Formal Concept Analysis II Closure Systems and Implications

Sebastian Rudolph

Computational Logic Group Technische Universität Dresden

slides based on a lecture by Prof. Gerd Stumme

通 ト イヨ ト イヨト

Agenda

- Concept Intents as Closed Sets
- $\bullet~\mathrm{NEXT}$ CLOSURE Algorithm
- Iceberg Concept Lattices
- TITANIC Algorithm

(B)

Closure Systems

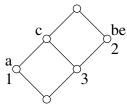
- On the blackboard:
 - ullet closure system ${\mathfrak A}$
 - closure operator φ
 - closure systems and closure operators (Th. 1)
 - closure systems and complete lattices (Prop. 3)
 - examples (subtrees, subintervals, convex sets, equivalence relations)

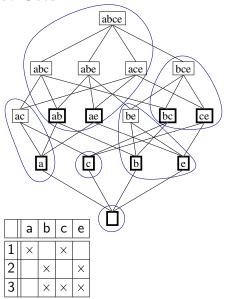
For every formal context (G, M, I) holds:

- The extents form a closure system on G.
- The intents form a closure system on M.
- " is a closure operator.

Concept Intents as Closed Sets

- the line diagram of the powerset of $\{a, b, c, e\}$
- classes of attributes that describe the same set of objects
- unique representatives: concept intents (=closed sets)
- minimal generator





A B F A B F

$\operatorname{NEXT}\ \operatorname{Closure}\ \operatorname{Algorithm}$

Developed 1984 by Bernhard Ganter.

Can be used

- to compute the concept lattice, or
- to compute the concept lattice together with the stem base, or
- for interactive knowledge exploration.

The algorithm computes the concept intents in the lectic order.

NEXT CLOSURE Algorithm: Lectic Order

Let $M = \{1, ..., n\}$. We say that $A \subseteq M$ is *lectically smaller* than $B \subseteq M$, if $B \neq A$ and the smallest element in which A and B differ belongs to B:

$$A < B :\Leftrightarrow \exists i \in B \setminus A : A \cap \{1, 2, \dots, i - 1\} = B \cap \{1, 2, \dots, i - 1\}$$

< 回 ト < 三 ト < 三 ト

NEXT CLOSURE Algorithm: Theorem

Some definitions before we start:

$$A <_i B :\Leftrightarrow i \in B \setminus A \land A \cap \{1, 2, \dots, i-1\} = B \cap \{1, 2, \dots, i-1\}$$

$$A + i := (A \cap \{1, 2, \dots, i - 1\}) \cup \{i\}$$

Theorem

The smallest concept intent larger than a given set $A \subset M$ with respect to the lectic order is

$$A \oplus i := (A+i)'',$$

with *i* being the largest element of *M* with $A <_i A \oplus i$.

.

$NEXT \ CLOSURE \ Algorithm$

The NEXT CLOSURE algorithm to compute all concept intents:

- The lectically smallest concept intent is \emptyset'' .
- ② If A is a concept intent, we find the lectically next intent by checking all attributes $i \in M \setminus A$ (starting with the largest), continuing in descending order until for the first time $A <_i A \oplus i$. Then $A \oplus i$ is the lectically next intent.
- § If $A \oplus i = M$, we stop. Otherwise we set $A := A \oplus i$ and go to step 2.

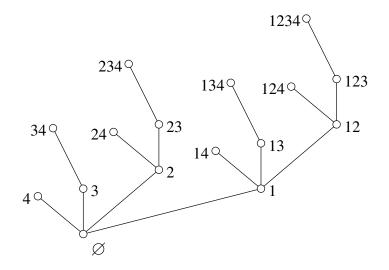
・ 同 ト ・ ヨ ト ・ ヨ ト

Next Closure Algorithm: Example

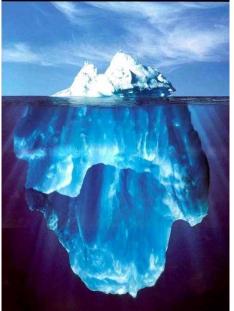
	mobile (1)	phone (2)	fax (3)	paper fax (4)
Sinus 44		×		
Nokia 6110	×	×		
T-Fax 301			Х	×
T-Fax 360 PC				×

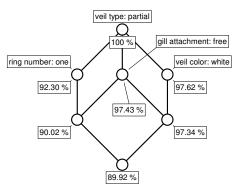
A	$i \mid A + i$	$A \oplus i := (A+i)''$	$A <_i A \oplus i?$	new intent	
			• • • • • • • • •	◆ 唐 → ◆ 唐 → ○ 唐	୬୯୯
Se	bastian Rudolph (TUD)	Formal Concept Analysis			9 / 36

NEXT CLOSURE Algorithm: Lectic Order



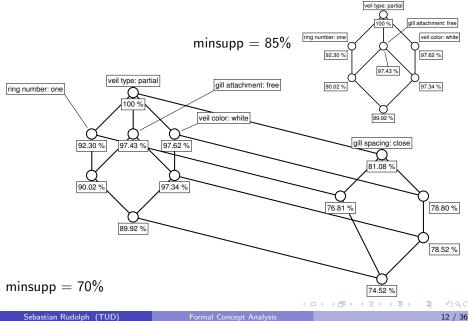
< 3 > < 3 >

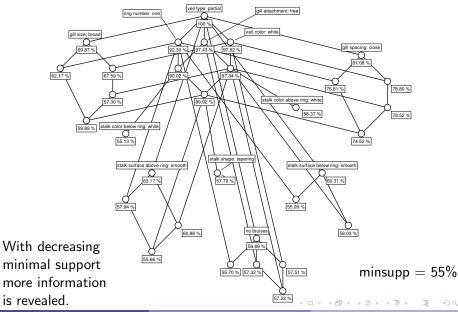




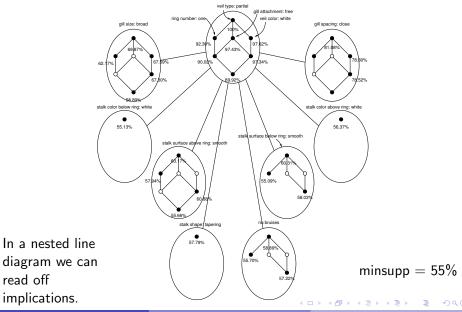
The seven most general concepts (for minsupp = 85%) of the 32086 concepts of the mushroom database (http://kdd.ics.uci.edu/).

(日) (同) (日) (日) (日)





Sebastian Rudolph (TUD)



Sebastian Rudolph (TUD)

Formal Concept Analysis

Iceberg Concept Lattices: Support

Def.: The *support* of a set $X \subseteq M$ of attributes is defined as

$$\operatorname{supp}(X) := \frac{|X'|}{|G|}$$

Def.: The *iceberg concept lattice* of a formal context (G, M, I) for a given minimal support value minsupp is the set

$$\{(A,B)\in \underline{\mathfrak{B}}(G,M,I)\mid \mathrm{supp}(B) \geqslant minsupp\}$$

The iceberg concept lattice can be computed using the TITANIC algorithm. (Stumme et al., 2001)

★聞▶ ★ 国▶ ★ 国▶

TITANIC computes the closure system of all (*frequent*) concept intents using the *support* function $\operatorname{supp}(X) := \frac{|X'|}{|G|}$ (for a set $X \subseteq M$ of attributes).

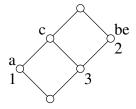
frequent: only concept intents above a threshold $minsupp \in [0, 1]$

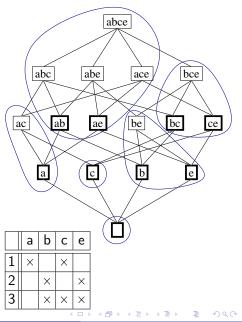
TITANIC employs some simple properties of the support function: Lemma 4. Let $X, Y \subseteq M$.

- 4 週 ト - 4 三 ト - 4 三 ト

Lemma 4. Let $X, Y \subseteq M$.

- $X \subseteq Y \implies \operatorname{supp}(X) \ge \operatorname{supp}(Y)$ $X'' = Y'' \implies \operatorname{supp}(X) = \operatorname{supp}(Y)$
- $X \subseteq Y \land \operatorname{supp}(X) = \operatorname{supp}(Y) \implies X'' = Y''$





 $\operatorname{TITANIC}$ tries to optimize the following three questions:

- How can we compute the closure of an attribute set using only the support values?
- Output the closure system such that we need to compute as few closures as possible?
- Observe the second s

A B F A B F

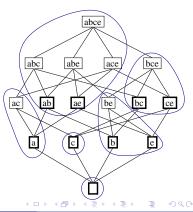
How can we compute the closure of an attribute set using only the support values?

$$X'' = X \cup \{m \in M \setminus X \mid \operatorname{supp}(X) = \operatorname{supp}(X \cup \{m\})\}$$

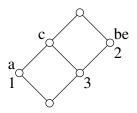
Example:

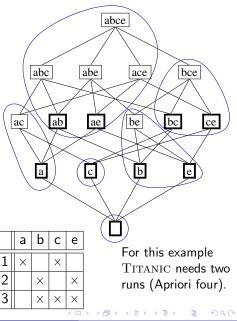
$$\{b, c\}'' = \{b, c, e\}$$
, since
 $\supp(\{b, c\}) = \frac{1}{3}$
and
 $\supp(\{a, b, c\}) = \frac{0}{3}$
 $\supp(\{b, c, e\}) = \frac{1}{3}$

	а	b	с	е
1	×		X	
2		X		Х
3		×	X	×

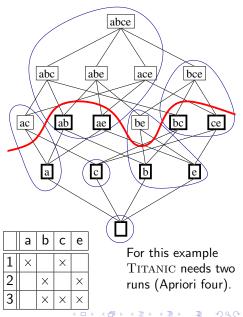


- How can we compute the closure system such that we need to compute as few closures as possible?
- We compute only the closures of the minimal generators.





- How can we compute the closure system such that we need to compute as few closures as possible?
- We compute only the closures of the minimal generators.
- A set is a *minimal generator*, iff its support is unequal to the support of its lower covers.
- The minimal generators form an order ideal (i.e., if a set is *not* a minimal generator, then none of its supersets is either)
- \rightarrow approach similar to Apriori



$\operatorname{TITANIC}$ tries to optimize the following three questions:

I How can we compute the closure of an attribute set using only the support values?

 $\rightarrow X'' = X \cup \{m \in M \setminus X \mid \operatorname{supp}(X) = \operatorname{supp}(X \cup \{m\})\}$

e How can we compute the closure system such that we need to compute as few closures as possible?

→ approach similar to Apriori

Output the second se

How can we derive as many support values as possible from already known support values?

Theorem: If X is *not* a minimal generator, then

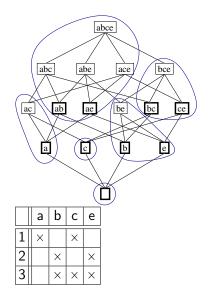
 $supp(X) = \min\{supp(K) \mid K \text{ is minimal} \\ generator, K \subseteq X\}$

Example:

 $\sup(\{a,b,c\})=\min\{\frac{0}{3},\frac{1}{3},\frac{1}{3},\frac{2}{3},\frac{2}{3}\}=0$ since the set is not a minimal generator and

$$\begin{split} \supp(\{a,b\}) &= \frac{0}{3}, & \supp(\{b,c\}) = \frac{1}{3}, \\ \supp(\{a\}) &= \frac{1}{3}, & \supp(\{b\}) = \frac{2}{3}, \\ \supp(\{c\}) &= \frac{2}{3} \end{split}$$

Remark: It is sufficient, to check the largest minimal generators K with $K \subseteq X$, i.e., in this example $\{a, b\}$ and $\{b, c\}$.



(日) (同) (三) (三) (三)

 $\operatorname{TITANIC}$ tries to optimize the following three questions:

How can we compute the closure of an attribute set using only the support values?

 $\rightarrow X'' = X \cup \{m \in M \backslash X \mid \mathrm{supp}(X) = \mathrm{supp}(X \cup \{m\})\}$

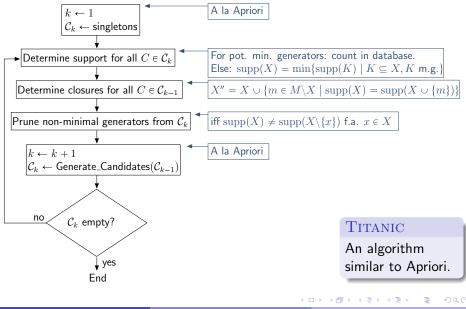
e How can we compute the closure system such that we need to compute as few closures as possible?

→ approach similar to Apriori

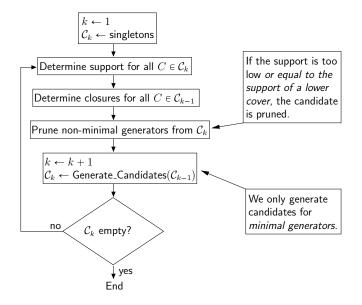
How can we derive as many support values as possible from already known support values?

→ If X is no minimal generator, then $supp(X) = min\{supp(K) \mid K \text{ is minimal generator}, K \subseteq X\}$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖



TITANIC Algorithm: Compared to Apriori



- 1) SUPPORT($\{\emptyset\}$); 2) $\mathcal{K}_0 \leftarrow \{\emptyset\}$; 3) $k \leftarrow 1$; 4) forall $m \in M$ do $\{m\}.p_s \leftarrow \emptyset.s$; 5) $\mathcal{C} \leftarrow \{\{m\} \mid m \in M\};$ 6) loop begin 7) SUPPORT(\mathcal{C}); 8) forall $X \in \mathcal{K}_{k-1}$ do X.closure \leftarrow CLOSURE(X); 9) $\mathcal{K}_k \leftarrow \{X \in \mathcal{C} \mid X.s \neq X.p_s\};$ 10) if $\mathcal{K}_k = \emptyset$ then exit loop ; 11) k + +: 12) $\mathcal{C} \leftarrow \text{TITANIC-GEN}(\mathcal{K}_{k-1})$: 13) end loop ; 14) return $| |_{i=0}^{k-1} \{ X. closure | X \in \mathcal{K}_i \}.$
 - k is the counter which indicates the current iteration. In the kth iteration, all key k-sets are determined.
 - \mathcal{K}_k contains after the kth iteration all key k-sets K together with their support K.s and their closure K.closure.
 - C stores the candidate k-sets C together with a counter $C.p_s$ which stores the minimum of the supports of all (k 1)-subsets of C. The counter is used in step 9 to prune all non-key sets.

TITANIC Algorithm: TITANIC-GEN

Input: \mathcal{K}_{k-1} , the set of key (k-1)-sets K with their support K.s.

Output: C, the set of candidate k-sets C with the values $C.p_s := \min\{\sup(C \setminus \{m\}) \mid m \in C\}.$

The variables p_{-s} assigned to the sets $\{m_1, \ldots, m_k\}$ which are generated in step 1 are initialized by $\{m_1, \ldots, m_k\}$. $p_{-s} \leftarrow s_{\max}$.

1) $C \leftarrow \{\{m_1 < m_2 < \cdots < m_k\} \mid \{m_1, \dots, m_{k-2}, m_{k-1}\}, \{m_1, \dots, m_{k-2}, m_k\} \in \mathcal{K}_{k-1}\}$ 2) forall $X \in C$ do begin 3) forall (k - 1)-subsets S of X do begin 4) if $S \notin \mathcal{K}_{k-1}$ then begin $C \leftarrow C \setminus \{X\}$; exit forall ; end; 5) $X.p_{-S} \leftarrow \min(X.p_{-S}, S.s);$ 6) end; 7) end; 9) return C

イロト 不得 トイヨト イヨト 二日

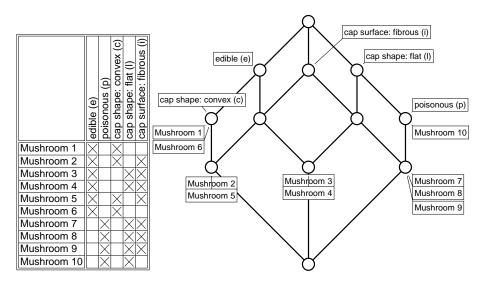
TITANIC Algorithm: CLOSURE(X) for $X \in \mathcal{K}_{k-1}$

1)
$$Y \leftarrow X$$
;
2) forall $m \in X$ do $Y \leftarrow Y \cup (X \setminus \{m\})$.closure;
3) forall $m \in M \setminus Y$ do begin
4) if $X \cup \{m\} \in C$ then $s \leftarrow (X \cup \{m\})$.s
5) else $s \leftarrow \min\{K.s \mid K \in \mathcal{K}, K \subseteq X \cup \{m\}\};$
6) if $s = X.s$ then $Y \leftarrow Y \cup \{m\}$
7) end;
8) return Y .

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

TITANIC Algorithm: Example



3

ヘロト 人間ト 人間ト 人間ト

$\operatorname{TITANIC}$ Algorithm: Example

 $\underline{k=0}$:

ste	ep 1	step 2
X	X.s	$X \in \mathcal{K}_k$?
Ø	1	yes

k = 1:

step	os 4+5	step 7	step 9
X	$X.p_s$	X.s	$X \in \mathcal{K}_k$?
$\{e\}$	1	6/10	yes
$ \{p\}$	1	4/10	yes
$\{c\}$	1	4/10	yes
$\{l\}$	1	6/10	yes
$\{i\}$	1	7/10	yes

Step 8 returns: \emptyset .closure $\leftarrow \emptyset$ Then the algorithm repeats the loop for k = 2, 3, and 4:

	edible (e)	poisonous (p)	cap shape: convex (c)	cap shape: flat (I)	cap surface: fibrous (i)
Mushroom 1	\times		X		
Mushroom 2	\times		\times		\times
Mushroom 3	\times			Х	\times
Mushroom 4	\times			Х	\times
Mushroom 5	\times		\times		\times
Mushroom 6	\times		X		
Mushroom 7		Х		Х	\times
Mushroom 8		Х		Х	\times
Mushroom 9		Х		Х	\times
Mushroom 10		Х		Х	

- 4 同 6 4 日 6 4 日 6

$\operatorname{TITANIC}$ Algorithm: Example

 $\underline{k=2}$:

-	c = 2.							
	step	o 12	step 7	step 9				
	X	$X.p_s$	X.s	$X \in \mathcal{K}_k$?				
	$\{e, p\}$	4/10	0	yes				
	$\{e,c\}$	4/10	4/10	no				
	$\{e,l\}$	6/10	2/10	yes				
	$\{e,i\}$	6/10	4/10	yes				
	$\{p,c\}$	4/10	0	yes				
	$\{p, l\}$	4/10	4/10	no				
	$\{p,i\}$	4/10	3/10	yes				
	$\{c,l\}$	4/10	0	yes				
	$\{c,i\}$	4/10	2/10	yes				
	$\{l,i\}$	6/10	5/10	yes				

$\underline{k=3:}$

step	12	step 7	step 9	
X	$X.p_s$	X.s	$X \in \mathcal{K}_k$?	
$\{e, l, i\}$	2/10	2/10	no	
$\{p, c, i\}$	0	0	no	
$\{c,l,i\}$	0	0	no	

Step 8 returns:

 $\begin{array}{l} \{e\}. \text{closure} \leftarrow \{e\} \\ \{p\}. \text{closure} \leftarrow \{p, l\} \\ \{c\}. \text{closure} \leftarrow \{c, e\} \\ \{l\}. \text{closure} \leftarrow \{l\} \\ \{i\}. \text{closure} \leftarrow \{i\} \end{array}$

Step 8 returns:

$$\begin{array}{l} \{e,p\}.\text{closure} \leftarrow \{e,p,c,l,i\} \\ \{e,l\}.\text{closure} \leftarrow \{e,l,i\} \\ \{e,i\}.\text{closure} \leftarrow \{e,l,i\} \\ \{p,c\}.\text{closure} \leftarrow \{e,p,c,l,i\} \\ \{p,i\}.\text{closure} \leftarrow \{p,l,i\} \\ \{c,l\}.\text{closure} \leftarrow \{e,p,c,l,i\} \\ \{c,i\}.\text{closure} \leftarrow \{e,c,i\} \\ \{l,i\}.\text{closure} \leftarrow \{l,i\} \end{array}$$

	(edible (e)	poisonous (p)	(cap shape: convex (c)	cap shape: flat (I)	cap surface: fibrous (i)
Mushroom 1	X		X		
Mushroom 2	\times		Х		\times
Mushroom 3	X			\times	\times
Mushroom 4	X			\times	Х
Mushroom 5	\mathbf{X}		X		\times
Mushroom 6	$ \times$		Х		
Mushroom 7		Х		X	\times
Mushroom 8		X		X	\times
Mushroom 9		Х		X	\times
Mushroom 10		Х		X	

-∢ ∃ ▶

TITANIC Algorithm: Example

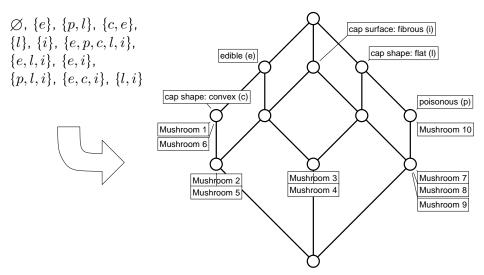
Since \mathcal{K}_k is empty the loop is exited in step 10.

Finally the algorithm collects all concept intents (step 14):

(which are exactly the intents of the concepts of the concept lattice on Slide 30). The algorithm determined the support of 5 + 10 + 3 = 18 attribute sets in three passes of the database.

	edible (e)	poisonous (p)	cap shape: convex (c)	cap shape: flat (I)	cap surface: fibrous (i)
Mushroom 1	$ \times$		Х		
Mushroom 2	$ \times$		Х		\times
Mushroom 3	$ \times$			Х	\times
Mushroom 4	$ \times$			Х	\times
Mushroom 5	\times		Х		\times
Mushroom 6	$ \times$		Х		
Mushroom 7		Х		Х	\times
Mushroom 8		Х		Х	\times
Mushroom 9		Х		Х	\times
Mushroom 10		Х		Х	

TITANIC Algorithm: Example



3

・ロト ・聞ト ・ヨト ・ヨト

TITANIC Algorithm: vs. NEXT CLOSURE

- $\bullet~\mathrm{NEXT}~\mathrm{CLOSURE}$ uses almost no memory.
- NEXT CLOSURE can explicitly employ symmetries between attributes.
- NEXT CLOSURE can be used for knowledge discovery.
- TITANIC is much more performant, in particular on large datasets.
- TITANIC allows us to incorporate and employ minimal support constraints (next slide).

$\operatorname{TITANIC}$ Algorithm: Computing Iceberg Concept Lattices

- stop as soon as only non-frequent minimal generators are computed
- return only the closures of *frequent* minimal generators
- generate candidates only from the *frequent* minimal generators
- all subsets of candidates with k-1 elements must be *frequent*