOGSPACE

� MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

� SPACE(G ⊧α ψ))

� 2·log(|G|) + SPACE(G ⊧α' ψ)

Evaluation problem for FO

Question: 
How much space 
does it take? 44

φ(x1,…,xn)
G = (V,E)

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES i$ (α(xi),α(xj)) ∈ E  

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES i$ G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO i$ G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES i$ for some v ∈ V and α'= α ∪ {y�v} 
 we have G ⊧α' ψ.

G ⊧α φ ?

2·log(|G|) + ··· + 2·log(|G|) + k·log(|α|+|G|) space

≤ |φ| times

Input: Output:

use 4 pointers � LOGSPACE

� MAX(SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')))

� SPACE(G ⊧α ψ))

� 2·log(|G|) + SPACE(G ⊧α' ψ)

in PSPACE

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

45

Input:

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

45

query +Input:

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

database

45

query +Input:

Combined, Query, and Data complexities [Vardi, 1982]

A database of size 106

A query of size 100
Problem: Usual scenario in database

database

45

query +Input:

TIME(2|query| + |data|)

TIME(|query| + 2|data|)
But we don’t distinguish this in the analysis: =

Combined, Query, and Data complexities

46

Separation of concerns: How the resources grow with respect to

 • the size of the data

 • the query size

Query and data play very di"erent roles.

[Vardi, 1982]

Combined, Query, and Data complexities

47

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

Combined, Query, and Data complexities

47

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

O(2|query| + |data|) is

O(|query| + 2|data|) is

exponential in combined complexity
exponential in query complexity
linear in data complexity

exponential in combined complexity
linear in query complexity
exponential in data complexity

48

Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

48

Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

dataquery

O(log(|data|)·|query|) space PSPACE combined and query complexity

LOGSPACE data complexity

Bounded Degree

Dk—the class of structures A in which every element has at most k
neighbours in GA.
Theorem (Seese)
For every sentence ' of FO and every k there is a linear time algorithm
which, given a structure A 2 Dk determines whether A |= '.

Note: this is not true for MSO unless P = NP.

The proof is based on locality of first-order logic. Specifically, Hanf’s
theorem.

Anuj Dawar August 2016

•

±"

0(9-(K) . m)

Hanf Types

For an element a in a structure A, define
NA

r (a)—the substructure of A generated by the elements

whose distance from a (in GA) is at most r.

We say A and B are Hanf equivalent with radius r and threshold q
(A 'r,q B) if, for every a 2 A the two sets

{a0 2 A | NA
r (a) ⇠= NA

r (a
0)} and {b 2 B | NA

r (a) ⇠= NB
r (b)}

either have the same size or both have size greater than q;
and, similarly for every b 2 B.

Anuj Dawar August 2016

Hanf Locality Theorem

Theorem (Hanf)
For every vocabulary � and every p there qre r and q such that for any
�-structures A and B: if A 'r,q B then A ⌘p B.

For A 2 Dk:

NA
r (a) has at most kr + 1 elements

each 'r,q has finite index.

Each 'r,q-class t can be characterised by a finite table, It, giving
isomorphism types of neighbourhoods and numbers of their occurrences
up to threshold q.

Anuj Dawar August 2016

Satisfaction on Dk

For a sentence ' of FO, we can compute a set of tables {I1, . . . , Is}
describing 'r,q-classes consistent with it.
This computation is independent of any structure A.

Given a structure A 2 Dk,

for each a, determine the isomorphism type of NA
r (a)

construct the table describing the 'r,q-class of A.
compare against {I1, . . . , Is} to determine whether A |= '.

For fixed k, r, q, this requires time linear in the size of A.

Note: evaluation for FO is in O(f(l, k)n).

Anuj Dawar August 2016

