
Foundations of Description Logics

Sebastian Rudolph
Karlsruhe Institute of Technology

Germany
rudolph@kit.edu

May 2011

Sebastian Rudolph
For the Deduction Systems Lecture 2020,
please study Chapters 1–5 and 7

Abstract. This chapter accompanies the foundational lecture on De-
scription Logics (DLs) at the 7th Reasoning Web Summer School in
Galway, Ireland, 2011. It introduces basic notions and facts about this
family of logics which has significantly gained in importance over the
recent years as these logics constitute the formal basis for today’s most
expressive ontology languages, the OWL (Web Ontology Language) fam-
ily.
We start out from some general remarks and examples demonstrating
the modeling capabilities of description logics as well as their relation
to first-order predicate logic. Then we begin our formal treatment by
introducing the syntax of DL knowledge bases which comes in three
parts: RBox, TBox and ABox. Thereafter, we provide the corresponding
standard model-theoretic semantics and give a glimpse on the alternative
way of defining the semantics via an embedding into first-order logic with
equality.
We continue with an overview of the naming conventions for DLs before
we delve into considerations about di↵erent notions of semantic alikeness
(concept and knowledge base equivalence as well as emulation). These are
crucial for investigating the expressivity of DLs and performing normal-
ization. We move on by reviewing knowledge representation capabilities
brought about by di↵erent DL features and their combinations as well
as some model-theoretic properties associated thereto.
Subsequently, we consider typical reasoning tasks occurring in the con-
text of DL knowledge bases. We show how some of these tasks can be re-
duced to each other, and have a look at di↵erent algorithmic approaches
to realize automated reasoning in DLs.
Finally, we establish connections between DLs and OWL. We show how
DL knowledge bases can be expressed in OWL and, conversely, how OWL
modeling features can be translated into DLs.
In our considerations, we focus on the description logic SROIQ which
underlies the most recent and most expressive yet decidable version of
OWL called OWL 2 DL. We concentrate on the logical aspects and omit
data types as well as extralogical features from our treatise. Examples
and exercises are provided throughout the chapter.

2

Table of Contents

1 Introduction . 5
1.1 Outlook . 5
1.2 DLs in the Context of Other Formalisms 6
1.3 DL Modeling in a Nutshell . 8
1.4 The Semantic Web . 10

2 Syntax . 11
2.1 RBox . 12
2.2 TBox . 13
2.3 ABox . 15

3 Semantics . 16
3.1 Interpretations . 16
3.2 Satisfaction of Axioms . 19
3.3 Logical Consequence . 24
3.4 Excursus: Semantics via Embedding into FOL 25

4 Description Logic Nomenclature . 27
5 Equivalences, Emulation, Normalization . 28

5.1 Concept Equivalences . 28
5.2 Knowledge Base Equivalences . 31
5.3 Emulation . 34

6 Modeling with DLs . 38
6.1 A lot can be done in ALC . 39
6.2 Looking Back: Inverse Roles . 40
6.3 Model Manipulation Part I: Filtration 40
6.4 Up to Infinity: Cardinality Constraints 42
6.5 Model Manipulation Part II: Unraveling 43
6.6 Far far away: Transitivity . 45
6.7 Model Manipulation Part III: Disjoint Union 45
6.8 Know your Bounds: Nominal Concept and Universal Role . 47
6.9 Selfishness . 48
6.10 Open World vs. Closed World . 48

7 Reasoning Tasks and Their Reducibility . 50
7.1 Knowledge Base Satisfiability . 50
7.2 Axiom Entailment . 50
7.3 Concept Satisfiability . 51
7.4 Instance Retrieval . 52
7.5 Classification . 53

7.6 Conjunctive Query Answering . 53
7.7 Other Reasoning Tasks . 54

8 Algorithmic Approaches to DL Reasoning 56
8.1 Tableau . 57
8.2 Automata . 59
8.3 Consequence-Based Reasoning . 59
8.4 Resolution . 61

9 Description Logics and OWL . 61
9.1 Translating DL KBs into OWL . 62
9.2 Expressing OWL Axioms in SROIQ 66

Further Reading . 66
Acknowledgements . 68

4

1 Introduction
Come join the DL vaudeville show!
It’s variable-free, although
With quantifiers, not, and, or
Quite deeply rooted in FOLklore.
Still, curing the first-order ailment
We sport decidable entailment!

Fig. 1. The DL logo.

While formal, logic-based approaches to rep-
resenting and working with knowledge occur
throughout human history, the advent and
widespread adoption of programmable com-
puting devices in the 20th century has led
to intensified studies of both theoretical and
practical aspects of knowledge representation
and automated reasoning. Rooted in early AI
approaches, Description Logics (DLs) have
developed into one of the main knowledge
representation formalisms. The maturity of
the field is also reflected by the adoption of description logics as prior
specification paradigm for ontological descriptions – culminating in the
standardization of the OWL web ontology language by the World Wide
Web Consortium (W3C) – as well as the availability of highly optimized
and readily deployable (yet open source) tools for automated inferenc-
ing. Thanks to this “dissemination path,” DLs constitute the theoreti-
cal backbone for information systems in many disciplines, among which
life sciences can be seen as the “early adopters” [Sidhu et al., 2005;
Wolstencroft et al., 2005; Golbreich et al., 2006].

1.1 Outlook

What is in this Lecture. This document is supposed to give a gen-
tle introduction into state-of-the-art description logics. Before going into
technicalities the remainder of this section will briefly discuss how DLs
are positioned in the landscape of knowledge representation formalisms,
provide some examples for modeling features of DLs, and sketch the most
prominent application context: the Semantic Web.
Section 2 starts the formal treatment by introducing the syntax of knowl-
edge bases of the description logic SROIQ. Section 3 provides the cor-
responding model-theoretic semantics and substantiates the claimed con-
nection between DLs and first-order predicate logic (FOL) by giving a
translation from SROIQ into FOL with equality.
Section 4 reviews the naming scheme for DLs between the basic DL ALC
and the high-end DL SROIQ. Section 5 provides several notions that

5

capture that di↵erent syntactic specifications may have the same (or
“alike”) semantical impact. The motivation of Section 6 is to give a feeling
for the modeling power provided by di↵erent constructs and the according
model-theoretic consequences.
Subsequently, Section 7 considers typical reasoning tasks normally occur-
ring in the context of DL-based knowledge representation and discusses
the mutual reducibility of these tasks. In Section 8, we give a shallow
overview over di↵erent algorithmic paradigms for automated inferencing
with DLs. Finally, in Section 9, we provide a way to translate SROIQ
knowledge bases into OWL ontologies and, conversely, show how OWL
axioms can be translated into DLs.

What is not in this Lecture. Due to space limitations, we have to
restrict this lecture in many respects. We will focus on the core logical
aspects of description logics and hence omit datatypes, keys, etc. despite
their obvious practical importance for knowledge representation. Like-
wise, this is not supposed to be an introduction into OWL nor any other
Semantic Web specification language. Thus, we will only briefly state how
DL knowledge bases can be translated into OWL such that OWL reason-
ing tools can be harnessed to perform DL reasoning tasks. Moreover, we
will refrain from looking into sub-Boolean fragments of DLs, even though
they are practically important for serving as theoretical basis for the
tractable profiles of the latest version of OWL. On the theoretical side,
we will omit considerations about computational complexity of reasoning
tasks.

Required Previous Knowledge. This lecture is meant to be introduc-
tory and foundational. Consequently, we tried to make it as self-contained
as feasibly possible and hope that it is comprehensible even without any
background in formal logics, although it can do no harm either. We pre-
sume, however, a certain familiarity with basic concepts and notations of
näıve set theory. We do not expect prior knowledge about Semantic Web
formalisms like the Resource Description Framework (RDF) or OWL,
still it would come handy to fully comprehend the comments about the
connections between DLs and OWL.

1.2 DLs in the Context of Other Formalisms

Historically, DLs have emerged from semantic networks [Quillian, 1968]
and frame-based systems [Minsky, 1974]. These early knowledge represen-
tation approaches had the advantage of being rather intuitively readable

6

and comprehensible. On the downside, it turned out that the understand-
ing of the precise meaning of these diagrammatic representations di↵ered
widely amongst humans. This also became apparent by the heterogeneous
behavior of tools implemented to reason with these structures. Under a
plethora of names (among them terminological systems and concept lan-
guages), description logics developed out of the attempt to endow these
intuitive representations with a formal semantics to establish a common
ground for human and tool interoperability.
With the formal semantics introduced it was rather immediately clear
that – abstracting from the syntax used – DLs can be seen as a fragment of
first-order predicate logic (short: FOL), many of them even as a fragment
of FOL’s two-variable fragment [Borgida, 1996] in cases extended with
counting quantifiers [Pratt-Hartmann, 2005]. As opposed to general FOL
where logical inferencing is undecidable, DL research has been focusing on
decidable fragments to such an extent that today, decidability is almost
conceived as a necessary condition to call a formalism a DL.

Remark 1. Recap that in theoretical computer science, a class of problems is
called decidable, if there is a generic algorithm that can take any problem instance
from this class as an input and provide a yes-or-no answer to it after finite time. In
the context of logics, the generic problem normally investigated is whether a given
set of statements logically entails another statement. In case there is no danger of
confusion about the type of problem considered, sometimes the logic itself is called
decidable or undecidable.

In contrast to the well-known correspondence to FOL, it took some time
to discover the close relation of DLs to modal logics [Schild, 1991]; in fact,
the basic description logic ALC is just a syntactic variant of the multi-
modal logic Km. As a consequence of this, there is also a close relationship
of DLs to the Guarded Fragment [Andréka et al., 1998], a very expressive
fragment of FOL which is still decidable.
For application purposes, DLs can be tailored to the specific requirements
of a concrete usage scenario. To this end, a set of modeling features is
selected such that the resulting logic has su�cient expressivity for the
intended purpose while still being manageable in terms of the inferencing
needed. This strategy has led to thorough investigations and finally a
deeper understanding of the impact of the diverse standard modeling
features on decidability and complexity of reasoning.

7

Remark 2. Thereby, the boundaries of the above mentioned fragments are some-
times crossed. For instance, functionality statements and cardinality constraints
in general are not supported by the Guarded Fragment, the same holds for transi-
tivity statements, which also lie outside the two-variable fragment. DLs featuring
regular expressions on roles [Calvanese et al., 2009] even go beyond FOL with
equality, but we will not discuss them here.

Beyond decidability, a crucial design principle in DLs is to establish fa-
vorable trade-o↵s between expressivity and scalability. On the theoretical
side, establishing complexity results for inferencing problems (a tradition
started by Brachman and Levesque [1984] and meanwhile widely accepted
as central part of the DL research methodology) helps to roughly esti-
mate how scalable and how “implementable” reasoning methods are likely
to be. Of course, for the deployment in practice, many engineering and
optimization considerations are necessary even if they do not influence
the worst-case complexities. Today, there exist several highly optimized
and e�cient systems for reasoning in DL-based formalisms [Motik et al.,
2009c; Sirin et al., 2007; Tsarkov and Horrocks, 2006].

1.3 DL Modeling in a Nutshell

This section provides an informal introduction of the most common mod-
eling features in DLs. For the interested reader with some background
in logics, we will relate them to FOL with equality by giving the corre-
sponding terms and logical translations in square brackets.
All DLs are based on a vocabulary [signature] containing individual names
[constants], concept names [unary predicates] and role names [binary
predicates]. Two specific class names, > and ?, denote the concept con-
taining all individuals and the empty concept, respectively. Usually, a
DL knowledge base [theory] is partitioned into an assertional part, called
ABox and a terminological part, which is further subdivided into TBox
and RBox. The ABox contains assertional knowledge [ground facts], the
notation of which coincides with FOL: there are concept assertions such
as

Actor(angelina)

(indicating that the individual named angelina belongs to the set of all
actors) and role assertions like

married(angelina,brad)

(stating that the individuals named angelina and brad are in the relation
of being married). The TBox contains universal statements. The notation

8

used in DLs does not need variables and is inspired by set theory. We can
specify subsumptions, e.g. by expressing that every actor is an artist via

Actor v Artist

[8x
�
Actor(x) ! Artist(x)

�
]. A specific feature of DLs is that concept

names can be combined into complex concepts by Boolean operators, as
in

Actor u USGovernor v Bodybuilder t ¬Austrian

[8x
�
Actor(x)^USGovernor(x) ! Bodybuilder(x)_¬Austrian(x)

�
], ex-

pressing that every actor who is a US governor is also a bodybuilder or
not Austrian. Another way to define complex concepts is by quantifying
over roles, as for instance in

9knows.Actor v 8hasfriend.Envious

[8x
�
9y(knows(x, y) ^ Actor(y)) ! 8z(hasfriend(x, z) ! Envious(z))

�
],

which states that everybody knowing some actor has only envious friends.
The modeling features introduced above constitute ALC (attributive lan-
guage with complements, [Schmidt-Schauß and Smolka, 1991]), the small-
est DL that is Boolean-closed (i.e. it allows Boolean operators to be ap-
plied to concepts without restriction).
As stated before, in order to satisfy requirements emerging from practical
modeling scenarios, these basic modeling features have been enriched by
more and more expressive features for specifying and querying knowledge.
In DLs, this development has led from the basic ALC to more expressive
formalisms. Role inverses can be used to “traverse” roles backward e.g.
in

9HasChild.> v 8hasChild�.Grandparent

[8x(9y(hasChild(x, y)) ! 8z(hasChild(z, x) ! Grandparent(x)))], ex-
pressing that everybody having a child is the child of only grandpar-
ents. Cardinality constraints allow for specifying the number of related
instances:

Polygamist v >2.Married.>

[8x(Polygamist(x) ! 9y9z(Married(x, y) ^ Married(x, z) ^ y 6= z))]
states that a polygamist is married to at least two distinct individuals. By
means of nominals, classes can be defined by enumerating their instances:
the axiom

9Married.{brad} v {angelina}

9

[9x(Married(x, brad) ! x = angelina)] claims that being married to
Brad is a property only applying to Angelina.
The RBox of a DL knowledge base allows for further, role-centric modeling
features. These include role inclusion statements as for instance:

married v loves

[8x8y(married(x, y) ! loves(x, y))], which states that being married to
somebody implies loving them. A more general and expressive variant of
role inclusions are role-chain axioms as in

hasChild� � hasChild v hasSibling

[8x8y8z(hasChild(y, x) ^ hasChild(y, z) ! hasSibling(x, z))], saying
that the child of somebody I am a child of is my sibling.

1.4 The Semantic Web

The rise of the World Wide Web as a large body of digitally accessible
knowledge has inspired a plethora of research related to the question how
to organize and formalize knowledge on the Web in order to allow for au-
tomated, intelligent retrieval and combination of the stored information.
The term Semantic Web stands for a variety of research and standard-
ization e↵orts towards this goal, and DLs constitute a crucial part of
this endeavor. The underlying idea of the Semantic Web is to provide
information on the Web in a su�ciently formal and structured way to
enable “intelligent” processing by machines. To this end, several key re-
quirements can be identified: First, it is necessary to agree on common
and open standards for representing information, in order to enable the
exchange of information between diverse applications and platforms and
subsequently the combination of pieces of information from di↵erent ori-
gins. Such standards have to be defined in a clear formal way but at the
same time, they need to be flexible and extendable.
In fact, the World Wide Web Consortium (W3C) has fostered and ap-
proved the definition of the basic Semantic Web standards. The ontology
languages RDF and its extension RDF Schema (RDFS) as well as OWL
have been deliberately developed for a deployment in the Semantic Web.1

1 Originating from philosophy, the term ontology is not precisely defined in the com-
puter science context either and a lot of deviating definitions can be found through-
out the literature. In this treatise, we will use the term to simply refer to a document
created in RDF(S) or OWL, modeling knowledge of an application domain. Thereby,
we will consider it to be equivalent with the arguably more appropriate term knowl-
edge base.

10

As the second key ingredient for the Semantic Web, methods are needed
which automatically infer new knowledge from given knowledge. In order
to maximally benefit from specified knowledge, it must be possible to
obtain information that is not explicitly given but constitutes a logical
consequence of what is known. This directly leads to the multifarious field
of formal logic, and in particular to the area of automated reasoning. A
significant portion of DL research has been spawned by problems and
usage scenarios from the Semantic Web area.

2 Syntax
Deluxe DL delivery
Will come in boxes (number: three),
Precisely marked with A, T, R.
The first exhibits solid grounding,
The next allows for simple counting,
The third one’s strictly regular.

In this section, we provide the definition of the expressive description
logic SROIQ [Horrocks et al., 2006] which serves as the logical basis
for OWL 2 DL, the most expressive member of the OWL family where
inferencing is still decidable. Most of today’s mainstream DLs are, in fact,
sublanguages of SROIQ.
DLs are based on three disjoint sets of primal elements:

– The set NI of individual names contains all names used to denote
singular entities (be they persons, objects or anything else) in our
domain of interest. Examples would be brad, excalibur, rhine, or
sun.

– The set NC of concept names contains names that refer to types, cat-
egories, or classes of entities, usually characterized by common prop-
erties. Typical concept names are Mammal, Country, Organization,
but also Yellow or English.

– The set NR of role names contains names that denote binary relation-
ships which may hold between individuals of a domain, for instance:
marriedWith, fatherOf, likes, or locatedIn.

Remark 3. There are no mandatory rules for writing and typography of vocab-
ulary elements. According to a convention most widely adopted, we capitalize
concept names whereas individual and role names are written in lower case. More-
over, camel case is used for names corresponding to multi word units in natural
language.

Having these name sets at hand (they are usually jointly referred to as
vocabulary or signature), we can now turn to the three building blocks of
SROIQ knowledge bases: RBox, TBox and ABox.

11

2.1 RBox

A SROIQ RBox captures interdependencies between the roles of the
considered knowledge base. Given the set NR of role names, a role is
either the universal role u or it has the form r or r� for any role name r.
The set of roles will be denoted by R. For convenience, we introduce the
function Inv that “inverts” roles, i.e. we set Inv(r) := r� and Inv(r�) := r
in order to simplify notation. In the sequel, we will use the symbols r, s,
possibly with subscripts, to denote roles.
A role inclusion axiom (RIA, sometimes also referred to as role chain
axiom) is a statement of the form r1 � . . . � rn v r where r1, . . . , rn, r are
roles. As a special case thereof (for n = 1), we obtain simple role inclusions
r v s. Typical examples of role inclusion axioms are owns � partOf v
owns or fatherOf v childOf�. A finite set of such RIAs is called a role
hierarchy.
Given a role hierarchy, it is useful to distinguish the roles that can be
“created” by role chains of length greater than one from those which
cannot. Consequently, we define non-simple roles as follows:

S1 Every role r occurring in a RIA r1 � . . . � rn v r where n > 1 is
non-simple.

S2 Every role r occurring in a simple role inclusion s v r with a non-
simple s is itself non-simple.

S3 If r is non-simple then so is Inv(r).
S4 No other role is non-simple.

We let R
n denote the set of all non-simple roles of a role hierarchy and

call all the other roles simple denoted by R
s = R \R

n.

Example 4. Consider the following role hierarchy:

motherOf v parentOf (1)

parentOf v ancestorOf (2)

ancesterOf � ancestorOf v ancestorOf (3)

ancestorOf v descendantOf� (4)

Then we can use S1 to find that ancestorOf is non-simple due to (3). This allows us
to conclude that descendantOf� is non-simple via (4) and S2. From the above fol-
lows via S3 that also ancestorOf� and descendantOf must be non-simple. Finally,
S4 ensures that motherOf, motherOf�, parentOf, and parentOf� are simple.

In order to ensure decidability of the ensuing logic, we cannot allow arbi-
trary role hierarchies but have to restrict to those which have the property
of being regular. Formally, a role hierarchy is regular if there is a strict
partial order � on the non-simple roles R

n such that

12

– S � R i↵ Inv(S) � R, and
– every RIA is of one of the forms

R1 r � r v r,
R2 Inv(r) v r,
R3 s1 � . . . � sn v r,
R4 r � s1 � . . . � sn v r,
R5 s1 � . . . � sn � r v r,
such that r 2 NR is a (non-inverse) role name r, and si � r for
i = 1, . . . , n whenever si is non-simple.

Example 5. Consider the following role hierarchy containing the RIAs: s�s v s,
r � s v r, and r � s � r v t. First observe that all involved atomic roles are non-
simple. If we define � such that s� � s � r� � r � t� � t, then all the above
criteria are satisfied: the first RIA is an instance of R1, the second is an instance
of R4, and the third is an instance of R3. Hence this role hierarchy is regular.

Example 6. Assume a role hierarchy containing r � t � s v t as the only axiom.
Only t is non-simple here, still this role hierarchy is not regular, as the RIA does
not fit any of the allowed forms R1–R5 (to see this, note that � is required to be
strict, therefore t 6� t must always be the case, irrespective of the concrete choice
of �).

Example 7. Let a role hierarchy contain the two RIAs r � s v s, and s � r v r.
While each of these RIAs alone would be acceptable as a role hierarchy, they do not
go well together: the first requires r � s (due to R5) whereas the second enforces
s � r (due to R4) which as a whole violates the condition of � being a strict order.
Thus the considered role hierarchy is not regular.

A role characteristic is a statement of the form Ref(r) (reflexivity), Asy(s)
(asymmetry), or Dis(s, s0) (role disjointness), where s and s0 are simple
roles while r may be simple or non-simple. A SROIQ RBox (usually
denoted by R) is the union of a finite set of role characteristics together
with a role hierarchy. A SROIQ RBox is regular if its role hierarchy is
regular.

2.2 TBox

Given a SROIQ RBox R as defined in the previous section, we now
inductively define concept expressions (also simply called concepts) as
follows:

• every concept name C 2 NC is a concept expression,

13

• > and ? are concept expressions, called top concept and bottom con-
cept, respectively,

• {a1, . . . , an} is a concept expression for every finite set {a1, . . . , an} ✓
NI of individual names; concepts of this type are called nominal con-
cepts,

• if C and D are concept expressions then so are ¬C (negation), C uD
(intersection), C tD (union),

• if r is a role and C is a concept expression, then 9r.C (existential
quantification) and 8r.C (universal quantification) are also concept
expressions,

• if r is a simple role, n is a natural number and C is a concept expres-
sion, then 9r.Self (self restriction), >nr.C (at-least restriction), and
6nr.C (at-most restriction) are also concept expressions. The latter
two are also jointly referred to as qualified number restrictions or
cardinality constraints.

We will denote the set of all concept expressions thus defined by C.
Throughout this chapter, the symbols C, D will be used to denote concept
expressions.

Remark 8. Note that the definition of concept expressions depends on the un-
derlying RBox due to the restriction of some concept expressions to contain only
simple roles.

A general concept inclusion axiom (short: GCI) has the form C v D
where C and D are concepts. This kind of statement is also sometimes
called subsumption axiom, as C v D is often read “C is subsumed by
D.” Sometimes, this axiom type is also referred to as is-a relationship,
inspired by the often chosen wording for this type of statement (e.g. “a
cat is a mammal” would be a typical verbalization of Cat v Mammal).

Remark 9. Sometimes, C v D is also called a subconcept statement with C v D

being read “C is a subconcept of D.” While this is well justified by standard formal
theories of (human) conceptual thinking where concepts are hierarchically ordered
by subconcept-superconcept relationships [Ganter and Wille, 1997], this naming
is unfortunate in the DL setting since it can also be understood syntactically to
mean subformula of a concept term. Thus we do not use this term and whenever
referring to the latter meaning, we speak of subexpressions of a concept.

Finally, a SROIQ TBox (usually denoted by T) is a finite set of GCIs.

14

2.3 ABox

The ABox of a knowledge base contains information that applies to single
individuals as opposed to the GCIs in the TBox, which represent state-
ments which are generally true for all individuals alike.
An individual assertion can have any of the following forms:

• C(a), called concept assertion,
• r(a, b), called role assertion,
• ¬r(a, b), called negated role assertion,
• a ⇡ b, called equality statement, or
• a 6⇡ b, called inequality statement,

with a, b 2 NI individual names, C 2 C a concept expression, and r 2 R

a role.

Remark 10. Of course, also the form ¬C(a) is captured by the above definition
since ¬C is again a concept expression, as opposed to roles, which do not allow
for negation (note that the inverse of a role is something quite di↵erent from its
negation).

A SROIQ ABox (usually denoted by A) is a finite set of individual
assertions. We call an ABox extensionally reduced if the only concepts and
roles occurring therein are concept names and roles names, respectively.

Remark 11. It should be noted that the separation between ABox and TBox
– originally conceived for less expressive DLs – becomes less sharp once nominal
concepts are allowed, since nominal concepts allow for referring to single individuals
in the TBox as well. In fact, every of the di↵erent types of individual assertions
can be expressed by a GCI featuring nominals: C(a) becomes {a} v C, (¬)r(a, b)
is equivalent to {a} v (¬)9r.{b}, a ⇡ b can be rewritten into {a} v {b}, and
a 6⇡ b into {a} v ¬{b}. Still the distinction is not entirely meaningless even for
DLs featuring nominals as soon as data complexity of reasoning is investigated.

A SROIQ knowledge base KB is the union of a regular RBox R and a
TBox T as well as an ABox A for R. The elements of KB are referred
to as axioms. Given a knowledge base KB we write NI(KB), NC(KB),
and NR(KB) to denote those individual names, concept names, and role
names which occur in KB, respectively.

15

Example 12. As an example consider the following knowledge base KB:

RBox R
owns v caresFor

“If somebody owns something, they care for it.”

TBox T
Healthy v ¬Dead

“Healthy beings are not dead.”

Cat v Dead t Alive

“Every cat is dead or alive.”

HappyCatOwner v 9owns.Cat u 8caresFor.Healthy
“A happy cat owner owns a cat and all beings
he cares for are healthy.”

ABox A
HappyCatOwner (schrödinger)

“Schrödinger is a happy cat owner.”

3 Semantics
Semantics has wide applications
To relationship-based altercations,
For semantics unveils
What a statement entails
Depending on interpretations.

Like for any other logic, the definition of a formal semantics for DLs boils
down to providing a consequence relation that determines whether an
axiom logically follows from (also: is entailed by) a given set of axioms.
The semantics of description logics is defined in a model-theoretic way.
Thereby, one central notion is that of an interpretation. Interpretations
might be conceived as potential “realities” or “worlds.” In particular,
interpretations need in no way comply with the actual reality.

3.1 Interpretations

In the case of DLs, an interpretation, normally denoted with I, provides

• a nonempty set �I , called the domain or also universe of discourse
which can be understood as the entirety of individuals or things ex-
isting in the “world” that I represents, and

• a function ·I , called interpretation function which connects the vocab-
ulary elements (i.e., the individual, concept, and role names) to �I ,
by providing

16

• for each individual name a 2 NI a corresponding individual aI 2
�I from the domain,

• for each concept name A 2 NC a corresponding set AI ✓ �I of
domain elements (as opposed to the domain itself, AI is allowed
to be empty), and

• for each role name r 2 NR a corresponding (also possibly empty)
set rI ✓ �I ⇥�I of ordered pairs of domain elements.

!"#$%&%$#'()"

!I

aI CI

rI

individual names NI role names NR class names NC

...a... ...C... ...r...

!I

*)+',-.'%/

Fig. 2. Structure of DL interpretations.

Figure 2 depicts this definition graphically. For domain elements �, �0 2 �,
the intuitive meaning of � 2 AI is that the individual � belongs to the
class described by the concept name A, while h�, �0i 2 r means that � is
connected to �0 by the relation denoted by the role name r.

Remark 13. To avoid confusion, it is important to strictly separate syntactic no-
tions (referring to the vocabulary and axioms) from the semantic notions (referring
to the domain and domain elements). Individual names, concept names and role
names are syntactic entities and so are roles and concepts. Individuals are elements
of �

I and hence semantic entities. In order to refer to the semantic counterparts
of concepts and roles, one would use the terms concept extension or role extension,
respectively. Single elements of the extension of a concept or role are also called
concept instances or role instances.

17

Example 14. Consider the following signature:

– NI = {sun, morning star, evening star, moon, home}.
– NC = {Planet, Star}.
– NR = {orbitsAround, shinesOn}.

We now define an interpretation I = (�I
, ·I) as follows: Let our domain �

I

contain the following elements: �, ', ⇡, &, $, ⇢, X, Y, Z, [, \. We define the interpre-
tation function by

sunI = �
morning starI = ⇡
evening starI = ⇡

moonI = $
homeI = &

PlanetI = {', ⇡, &, ⇢, X, Y, Z, [}
StarI = {�}

orbitsAroundI = {h',�i, h⇡,�i, h&,�i, h⇢,�i, hX,�i,
hY,�i, hZ,�i, h[,�i, h\,�i, h$, &i}

shinesOnI = {h�, 'i, h�, ⇡i, h�, &i, h�, $i, h�, ⇢i,
h�, Xi, h�, Yi, h�, Zi, h�, [i, h�, \i}

For a better understanding, it is often helpful to display an interpretation as a
directed graph with labeled nodes and arcs. Thereby, the nodes correspond to
the domain individuals �

I where a node � 2 �
I gets labeled by the individual

names assigned to it (i.e. those a 2 NI for which aI = �) as well as the concept
names A in the extensions of which � lies (i.e. � 2 AI). Moreover, whenever a pair
of two domain individuals �, �

0 2 �
I is in the extension of a role name r (that

is, if h�, �0i 2 rI), a directed arc is drawn from � to �
0 and labeled with r. The

graphical representation of the interpretation I defined above would then look like
this (where we abbreviate orbitsAround by o and shinesOn by s):

Planet⇡

o

⌫⌫

morning star
evening star home

Planet

&

o

↵↵

Planet

'

o

&&

$

o
dd

moon

\
o

11
Star

�
sun

s

�� s

↵↵

s

⇠⇠

s

&&

s

ee
s

WW

s

KK

s

??

s
qq

s
11
Planet

⇢
o

qq

[
Planet

o

??

X
Planet

o

ff

Z
Planet

o

KK

Y
Planet

o

XX

18

Remark 15. One should keep in mind that the domain �
I is not required to be

finite, but can also be an infinite set. It is also possible to consider only interpreta-
tions with finite domains, but then one explicitly talks about finite models or finite
satisfiability. There are logics where infinite interpretations are “dispensable” as
there are always finite ones that do the same job, these logics are said to have the
finite model property. SROIQ does not have this property. However, since DLs
are normally fragments of first-order logic, we can safely restrict our attention to
interpretations with countable domains (that is, domains having at most as many
individuals as there are natural numbers). This is a consequence of the downward
part of the Theorem of Löwenheim-Skolem, according to which every FOL theory
that has an arbitrary infinite model also has a countable one.

Example 16. As an example of an interpretation, this time with an infinite do-
main, consider the following vocabulary:

– NI = {zero}.
– NC = {Prime, Positive}.
– NR = {hasSuccessor, lessThan, multipleOf}.

Now, we define I as follows: let �
I = N = {0, 1, 2, . . .}, i.e., the set of all natural

numbers including zero. Furthermore, we let zeroI = 0, as well as PrimeI = {n |
n is a prime number} and PositiveI = {n | n > 0}. For the roles, we define

– hasSuccessorI = {hn, n + 1i | n 2 N}
– lessThanI = {hn, n

0i | n < n
0
, n, n

0 2 N}
– multipleOfI = {hn, n

0i | 9k.n = k · n0, n, n
0
, k 2 N}

Note that this interpretation is well defined, although it has an infinite domain. For
space reasons, we refrain from providing the corresponding graph representation.

Remark 17. Note that the definition of an interpretation does not require that
di↵erent individual names denote di↵erent individuals, that is, it may happen
that for two individual names a and b, we have aI = bI . A stronger definition
of DL interpretations that excludes such cases is usually referred to as unique
name assumption (short: UNA). Note also, that not every domain element � 2 �

needs to be named, i.e., there may be � for which no individual name a with
aI = � exists. For obvious reasons, such individuals are usually referred to as
anonymous individuals.

3.2 Satisfaction of Axioms

By now, we have seen that an interpretation determines the semantic
counterparts of vocabulary elements. However, in order to finally deter-
mine the truth of complex axioms, it is necessary to also find the coun-
terparts of complex concepts and roles. We provide a definition according
to which the semantics of a complex language construct can be obtained

19

from the semantics of its constituents (thereby following the principle of
compositional semantics). Formally, this is done by “lifting” the interpre-
tation function ·I to these complex expressions.
First we extend the interpretation function from role names to roles by
letting uI = �I ⇥�I (that is: the universal role interconnects any two
individuals of the domain and also every individual with itself), and as-
signing to inverted role names r� the set of all pairs h�, �0i of domain
elements for which h�0, �i is contained in rI .
Next we define the interpretation function for concepts:

• > is the concept which is true for every individual of the domain,
hence >I = �I .

• ? is the concept which has no instances, hence ?I = ;.
• {a1, . . . , an} is the concept containing exactly the individuals denoted

by a1, . . . , an, therefore {a1, . . . , an}I = {aI1 , . . . , aIn}
• ¬C is supposed to denote the set of all those domain individuals that

are not contained in the extension of C, i.e., (¬C)I = �I \ CI .
• CuD is the concept comprising all individuals that are simultaneously

in C and D, thus we define (C uD)I = CI \DI .
• CtD contains individuals being present in C or D (or both), therefore

we let (C tD)I = CI [DI .
• 9r.C is the concept that holds for an individual � 2 �I exactly if there

is some domain individual �0 2 �I such that � is connected to �0 via
the relation denoted by r and �0 belongs to the extension of the concept
C, formally: (9r.C)I = {� 2 �I | 9�0 2 �I .

�
h�, �0i 2 rI ^ �0 2 CI�}.

• 8r.C denotes the set of individuals � 2 �I with the following property:
whenever � is connected to some domain individual �0 2 �I via the
relation denoted by r, then �0 belongs to the extension of the concept
C, formally: (8r.C)I = {� 2 �I | 8�0 2 �I .

�
h�, �0i 2 rI ! �0 2 CI�}.

• 9r.Self comprises those domain individuals which are r-related to
themselves, thus we let (9r.Self)I = {x 2 �I | hx, xi 2 rI}.

• 6n r.C refers to the domain elements � 2 �I for which no more than
n individuals exist to which � is r-related and that are in the extension
of C, formally: (6n r.C)I = {� 2 �I | #{�0 2 �I | h�, �0i 2 rI ^ �0 2
CI} n} (thereby #S is used to denote the cardinality of a set S,
i.e., the number of its elements).

• >n r.C, dual to the case before, denotes those domain elements having
at least n such r-related elements: (>n r.C)I = {� 2 �I | #{�0 2 �I |
h�, �0i 2 rI ^ �0 2 CI} � n}.

20

Remark 18. The reader should be aware that by the above definition, the ex-
tension of the concept 8r.C contains every domain individual � 2 �

I that is not
r-connected to any �

0. For instance, the concept 8hasChild.Happy comprises all
individuals all of whose children are happy (alternatively, and arguably less con-
fusing: all individuals that do not have children which are not happy). This includes
those individuals not having children at all. In fact, when modeling with DLs, the
concept 8r.? is often used to refer to all individuals not being r-connected to any
other individual (nor to themselves).

Example 19. Consider the interpretation I from Example 14. With the lifting
of the interpretation function just defined, we are able to determine the extension
of concepts and roles as follows:

orbitsaround�
I

= {h�, 'i, h�, ⇡i, h�, &i, h�, ⇢i, h�, Xi, h�, Yi, h�, Zi, h�, [i, h�, \i}
�
8orbitsAround.(¬Star)

�I

= {� | 8�0.
�
h�, �0i 2 orbitsAroundI ! �

0 2 (¬Star)I
�
}

= {� | 8�0.
�
h�, �0i 2 orbitsAroundI ! �

0 2 �
I \ StarI

�
}

= {� | 8�0.
�
h�, �0i 2 orbitsAroundI ! �

0 2 {', ⇡, &, $, ⇢, X, Y, Z, [, \}
�
}

= {�, $}
�
(¬Planet) u 9orbitsAround.Star

�I

= (¬Planet)I \ (9orbitsAround.Star)I

= �
I \ PlanetI \ {� | 9�0.

�
h�, �0i 2 orbitsAroundI ^ �

0 2 StarI
�
}

= {�, $, \} \ {', ⇡, &, ⇢, X, Y, Z, [, \}
= {\}�

>2shinesOn.{morning star, evening star}
�I

= {� | #{�0 | h�, �0i 2 shinesOnI ^ �
0 2 {morning star, evening star}I} � 2}

= {� | #{�0 | h�, �0i 2 shinesOnI ^ �
0 2 {morning starI , evening starI} � 2}

= {� | #{�0 | h�, �0i 2 shinesOnI ^ �
0 2 {⇡}} � 2}

= ;

Exercise 1. Describe – both verbally and formally – the extension of the following
concepts with respect to the interpretation I defined in Example 16:

(a) 8 hasSuccessor�.Positive
(b) 9 multipleOf.Self
(c) 9 multipleOf.9hasSuccessor�.9hasSuccessor�.{zero}
(d) >10 lessThan�.Prime
(e) ¬Prime u62 multipleOf.>
(f) 9lessThan.Prime
(g) 8 multipleOf.

�
9hasSuccessor�.{zero}
t 9multipleOf.9hasSuccessor�.9hasSuccessor�.{zero}

�

21

The final purpose of the (lifted) interpretation function is to determine
satisfaction of axioms. In the following, we define when an axiom ↵ is
true (also: holds), given a specific interpretation I. If this is the case, we
also say that I is a model of ↵ or that I satisfies ↵ and write I |= ↵.

• A role inclusion axiom r1 � . . .� rn v r holds in I if for every sequence
�0, . . . , �n 2 �I for which holds h�0, �1i 2 rI1 , . . ., h�n�1, �ni 2 rIn, also
h�0, �ni 2 rI is satisfied. Figuratively, this means that every path in
�I that traverses the roles r1, . . . , rn (in the given order) must have a
direct r-“shortcut.” When using � as symbol for the relation product,
we can write down this condition as rI1 � . . . � rIn ✓ rI .

• A role disjointness statement Dis(r, s) is true in I if every two domain
individuals �, �0 2 �I that are connected via an r-relation are not
connected via an s-relation. In other words, we can say that the two
roles are mutually exclusive which can be formally expressed by the
condition rI \ sI = ;.

• A general concept inclusion C v D is satisfied by I, if every instance
of C is also an instance of D. An alternative wording of this would be
that the extension of C is contained in the extension of D, formally
CI ✓ DI .

• A concept assertion C(a) holds in I if the individual with the name
a is an instance of the concept C, that is aI 2 CI .

• A role assertion r(a, b) is true in I if the individual denoted by a is
r connected to the individual denoted by b, i.e. the extension of r
contains the corresponding pair of domain elements: haI , bIi 2 rI .

• I is a model of ¬r(a, b) exactly if it is not a model of r(a, b).

• The equality statement a ⇡ b holds in I if the individual names a and
b refer to the same domain individual, i.e. aI = bI .

• I is a model of a 6⇡ b exactly if it is not a model of a ⇡ b.

22

Example 20. We now check for some example axioms whether interpretation I
from Example 14 satisfies them.

– morning star ⇡ evening star is true, since morning starI = ⇡ =
evening starI , i.e. the two names denote the same domain individual.

– orbitsAround � orbitsAround v shinesOn� is also true: The only chain of
domain individuals �1, �2, �3 with h�1, �2i 2 orbitsAroundI and h�2, �3i 2
orbitsAroundI is �1=$, �2=&, �3=�. Therefore, we obtain orbitsAroundI �
orbitsAroundI = {h$,�i}. On the other hand, due to h�, $i 2 shinesOnI

we obtain h$,�i 2 shinesOn�
I
.

– Star(evening star) is false since the domain element evening starI = ⇡ is
not contained in StarI = {�}.

– Planet v ¬{sun, moon} is valid in I as we get (¬{sun, moon})I = �
I \

({sun, moon})I = �
I \ {�, $} = {', ⇡, &, ⇢, X, Y, Z, [, \} which is a superset of

PlanetI = {', ⇡, &, ⇢, X, Y, Z, [}.
– shinesOn(moon, earth) does not hold in I since the pair of the respec-

tive individuals is not contained in the extension of the shinesOn role:
hmoonI , earthIi = h$, &i 62 shinesOnI .

– > v 8shinesOn�.{sun} is true. To see this we first need to find
(8shinesOn�.{sun})I . In words, this concept comprises those objects that are
shone upon by nothing but the sun (if they are shone upon by anything at all).
Formally, to check whether a domain individual � is in the extension of that

concept, we have to verify that every individual �
0 with h�, �0i 2 shinesOn�

I

(which is equivalent to h�0, �i 2 shinesOnI) also satisfies �
0 2 {sun}I which

just means �
0 = �. Scrutinizing all elements of �

I , we find this condition
satisfied for each, therefore we have >I = �

I ✓ �
I = (8shinesOn�.{sun})I .

– Dis(orbitsAround, shinesOn) is satisfied by I since no pair h�, �0i is con-
tained in the extensions of both orbitsAround and shinesOn and therefore
orbitsAroundI \ shinesOnI = ;.

Exercise 2. Decide whether the following axioms are satisfied by the interpreta-
tion I from Example 16.

(a) hasSuccessor v lessThan
(b) 9hasSuccessor�.9hasSuccessor�.{zero} v Prime
(c) > v 8multipleOf�.{zero}
(d) Dis(divisileBy, lessThan�)
(e) multipleOf � multipleOf v multipleOf
(f) > v 61hasSuccessor.Positive
(g) zero 6⇡ zero
(h) 61multipleOf�.>(zero)
(i) > v 8lessThan.9lessThan.(Prime u 9hasSuccessor.9hasSuccessor.Prime)

Now that we have defined when an interpretation I is a model of an
axiom, we can easily extend this notion to whole knowledge bases: we say
that I is a model of a given knowledge base KB (also: I satisfies KB,
written I |= KB), if it satisfies all the axioms of KB, i.e., if I |= ↵ for
every ↵ 2 KB. Moreover, a knowledge base KB is called satisfiable or

23

consistent if it has a model, and it is called unsatisfiable or inconsistent
or contradictory otherwise.

Example 21. The following knowledge base is inconsistent.

Reindeeru9hasNose.Red(rudolph)
8worksFor�.(¬ReindeertFlies)(santa)

worksFor(rudolph, santa)

santa 6⇡ batman

Reindeer v Mammal

MammaluFlies v Bat

Bat v 8worksFor.{batman}

Remark 22. Note that, for determining whether a knowledge base satisfies an
interpretation I, only the value of ·I for those individual, concept, and role names
are relevant, that occur in KB. All vocabulary elements not contained in NI(KB)[
NC(KB)[NR(KB) can be mapped arbitrarily and do not influence the semantics.

3.3 Logical Consequence

So far, we have defined a “modelhood” relation, which for a given inter-
pretation and a given set of axioms determines whether the axiom is true
with respect to the interpretation. Remember that the actual purpose of
a formal semantics is to provide a consequence relation, which tells us
whether an axiom is a logical consequence of a knowledge base. This con-
sequence relation is commonly also denoted by |= and defined as follows:
an axiom ↵ is a consequence of (also entailed by) a knowledge base KB
(written: KB |= ↵) if every model of KB is also a model of ↵, i.e. for every
I with I |= KB also holds I |= ↵.

Remark 23. As a straightforward consequence of this model-theoretic definition
of consequences we obtain the fact that an inconsistent knowledge base entails any
axiom, since the considered set of models which have to satisfy the axiom is empty
and hence the condition is vacuously true. This e↵ect, well-known in many logics,
is called the principle of explosion according to which “anything follows from a
contradiction.”

Exercise 3. Decide whether the following propositions about the knowledge base
KB from Example 12 are true and give evidence:

(a) KB is satisfiable,
(b) KB |= Alive(schrödinger),
(c) KB |= Dead u Alive v ?,
(d) KB |= Alive v Healthy.

24

Exercise 4. Decide whether the following statements are true or false and justify
your decision. For arbitrary SROIQ knowledge bases KB and KB0 holds:

(a) If an axiom ↵ is a logical consequence of the empty knowledge base, i.e. ; |= ↵,
then it is the consequence of any other knowledge base KB.

(b) The larger a knowledge base, the more models it has. That is, if KB ✓ KB0
then every model of KB is also a model of KB0.

(c) The larger a knowledge base, the more consequences it has. That is, if KB ✓
KB0 then every logical consequence from KB is a logical consequence from KB0.

(d) If ¬C(a) 2 KB, then KB |= C(a) can never hold (for arbitrary concepts C).
(e) If two knowledge bases are di↵erent (KB 6= KB0), then they also di↵er in

terms of logical consequences, i.e., there is an axiom ↵ such that KB |= ↵ and
KB0 6|= ↵ or vice versa.

3.4 Excursus: Semantics via Embedding into FOL

As mentioned before, it is often said that most description logics, includ-
ing SROIQ, are fragments of first-order predicate logic (FOL). Techni-
cally, this statement is somewhat misleading since, from a syntax point
of view, most DL axioms are not FOL formulae. What is rather meant
by this statement is the following: It is obvious that DL interpretations
have the same structure as FOL interpretations if one conceives individual
names as constants, concept names as unary predicates and role names as
binary predicates. Under this assumption, one can define an easy syntac-
tic translation ⌧ which, applied to a DL axiom ↵, yields a FOL sentence
⌧(↵) such that the model sets of ↵ and ⌧(↵) coincide, that is an interpre-
tation I is a model of ↵ exactly if it is a model of ⌧(↵). Consequently,
every reasoning problem in a DL is easily transferrable to an equivalent
reasoning problem in FOL, whence the semantics of description logics
could – as an alternative to the previously introduced way – be defined
by reducing it to the semantics of FOL via the mentioned translation.

Remark 24. Obviously, the converse cannot be the case, for any decidable DL:
supposing it were, we could decide any FOL reasoning problem by translating it to
the DL and then deciding the DL version. This clearly contradicts the well-known
undecidability of FOL.

We provide here a definition of ⌧ but omit a proof of its correctness. More
precisely, the translation outputs first-order predicate logic with equality,
a mild generalization of pure first-order predicate logic featuring an equal-
ity predicate =. Every SROIQ knowledge base KB thus translates via ⌧
to a theory ⌧(KB) in first-order predicate logic with equality. We define

⌧(KB) =
[

↵2KB
⌧(↵),

25

i.e., we translate every axiom of the knowledge base separately into a
FOL sentence. How exactly ⌧(↵) is defined depends on the type of the
axiom ↵.
However, first we have to define auxiliary translation functions ⌧R : R⇥
Var⇥ Var ! FOL for roles and ⌧C : C⇥ Var ! FOL for concepts (where
Var = {x0, x1, . . .} is a set of variables):

⌧R(u, xi, xj) = true

⌧R(r, xi, xj) = r(xi, xj)
⌧R(r�, xi, xj) = r(xj , xi)

⌧C(A, xi) = A(xi)
⌧C(>, xi) = true

⌧C(?, xi) = false

⌧C({a1, . . . , an}, xi) =
W

1jn
xi = aj

⌧C(¬C, xi) = ¬⌧C(C, xi)
⌧C(C uD,xi) = ⌧C(C, xi) ^ ⌧C(D,xi)
⌧C(C tD,xi) = ⌧C(C, xi) _ ⌧C(D,xi)

⌧C(9r.C, xi) = 9xi+1.
�
⌧R(r, xi, xi+1) ^ ⌧C(C, xi+1)

�

⌧C(8r.C, xi) = 8xi+1.
�
⌧R(r, xi, xi+1) ! ⌧C(C, xi+1)

�

⌧C(9r.Self, xi) = ⌧R(r, xi, xi)
⌧C(>nr.C, xi) = 9xi+1 . . . xi+n.

� V
i+1j<ki+n

(xj 6= xk)
^

V
i+1ji+n

(⌧R(r, xi, xj) ^ ⌧C(C, xj)
�

⌧C(6nr.C, xi) = ¬⌧C(>(n + 1)r.C, xi)

Obviously, the translation assigns to a role a FOL formula with (at most)
two free variables and to a concept a FOL formula with (at most) one
free variable. Now we are ready to translate axioms:

⌧(r1 � . . . � rn v r) = 8x0 . . . xn(
V

1in
⌧R(ri, xi�1, xi)) ! ⌧R(r, x0, xn)

⌧(Dis(r, r0)) = 8x0x1(⌧R(r, x0, x1) ! ¬⌧R(r0, x0, x1))
⌧(C v D) = 8x0(⌧C(C, x0) ! ⌧C(D,x0))

⌧(C(a)) = ⌧C(C, x0)[x0/a]
⌧(r(a, b)) = ⌧R(C, x0, x1)[x0/a][x1/b]

⌧(¬r(a, b)) = ¬⌧(r(a, b))
⌧(a ⇡ b) = a = b

⌧(a 6⇡ b) = ¬(a = b)

26

Exercise 5. Translate the axioms from Example 20 and Exercise 2 into first-order
logic with equality.

Remark 25. The considerations in this section do not apply to all DLs, since also
extensions of DLs with non-first-order features have been defined and investigated
such as non-monotonic features, regular expressions as role constructors or fixpoint
operators. However, the mainstream DLs for which mature reasoners exist and
which have been used as a basis for OWL are all first-order-embeddable.

4 Description Logics Nomenclature

What’s in a name? That which we call, say, SHIQ,
By any other name would do the trick.
While DL names might leave the novice SHOQed,
Some principles of ALCHemy unlocked
Enable understanding in a minute:
Though it be madness, yet there’s method in it.

There is a well-established naming convention for DLs. The naming scheme
for mainstream DLs can be summarized as follows:

�
(ALC | S)[H]| SR

�
[O][I][F |N |Q]

The meaning of the name constituents is as follows:

• ALC is an abbreviation for attributive language with complements
[Schmidt-Schauß and Smolka, 1991]. This DL disallows RBox axioms
as well as the universal role, role inverses, cardinality constraints, nom-
inal concepts, and self concepts.

• By S we denote ALC where we additionally allow transitivity state-
ments, i.e., specific role chain axioms of the shape r�r v r for r 2 NR.
The name goes back to the name of a modal logic called S.

• ALC and S can be extended by role hierarchies (obtaining ALCH or
SH) which allow for simple role inclusions, i.e., role chain axioms of
the shape r v s.

• SR denotes ALC extended with all kinds of RBox axioms as well as
self concepts.

• The letter O in the name of a DL indicates that nominal concepts are
supported.

• When a DL contains I then it features role inverses.
• The letter F at the end of a DL name enables support for role func-

tionality statements which can be expressed as > v 61.>.

27

• N at the end of a DL name allows for unqualified number restrictions,
i.e., concepts of the shape >nr.> and 6nr.>.

• Q indicates support for arbitrary qualified number restrictions.

As becomes clear from the previous descriptions, S contains ALC. More-
over SR subsumes all of ALC, ALCH, S, and SH. Finally F becomes
obsolete once N is present and both are superseded by Q.

Exercise 6. Come up with a partial order diagram displaying syntactic contain-
ment of all DLs that match the above naming scheme and do not contain F or
N .

Exercise 7. Name, for each of the following knowledge bases, the “smallest” DL
that contains it:

(a) the knowledge base from Example 12,
(b) the knowledge base from Example 21,
(c) the knowledge base consisting of the axioms (a), (b) and (e) from Exercise 2,
(d) the knowledge base containing the axioms

> v 9sameAs.Self > v 61sameAs.> batman v ¬9sameAs�.{santa}.

5 Equivalences, Emulation,

Normalization
Don’t give told consequences lip,
Nor ’bout equivalences quip,
’Cause often it’s the formal norm
That statements be in normal form.

The language of the DL SROIQ is rather redundant, that is, a matter
can be formulated in in many ways that are syntactically di↵erent but
semantically the same. In the following, we will survey di↵erent kinds
of “semantical alikeness.” Moreover we also discuss how this “syntactic
redundancy” can be reduced by reverting to so-called normal forms, which
come handy for preprocessing knowledge bases before performing actual
automated reasoning, but are also useful to alleviate proof work when
certain meta-logical properties have to be shown.

5.1 Concept Equivalences

A very basic form of “semantical alikeness” is concept equivalence. Two
concepts C, D 2 C are called equivalent – which is usually denoted by
C ⌘ D – if they have the same extension in any interpretation I, i.e.
CI = DI . Note that this notion does not presume a fixed knowledge
base, thus it really refers to all possible interpretations I.

28

Remark 26. It is easy to see that the definition of concept equivalence can be
reformulated in terms of axiom entailment: C ⌘ D holds exactly if the empty
knowledge base entails both C v D and D v C, i.e. ; |= C v D and ; |= D v C.
In fact, sometimes in the literature, statements of the form C ⌘ D are allowed to
occur in knowledge bases as TBox axioms.

Exercise 8. Contemplate whether the condition from Remark 26 can be captured
by just one axiom, i.e. whether there is an axiom ↵ such that ; |= ↵ if and only
if C ⌘ D. If this question cannot be answered right now, you may revisit it after
having read this section.

Quite a few basic concept equivalences (which are normally simply taken
for granted without further consideration) can be directly traced back
to the semantics definition for concepts. To recognize and memorize the
equivalences it is quite helpful that the syntactical notation of concept
constructors (t, u) is inspired by the associated set-theoretical interpre-
tation ([, \) and is also very related to the corresponding notation in
propositional logic (_,^). First, we find that both concept intersection
and union are commutative, associative and idempotent.

C uD ⌘ D u C
(C uD) u E ⌘ C u (D u E)

C u C ⌘ C

C tD ⌘ D t C
(C tD) t E) ⌘ C t (D t E)

C t C ⌘ C

commutativity
associativity
idempotency

The law of associativity alone already releases us from the duty to put
parentheses if the union or intersection of more than two concepts is
written down, this allows us to write C tD tD or C uD uD without
causing semantical ambiguity due to the missing precedence information.
By virtue of the laws of commutativity, associativity, and idempotency
together, we can even conceive unions and intersections of many concepts
as sets and write for concept sets {C1, . . . , Cn} = C ✓ C

G

C2C

C or
l

C2C

C

instead of C1 t . . . t Cn or C1 u . . . u Cn, respectively.
While the aforementioned laws deal with semantical properties of u and
t separately, the following cope with their mutual interactions. On the
right hand side, we see that the two connectives are distributive over
each other, while the equivalences on the right are usually referred to as
absorption laws.

(C tD) u E ⌘ (C u E) t (D u E)
(C uD) t E ⌘ (C t E) u (D t E)

(C tD) u C ⌘ C
(C uD) t C ⌘ C

29

Next, we investigate equivalence correspondences involving negation and
are certainly not too surprised to find that double negation can be re-
moved and also that the laws of de Morgan are valid in the DL setting:

¬¬C ⌘ C
¬(C uD) ⌘ ¬D t ¬C
¬(C tD) ⌘ ¬D u ¬C

Beyond but similar to the de Morgan laws, negation can be shifted past
quantifiers or be “absorbed” by number restrictions and we obtain:

¬9r.C ⌘ 8r.¬C
¬8r.C ⌘ 9r.¬C

¬6nr.C ⌘ >(n + 1)r.C
¬>(n + 1)r.C ⌘ 6nr.C

The above laws provide a lot of leeway to move negation around. In
particular, they ensure that for every concept there exists a concept in
negation normal form. A concept is said to be in negation normal form
(short: NNF), if the only negation symbols in it occur in front of concept
names, nominal concepts or self concepts. Given a concept C, we deter-
mine the concept nnf (C) which is in negation normal form and satisfies
C ⌘ nnf (C) by applying the recursive function nnf :

nnf (C) := C if C2{A,¬A, {a1,..., an},¬{a1,..., an},9r.Self,¬9r.Self,>,?}
nnf (¬¬C) := nnf (C)

nnf (¬>) := ? nnf (¬?) := >
nnf (C uD) := nnf (C) u nnf (D) nnf (¬(C uD)) := nnf (¬C) t nnf (¬D)
nnf (C tD) := nnf (C) t nnf (D) nnf (¬(C tD)) := nnf (¬C) u nnf (¬D)
nnf (8r.C) := 8r.nnf (C) nnf (¬8r.C) := 9r.nnf (¬C)
nnf (9r.C) := 9r.nnf (C) nnf (¬9r.C) := 8r.nnf (¬C)
nnf (6n r.C) := 6n r.nnf (C) nnf (¬6n r.C) := >(n + 1) r.nnf (C)
nnf (>n r.C) := >n r.nnf (C) nnf (¬>n r.C) := 6(n� 1) r.nnf (C)

The following equivalences show that >0 cardinality constraints are vac-
uously true and that existential and universal quantification can be seen
as a special case of number restrictions.

>0r.C ⌘ >
>1r.C ⌘ 9r.C
60r.C ⌘ 8r.¬C

30

Exercise 9. Argue that for every ALCQ concept C, there exists a concept C
0 with

C ⌘ C
0 containing (next to concept and role names) only the connectives ¬,t, and

>n. Provide a function that computes C
0.

We finish our enumeration of concept equivalences with some correspon-
dences showing, next to some interactions of quantifiers with > and ?,
that quantifiers may distribute over corresponding connectives, that nom-
inal concepts can be “split” into unions of singleton nominal concepts, and
that in self concepts, inverses don’t make a di↵erence.

9r.? ⌘ ?
8r.> ⌘ >

9r.(C tD) ⌘ 9r.C t 9r.D
8r.(C uD) ⌘ 8r.C u 8r.D
{a1, . . . , an} ⌘ {a1} t . . . t {an}

9r�.Self ⌘ 9r.Self

Exercise 10. Give formal proofs for all concept equivalences established in this
section.

Exercise 11. Show that the following equivalences are not valid:

(a) 9r.(C uD) ⌘ 9r.C u 9r.D,
(b) C u (D t E) ⌘ (C uD) t E,
(c) 9r.{a} u 9r.{b} ⌘ >2.{a, b},
(d) 9r.> u 9s.> ⌘ 9r.9r�.9s.>.

5.2 Knowledge Base Equivalences

Another notion of semantical alikeness is axiom or knowledge base equiv-
alence. Two knowledge bases KB1 and KB2 are called equivalent (which
we will write KB1 () KB2), if their model sets coincide, i.e. if an in-
terpretation I is a model of KB1 exactly if it is a model of KB2. As a
special case, we obtain axiom equivalence: ↵1 and ↵2 are equivalent (writ-
ten ↵1 () ↵2) if the two singleton knowledge bases {↵1} and {↵2} are
equivalent.
In the following, we will review some of the most important knowledge
base equivalences which are e.g. used to define knowledge base normal
forms. The first two equivalences show that unions on the left hand side
as well as intersections on the right hand side of a GCI can be “taken
apart” into several axioms. These correspondences are also well known in

31

the logic programming field where they are usually referred to as Lloyd-
Topor transformations [Lloyd and Topor, 1984].

{A tB v C}() {A v C, B v C}
{A v B u C}() {A v B, A v C}

An axiom equivalence also often used for normalization purposes is the
following:

C v D ()> v ¬C tD

This allows to transform arbitrary GCIs into the statement that a certain
concept (in our case ¬C t D) is “universal”, i.e., that its extension is
the whole domain. Moreover, this transformation together with a reverse
Lloyd-Topor modification allows to transform an entire TBox into one
single universal concept statement.

Example 27. Considering the TBox of the knowledge base from Example 12, we
can first perform the following transformations:

– Healthy v ¬Dead becomes > v ¬Healthy t ¬Dead
– Cat v Dead t Alive becomes > v ¬Cat t Dead t Alive
– HappyCatOwner v 9owns.Cat u 8caresFor.Healthy becomes
> v ¬HappyCatOwner t (9owns.Cat u 8caresFor.Healthy)

Finally, due to the coinciding left hand side of the created GCIs, we can put them
together to obtain

> v
�
¬Healthy t ¬Dead

�
u

�
¬Cat t Dead t Alive

�

u
�
¬HappyCatOwner t (9owns.Cat u 8caresFor.Healthy)

�

As already mentioned before, ABox statements can be translated into
equivalent TBox statements in any DL that allows for nominals, according
to the following equivalences:

C(a)() {a} v C
r(a, b)() {a} v 9r.{b}

¬r(a, b)() {a} v ¬9r.{b}
a ⇡ b() {a} v {b}
a 6⇡ b() {a} v ¬{b}

32

Exercise 12. It might come as a surprise that the GCI {a} v {b} is su�cient
to express a ⇡ b. Argue why the converse inclusion {b} v {a} is redundant given
{a} v {b}.

In turn this allows to transfer any knowledge base consisting only of an
ABox and a TBox into a singular universal concept statement.

Exercise 13. Consider whether there is a way to also translate RBox axioms into
GCIs by a similar technique.

Example 28. The said equivalences can also be applied reversely and thus used
to remove axioms containing nominal concepts from TBoxes. This may be worth-
while doing as nominals in TBoxes normally lead to worse runtimes of reasoning
algorithms. Give examples of GCIs containing nominals where this removal is not
possible.

The following two equivalences may take a moment to verify intuitively.
The essential idea here is to transfer the “standpoint” from the source to
the target of a role. These correspondences can be used to remove some
inverses from a knowledge base.

9r�.C v D () C v 8r.D
C v 8r�.D () 9r.C v D

Example 29. Give a formal proof for the two preceding axiom equivalences.

Exercise 14. Consider whether the inverse can be removed in axioms of the shape
C v 9r�.D.

Inverses also give rise to an equivalence between role chain axioms. Intu-
itively, all roles on both sides of the statement have to be inverted and
(which is not really a big surprise) additionally the order of the roles in
the chain has to be reverted.

r1 � . . . � rn v r () Inv(rn) � . . . � Inv(r1) v Inv(r)

Exercise 15. In the light of this section, revisit Exercise 7 and discuss how the
knowledge bases there could be equivalently rewritten to fit an even “smaller” DL.

33

5.3 Emulation

In the previous sections, we considered very strong notions of semantic
alikeness based on the equality of extensions or model sets, respectively.
These notions are symmetric (i.e. they hold both ways) and presume that
the signatures used are the same. However, there are certain modeling
tasks and certain normalization requirements that can be accomplished
only by virtue of additional vocabulary (i.e. auxiliary individual, concept
and role names; often those signature elements are called fresh in order
to indicate that they must not have been used in the knowledge base
before).

Example 30. As an easy example, consider the SROIQ axiom > v 9u.C, which
specifies that the concept C is non-empty, i.e. in every model I, there must be
some individual � 2 �

I for which � 2 C
I holds. While we cannot express this

equivalently in any DL not featuring the universal role, it is rather easy to do so in
an emulating way: we introduce a new individual name c which is meant to denote
� and specify that it denotes an instance of C by the ABox statement C(c). Note
that this example also represents a simple form of Skolemisation (which is not the
case for all examples of emulation).

This kind of semantic similarity that allows for introducing additional
vocabulary is referred to as (semantic) emulation. Formally, a knowledge
base KB0 semantically emulates a knowledge base KB if the two following
conditions hold:

– Every model of KB0 is a model of KB, formally: given an interpretation
I, we have that I |= KB0 implies I |= KB.

– For every model I of KB there is a model I 0 of KB0 that has the same
domain as I, and coincides with I on the vocabulary used in KB. In
other words ⌅I0 = ⌅I for every ⌅ 2 NI(KB) [NC(KB) [NR(KB).

Remark 31. Note that knowledge base equivalence is a special case of emula-
tion. In particular, every knowledge base emulates itself. Moreover, emulation is
transitive: if KB00 emulates KB0 and KB0 emulates KB, then KB00 emulates KB.

Another common wording for expressing that KB0 emulates KB is saying
that KB0 is conservative over KB. The semantic correspondence between
two knowledge bases KB0 and KB where the former emulates the latter
is still quite tight: KB0 is satisfiable exactly if KB is, the two knowledge
bases coincide in terms of entailment for every axiom ↵ which does not
use any name from the auxiliary vocabulary used in KB0, i.e. in this
case, we have KB |= ↵ exactly if KB0 |= ↵. In fact, we even obtain that

34

KB [KB1 |= KB2 exactly if KB0 [KB1 |= KB2 for any knowledge bases
KB1,KB2 that do not contain any of KB0s auxiliary vocabulary. Thus,
KB0 can do the same job as KB in many respects while the possible usage
of auxiliary signature elements provides quite some freedom in terms of
normalization possibilities.

Example 32. Remember that we call an ABox of a knowledge base extensionally
reduced if the only concepts and roles occurring therein are concept names and roles
names, respectively. While it is easy to convert an ABox into one not containing
statements of the form r�(a, b) (as they can be equivalently expressed by r(b, a)),
concept assertions of the form C(a) where C is not a concept name cannot be
removed by equivalent transformations in general. However, by making use of an
additional, newly introduced concept name AC , we can rewrite C(a) into the two
axioms AC(a) and AC v C which together do the same job as the original axiom.
Thereby, the complex concept is shifted from the ABox into the TBox, whence an
exhaustive application of this step to all concept assertions results in a knowledge
base KB0 which is extensionally reduced and emulates KB.

Exercise 16. Prove that {AC(a), AC v C} indeed emulates {C(a)}.

One normalization being of particular importance for many reasoning
algorithms is known under the name structural reduction. Essentially,
structural reduction aims at reducing the complex structure of axioms by
means of introducing concept names for substructures and substituting
them. This allows us to omit nestings of role restrictions and boolean
operators. Technically, the idea works as follows: let C[D] be a complex
concept containing D as a subexpression. Then, we can introduce a fresh
concept name AD and force it to extensionally coincide with D by adding
the two axioms AD v D and D v AD to the knowledge base. This enables
us to exchange all occurrences of D in C[D] by AD, obtaining C[AD].

Example 33. Consider the axiom

9livesAt.{northPole} v 9worksFor�.(Reindeer u 9hasNose.(Red u Shiny)).

Performing structural reduction (and using ⌘ as a shortcut for mutual v) we
obtain

A9livesAt.{northPole} v A9worksFor�.(Reindeeru9hasNose.(ReduShiny))
A9livesAt.{northPole} ⌘ 9livesAt.A{northPole}

A{northPole} ⌘ {northPole}
A9worksFor�.(Reindeeru9hasNose.(ReduShiny)) ⌘ 9worksFor�.AReindeeru9hasNose.(ReduShiny)

AReindeeru9hasNose.(ReduShiny) ⌘ Reindeer u A9hasNose.(ReduShiny)
A9hasNose.(ReduShiny) ⌘ 9hasNose.AReduShiny

AReduShiny ⌘ Red u Shiny

35

Remark 34. There are other, more elaborate and space-saving ways to perform
structural reduction. In fact normally only one of the two axioms AD v D or
D v AD is necessary to achieve emulation. Which one depends on the position of
D inside an axiom related to scopes of negation and other junctors. This position
information is captured by the notion of polarity of a subexpression.

Exercise 17. Using the technique of structural reduction and other semantic
alikeness correspondences introduced above, argue that any knowledge base KB can
be emulated by a knowledge base KB0 the TBox of which contains only GCIs of the
form l

C2C

C v
G

D2D

D

where C [D contains only concepts of the forms {a}, A, 9r.Self, 6nr.A, or >nr.A
with a 2 NI , A 2 NC and r 2 R (note that no negation is allowed, whatsoever).

Example 35. Given a concept expression of the form A v >nr.B, the cardinality
constraint can be removed as follows: We introduce fresh role names r1, . . . rn which
we specify as subroles of r (by the axioms ri v r for all 1 i n) and as pairwise
disjoint (i.e. we add Dis(ri, rj) for all 1 i < j n). With that background
axiomatization, the above statement can be rewritten into A v

d
1i<jn 9ri.B.

Emulation techniques can also be used to show that a number of state-
ments which can be directly expressed in other logics (such as FOL) but
not in DL, are nevertheless expressible by using some “makros” involving
auxiliary vocabulary. In the following, we give some examples for this.

The universal role. The universal role u connects all individuals of the
described domain. In a DL where this feature is not built in, we may want
to introduce a new role u0 and write down statements which force u0 to
behave like the universal role (by making sure that u0 must be interpreted
as �I⇥�I in every model I). Note that this can be easily done in FOL by
the statement 8x, y(u0(x, y)). However, if a DL supports transitivity and
nominal concepts, we can obtain the same by introducing a new nominal
aaux and specify the axioms > v 9u0.{aaux} and > v 9u0�.{aaux} and
u0 � u0 v u0. The only downside to this is that u0 is then necessarily
non-simple whence it cannot be used in all places where u could.

Concept products. Sometimes, there are situations where one wants
to express that any instance of a concept C is connected with any in-
stance of a concept D via a role r. In fact, concept product statements
of the form C ⇥D v r which express exactly that have been introduced
into description logics rather early but never found their way into the
mainstream.

36

Example 36. As an example, the fact that alkaline solutions neutralize acid
solutions could expressed by the concept product axiom AlkalineSolution ⇥
AcidSolution v neutralises.

Again, it is rather easy to find that the FOL statement 8x, y(C(x) ^
D(y) ! r(x, y)) realizes this (where we for the sake of simplicity assume
that C, D are concept names and r is a role name). However, SROIQ
provides enough modeling capabilities to emulate this situation as well
via the GCIs C v 9raux.Self and D v 9r0aux.Self as well as the complex
role inclusion raux � u � r0aux v r. Concept products and their impact on
reasoning complexity have e.g. been considered by Rudolph et al. [2008a].

Qualified role inclusion. Likewise, the specialization of roles due to
concept memberships of the two involved individuals seems to surpass
the modeling capabilities of the DLs treated here. The FOL statement
8x, y(C(x) ^ r(x, y) ^ D(y) ! s(x, y))(expressing that any C-instance
and D-instance that are interconnected by r are also interconnected by
s) can be emulated by a DL axiomatization in a similar way as discussed
above: Introduce the GCIs C v 9raux.Self and D v 9r0aux.Self as well as
the complex role inclusion raux � r � r0aux v s.

Exercise 18. Use this technique to express the proposition “any person of age
having signed a contract which is legal is bound to that contract.” Use the concept
names OfAge, Contract, Legal and the role names hasSigned and boundTo.

Qualified role inclusions and concept products constitute special cases
of the more general framework of description logic rules as described by
Krötzsch et al. [2008].

Boolean Combination of Axioms. From the point of view of FOL, it
seems quite straightforward that any statement can be negated or any two
statements can be connected by disjunction and conjunction, obtaining
a new statement inside the logic. In other words, FOL is Boolean-closed
on the sentence level. In DLs, the situation is quite di↵erent: there is no
direct way to, for instance, say that one of the two GCIs A v B and
C v D must hold. This is, roughly speaking, due to the fact that DL
axioms can be understood as “element-wise” propositions (the verbaliza-
tion of which starts “for each element of the domain holds...”), whereas
the above statement gives an alternative choice concerning all individuals
at once. Fortunately, SROIQ provides a way to handle this by virtue of
the universal role. We first recap that the above axioms can be rewritten
into > v ¬A tB and > v ¬C tD respectively. Then we axiomatize the

37

following statement: “every domain element is an instance of A t B or
every domain element is an instance of C t D.” To this end we exploit
the fact that every individual is connected to every individual via the
universal role, whence we can formally express the above wording by the
axiom > v 8u.(¬A tB) t 8u.(¬C tD).

Exercise 19. In fact, the encoding introduced above doesn’t need any auxiliary vo-
cabulary. However, arbitrary Boolean combinations of axioms can also be emulated
in SHOIQ. In that case, the vocabulary must be extended. Explain how this can
be done. Hint: try using a “hub nominal.”

Exercise 20. Find a way to emulate C(a) _D(b) in SHIQ.

Exercise 21. Consider whether it is possible to emulate ABox statements of the
shape ¬r(a, b), a ⇡ b, and a 6⇡ b with an ALCHIQ knowledge base by using only
ABox statements of the form C(a) and r(a, b).

6 Modeling with DLs
While frowning on plurality,
The pope likes cardinality:
It can enforce infinity,
And hence endorse divinity.
But, theologically speaking,
The papal theory needs tweaking
For it demands divine assistance
to prove “the three are one”-consistence.

In this section, we will discuss the added value brought about by certain
DL modeling features. We will also discuss specific types of statements for
which some formalisms provide dedicated modeling primitives, although
they are just “syntactic sugar,” that is they can be expressed by virtue
of the modeling features already introduced. Moreover, we will provide
some insight about model-theoretic consequences that arise from using or
not using certain constructs.

Remark 37. Thereby, one can see that the expressive power of a logic can be char-
acterized by its capability to “distinguish” interpretations. That is, a “stronger”
logic might be able to distinguish two interpretations I1 and I2 meaning that there
is a knowledge base KB such that I1 |= KB but I2 6|= KB (or vice versa), whereas a
“weaker” logic may not have this capability. In many cases, this indistinguishabil-
ity can be cast into statements of the following type: given any knowledge base KB
in a certain DL and a (set of) model(s) of KB then performing a certain operation
or manipulation on that model(s) will inevitably result in an interpretation which
is again a model of KB. We then say the set of models of KB is closed under the
considered operation.

38

6.1 A lot can be done in ALC

Already ALC features many modeling capabilities usually found in knowl-
edge representation languages. Beyond the ones explicitly introduced,
quite some more correspondences can be expressed indirectly. We will
tackle the most important ones.

Concept Disjointness. Two concepts C and D are disjoint with respect
to an interpretation I, if their extensions do not overlap, i.e. CI\DI = ;.
It is straightforward that this semantic condition can be cast into the GCI
C uD v ?. Equivalently, this can be expressed by C v ¬D or D v ¬C.
Disjointness information is often neglected when doing logical modeling.
It can, however, be very useful to derive negative information, e.g., the
guarantee that some individual is not an instance of a concept.

Domain and Range of Roles. Given a role r, we may want to make
statements about the source and target individuals for the respective
relation. We say that the role r has domain C in an interpretation I if
any source individual of the relation associated with r is an instance of
C, in other words, for every h�, �0i 2 rI , we have � 2 CI . Likewise, we
say that r has target D if for every h�, �0i 2 rI , also �0 2 DI is satisfied.
The standard DLs covered here do not provide modeling primitives for
specifying domain or range of a role, but they can be easily expressed
with the means already present in ALC. The above domain statement
is equivalent to the GCI 9r.> v C whereas the range statement can be
written as > v 8r.D.

The Empty Role. It might seem a bit peculiar that, while SROIQ
supports both the universal and the empty concept (> and ?, respec-
tively), it features only the universal role u whereas the empty role is
not part of the definition. This is, however, not a severe omission as the
empty role can be easily axiomatized: for a new role name emptyRole we
can use the GCI > v 8emptyRole.? to force the extension of emptyRole
to be empty. An alternative axiom (beyond ALC) with the same e↵ect is
Dis(u, emptyRole).

Exercise 22. Come up with an ALC GCI that expresses the following statement:
“If an academic supervises a project, then he is a project leader and the project is
a research project.” Use the role name supervises as well as the concept names
Academic, Project, ProjectLeader, and ResearchProject.

39

6.2 Looking Back: Inverse Roles

Inverses allow for traversing roles in reverse direction. While DLs without
inverses only allow for describing domain individuals by means of their
“outgoing” roles, by means of inverses, “incoming” roles can be taken into
account as well.

Example 38. Consider the interpretation I from Example 16. It is rather easy
to see that the domain individuals 3 and 5 (as well as any other prime number)
are not distinguishable by ALC concepts (in fact, not even by SROQ concepts),
that is, there is no concept C having 3 as an instance but not 5, or vice versa. On
the other hand, the ALCI concept 9succ�.9succ�.9succ�.¬9succ�.> does the
job.

Moreover, some rather natural properties of relations can be expressed
by means of inverses. A role r is called symmetric if for any h�, �0i 2 rI

also h�0, �i 2 rI holds, that is, relatedness via r always holds both ways.
On the other hand it is called asymmetric if for all h�, �0i 2 rI satisfy
h�0, �i 62 rI holds, this means that r-relatedness never holds both ways.
Sometimes, symmetry or asymmetry of a role r is included in a DL as
a separate axiom type, denoted by Sym(r) or Asy(r), respectively. The
former can be easily expressed by stating that r has its own inverse as a
subrole: r� v r. The latter can be characterized by stating that r and its
inverse are disjoint: Dis(r, r�).

6.3 Model Manipulation Part I: Filtration

Now we will turn our attention to our first model transformation. Given
a set C of concepts and an interpretation I, we can obtain the filtration
of I with respect to C as follows: First, we define an equivalence relation
' on the domain elements of I by letting � ' �0 for anonymous �, �0 2 �I

whenever � and �0 coincide in terms of concept memberships for concepts
from C, that is, for every C 2 C we have � 2 CI exactly if � 2 CI . Then,
for some � 2 �I we let [�]' = {�0 | � ' �0} and �I

/' = {[�]' | � 2 �}.
Verbally, the set �I

/' consists of “bags” of domain elements from I where
all elements in one bag coincide on the concepts from C they satisfy. The
filtration of I is the interpretation J with

– �J = �I
/'

– for each a 2 NI , set aJ = [aI]';
– for each concept name A 2 NC , set AJ = {[�]' | � 2 AI};
– for each role name r 2 NR, set rJ = {h[�]', [�]'i | h�, �0i 2 rI};

40

Intuitively, this means, that the filtration is obtained by collapsing domain
elements which are not distinguishable by virtue of concepts from C (nor
by individual names) into one.

Example 39. Let I be the interpretation from Example 14 and let C contain all
ALC concepts. Then the according filtration can be sketched as follows.

Planet

{⇡}

o

⇠⇠

morning star
evening star home

Planet

{&}

o

⌦⌦

{\}

o

%%

{$}

o
dd

moon

Star

{�}
sun

s

ee
s

XX

s

JJ

s

??

s
00

Planet

{',⇢,X,Y,Z,[}
o

qq

If, for a given SROI knowledge base KB, we let C be all concepts occur-
ring in KB (including the subexpressions of concepts) then the filtration
of a model of KB will again be a model of KB. On the other hand, since in
this case, C is finite, there can be only finitely many “bags” in �I

/' which
means that the filtration will even be a finite model of KB. This allows to
conclude that every satisfiable SROI knowledge base has a finite model.

Remark 40. In general, logics for which the existence of an arbitrary model im-
plies the existence of a model where �

I is a finite set (usually briefly called finite
model) are said to have the finite model property. This is a rather convenient
property, since one may disregard infinite representations when looking for models
of a knowledge base. Moreover, for any logic that has the finite model property
and that can be embedded into FOL, the problem of knowledge base satisfiability
is decidable.

Concluding, we can state that filtrations are quite stable in terms of mod-
elhood preservation, however they fail as soon as cardinality constraints
come into play.

Exercise 23. Consider Example 39 and find an ALCQ axiom which is not satis-
fied in the interpretation given there although it is satisfied in the original inter-
pretation from Example 14.

41

6.4 Up to Infinity: Cardinality Constraints

By means of cardinality constraints, precise statements about the number
of individuals related to a certain individual via a role can be made. This
kind of modeling features is of obvious practical value and wide-spread
in other knowledge specification formalisms such as entity-relationship
modeling or UML. Cardinality constraints also naturally capture certain
role characteristics.
For instance, role functionality can be seen and treated as a special case
of cardinality constraints. In words, a role is functional, if every domain
individual is connected to at most one domain individual via the relation
associated to that role. Formally, a role r is functional, if for every domain
individual � 2 �I there is at most one individual �0 2 �I satisfying
h�, �0i 2 rI . This condition can be enforced by the axiom > v 61.>.
Sometimes, in DLs which do not support number restrictions in general,
the according axiom is noted as Fun(r). Typical examples for functional
roles are hasFather, marriedWith, or locatedInCountry.

Remark 41. Note that by definition, a role can be functional and still not start
from every domain individual, as in the case of marriedWith. Thus the term “func-
tional” may be misleading as it may cause the erroneous impression that the role
extension is a (total) function. Rather, functional roles semantically correspond to
partial functions.

In fact, in the presence of cardinality constraints allows to enforce that a
knowledge base has only models the domain of which is infinite. Consider
the following knowledge base:

(8succ�.>)(zero) > v 9succ.> > v 61.succ�.>

It is not to di�cult to find a model for this knowledge base which has
an infinite domain: in fact the interpretation described in Example 16 is
such a model. On the other hand the knowledge base cannot have a model
with finite domain.

Exercise 24. Prove this. Hint: assume a finite number of domain elements and
count sources and targets for succ.

Note that we have just shown that any extension of ALCIF does not
have the finite model property.

42

6.5 Model Manipulation Part II: Unraveling

However, another nice property still holds in the presence of number
restrictions. Roughly speaking, this property states that we can take an
arbitrary model and “unfold” or “unroll” it such that all the parts of
the model not containing named individuals are tree-like (i.e., cycle-free).
More formally, the unraveling of an interpretation I is an interpretation
that is obtained from I as follows: First, we define the set S ✓ (�I)⇤ of
paths to be the smallest set of sequences of domain elements such that

– for every a 2 NI , aI is a path;
– �1 · · · �n · �n+1 is a path, if

• �2 6= aI for all a 2 NI ,
• �1 · · · �n is a path,
• �i+1 6= �i�1 for all i = 2, . . . , n,
• h�n, �n+1i 2 rI for some r 2 R.

For each w = �1 · · · �n 2 S, set last(w) = �n. Now, we define the unraveling
of I as the interpretation J = h�J , ·J i with �J = S and, for each
sequence w 2 �J , we define the interpretation of concept and role names
as follows:

(a) for each a 2 NI , set aJ = aI ;
(b) for each concept name A 2 NC , set w 2 AJ i↵ last(w) 2 AI ;
(c) for each role name r 2 NR, set hw, w0i 2 rJ i↵

– w0 = w� for some � 2 �I and hlast(w), �i 2 rI or
– w = w0� for some � 2 �I and h�, last(w0)i 2 rI or
– w = aI , w0 = bI for some a, b 2 NI and haI , bIi 2 rI .

With this notion of unraveling we find that for any ALCHIQ knowledge
base KB, an interpretation I is a model exactly if its unraveling is. This
correspondence has some practical consequences: First it guarantees that
ALCHIQ has the forest model property. That means that every satisfi-
able ALCHIQ knowledge base KB has a model with a particular shape:
there is a “root tangle” of named elements from which trees of anony-
mous elements grow. This property is for instance of particular interest
to prove the completeness of tableau algorithms.

43

Example 42. To demonstrate what happens during the unraveling of an inter-
pretation, consider this small example interpretation (where mbt is intended to
mean “more beats than”):

doubleQuaver ˇ “ ˇ “==>
mbt

✏✏

mbt

�� > Silent

crotchet ˇ “ > mbt

AA

In order to unravel this interpretation, intuitively, we first pick all named
individuals (i.e., ˇ “ ˇ “== and ˇ “) and keep them as well as their mutual relationships.
Then, in the original interpretation, we walk along the (incoming and outgoing)
role links to anonymous elements to find the named individuals’ role neighbors,
these neighbors are (as well as the corresponding role links) reproduced in the
unraveling. Even if the neighbors are the same, we introduce separate copies in
the unraveling, using the “origin element” as a prefix to distinguish them. In our
example, we introduce ˇ “ ˇ “==> as the mbt-neighbor of ˇ “ ˇ “== (caused by > in the original
interpretation) and ˇ “ > as the mbt-neighbor of ˇ “ (caused by the same >). We then
proceed to neighbors of neighbors and so forth. Thereby, we exclude the elements
that we “just came from” in the previous step. We may, however, traverse elements
of the original interpretation several times, we will however disregard their names
and create anonymous copies of them in the unraveling. In our case, the re-
sult of this procedure is an infinite interpretation which is partially depicted below.

Silent Silent

doubleQuaver ˇ “ ˇ “==>
mbt

✏✏

mbt
// ˇ “ ˇ “==> ˇ “ ˇ “==> ˇ “mbt

oo ˇ “ ˇ “==> ˇ “ ˇ “ ˇ “==mbt
oo

mbt
// ˇ “ ˇ “==> ˇ “ ˇ “ ˇ “==> ˇ “ ˇ “==> ˇ “ ˇ “ ˇ “==> ˇ “mbt

oo ˇ “ ˇ “==> ˇ “ ˇ “ ˇ “==> ˇ “ ˇ “ ˇ “==mbt
oo · · ·

crotchet ˇ “ > mbt // ˇ “ > ˇ “ > ˇ “ ˇ “==mbtoo mbt // ˇ “ > ˇ “ ˇ “==̌“ mbt // ˇ “ > ˇ “ ˇ “==̌“ > ˇ “ > ˇ “ ˇ “==̌“ > ˇ “ ˇ “== mbt //mbtoo ˇ “ > ˇ “ ˇ “==̌“ > ˇ “ ˇ “==̌“ · · ·
Silent Silent

Exercise 25. Sketch or formally describe the unravelings of the interpretations
from Example 14 and Example 16. For the latter and for Example 42, give one
axiom from the DL S and one from the DL ALCOI, either of which hold in the
interpretation but not the according unraveling.

Remark 43. In fact, variants of the forest model property also hold for some
DLs containing role chain axioms and/or nominal concepts, requiring also to mod-
ify the employed unraveling technique. In the presence of role chain axioms, one
usually defines a “skeleton” of the model via unraveling into a forest structure
and thereafter adds further “role links” the presence of which is enforced by the
RIAs. In the presence of nominals, one has to allow so-called “backlinks” i.e. tree
individuals are allowed to have role links back into the root tangle (but not into
other trees).

44

6.6 Far far away: Transitivity

Transitivity of a role r is expressible by the complex role inclusion r�r v r.
In DLs that do not feature any complex role inclusions but transitiv-
ity this axiom is often alternatively written as Tra(r). Role transitivity
statements come about quite naturally for a variety of relations that are
to be modeled. Typical examples for transitive roles are ancestorOf,
superiorOf, partOf, greaterThan, etc. Role transitivity declarations al-
low for a more succinct modeling and better querying capabilities via
entailment checks.

Example 44. Envisioning a company and a knowledge base containing employee
data, it would of course be possible to explicitly add all superior relations as ABox
role assertions superiorOf(a, b). On the other hand, the same can be achieved
(in terms of inferrable superior information) by only adding role assertions for
the cases of where a denotes a direct superior of b, if we additionally state that
superiorOf is transitive. Moreover this second version is advantageous in terms
of maintenance: whenever a new employee joins the company, only their direct
superior(s) and inferior(s) need to be explicitly specified.

However, what can be expressed in terms of transitivity in standard DLs
is limited. Thereby the limitations are inherited from FOL. What cannot
be done in the DLs treated here is to precisely talk about the transitive
closure of a given role. In other words, there is no way to axiomatize
the condition that one role r is the transitive closure of another role s
(formally, this condition can be expressed by rI = (sI)⇤). What can be
done is to say that the extension of r contains the transitive closure of
s (i.e. (sI)⇤ ✓ rI) by specifying s v r and r � r v r. Presuming this
axiomatization of an upper bound for the transitive closure, we can e.g.
check whether there is an “s-path” of arbitrary length from an individual
a to an individual b in every model of the knowledge base by checking
whether the knowledge base entails the role assertion s(a, b). Still, there
is no way to check for the necessary absence of such a path in all models
of the knowledge base.

6.7 Model Manipulation Part III: Disjoint Union

We now consider a transformation which, roughly speaking, takes two
interpretations and puts them side by side. More formally, given two
interpretations I = (�I , ·I) and J = (�J , ·J), assuming that �I \
�J = ;, we define the disjoint union of I with J denoted by I+J =
(�I+J , ·I+J) as follows: �I+J = �I [�J , aI+J = aI , AI+J = AI [AJ

and rI+J = rI [rJ . Note that, unlike most definitions of disjoint unions,

45

this definition is asymmetric since, for the mapping of the individuals,
preference is given to I. One can show that whenever I and J are models
of a SHIQ knowledge base KB then so is their disjoint union I+J .

Exercise 26. Prove the claim above. Hint: An intermediate lemma showing
C
I+J = C

I [C
J will come handy for that. This will require a structural induction

over the concepts.

Example 45. Given the interpretation I from Example 14, let I0 denote I
where every domain element � has been renamed into �

0. Then the interpretation
I + I0 can be displayed as follows:

Planet⇡

o

⌫⌫

morning star
evening star home

Planet

&

o

↵↵

Planet

'

o

&&

$

o
dd

moon

\
o

11
Star

�
sun

s

�� s

↵↵

s

⇠⇠

s

&&

s

ee
s

WW

s

KK

s

??

s
qq

s
11
Planet

⇢
o

qq

[
Planet

o

??

X
Planet

o

ff

Z
Planet

o

KK

Y
Planet

o

XX

Planet

⇡’

o

⌫⌫

Planet

&’

o

↵↵

Planet

'’

o

&&

$’

o
dd

\’
o

11
Star

�’

s

�� s

↵↵

s

⇠⇠

s

%%

s

ee
s

WW

s

KK

s

??

s
qq

s
11
Planet

⇢’
o

qq

[’
Planet

o

??

X’
Planet

o

ff

Z’
Planet

o

KK

Y’
Planet

o

XX

In fact, the above result can be generalized to disjoint unions of infinitely
many models. This gives rise to a property which could be called the
infinite model property : whenever there is an arbitrary model for a SHIQ
knowledge base KB, then there is also an infinite one.

Remark 46. More generally, these properties even hold for all SRIQ knowledge
bases not containing the universal role.

Exercise 27. Consider Example 45 and find an ALCO axiom which is not satis-
fied in the interpretation given there although it is satisfied in the original inter-
pretation from Example 14.

Wrapping up, what we have learned about model manipulations, their
range of applicability, and the model properties they give rise to can be
summarized in the following table.

46

manipulation preserves models for associated property
filtration SROI finite model property
unraveling ALCHIQ forest model property
disjoint union SRIQ\u infinite model property

6.8 Know your Bounds: Nominal Concept and Universal Role

The modeling power brought about by nominal concepts and universal
roles is quite similar. For instance, having the universal role at disposal,
we can remove all nominal concepts from a SROIQ knowledge base as
follows: first, rewrite every nominal concept {a1, . . . , an} into {a1}t . . .t
{an} according to the equivalence given in Section 5. Next, introduce
fresh concept names A{a} for all singleton nominal concepts thus obtained
and substitute every occurrence of any {a} by the according A{a}. Finally,
add the concept assertion A(a) as well as the GCI > v 61u.A{a} for any
introduced A{a}.
On the other hand, the universal role can be emulated once nominal con-
cepts are allowed: we introduce a fresh individual name center and a
new role name toCenter and force every individual to have a toCenter
relation to the individual denoted by center by means of the axiom
> v 9toCenter.{center}. Now we can get from every domain individ-
ual to every other by a two-hop travel along toCenter and toCenter�.
Thus we can replace every ⌅u.C with ⌅ 2 {8,9,6n,>n} by the concept
expression 9toCenter.⌅toCenter�.C.

Exercise 28. Find a way to remove the RBox occurrences of u as well.

A crucial feature showing the added expressivity obtained from nominal
concepts or the universal role is the capability to bound or fix the number
of individuals in the extension of a class or even in the whole domain.
Both the GCIs AtMostTwo v {one, two} and > v 62u.AtMostTwo specify
that the concept AtMostTwo has at most two instances in every model.
In order to cause the extension size to be exactly two, we would have to
add one 6⇡ two or > v >2u.AtMostTwo, respectively. Likewise, we can
enforce the whole domain to contain at most (or exactly) two individuals
by imposing these axiom with AtMostTwo substituted by >.

Remark 47. These considerations show that as soon as nominal concepts or the
universal role is involved, models of knowledge bases need not be closed under
disjoint union as it was the case for e.g. SHIQ.

47

Exercise 29. As we have seen, SROIQ allows to enforce that the domain size
(i.e. the number of its elements) is at most n for any given n 2 N. Contemplate
whether there is a knowledge base KBfin that emulates finite models, i.e., for every
knowledge base KB not using vocabulary from KBfin the models of KB [KBfin are
exactly those models of KB with finite domain, if one abstracts from the vocabulary
of KBfin.

Exercise 30. Is it possible to create a SHIQ knowledge base KB such that ev-
ery model contains one individual which is connected via a role r to infinitely
many other individuals? Can the same be achieved in ALCHOIQ? What about
ALCHIQ? For each of the cases either provide such a knowledge base or argue
why this is not possible.

6.9 Selfishness

The self concept enables to speak about “role loops”, i.e. situations where
an individual is simultaneously source and target of the same relation,
or in other words the individual is connected to itself. This allows to
define concepts based on such situations, for instance we could define
PersonCommittingSuicide ⌘ 9kills.Self or Narcissist ⌘ 9loves.Self.
Beyond that, this feature comes handy when global properties of roles are
to be enforced. A role r is said to be reflexive if its associated relation is,
i.e. if h�, �i 2 rI for all � 2 �I . Conversely, it is called irreflexive if � 6= �0

for all h�, �0i 2 rI . In some places, the definition of SROIQ includes
additional RBox axioms of the form Ref(r) or Irr(r) to specify reflexiv-
ity or irreflexivity of r, respectively. However, these role characteristics
can be equivalently expressed by the GCIs > v 9r.Self or 9r.Self v ?,
respectively.

Exercise 31. If one has a closer look into the literature, these additional axiom
types require r to be simple in the case of irreflexivity but not in the case of re-
flexivity statements. In our current translation, role simplicity would be required in
both cases. How can this restriction be circumvented by an alternative translation
of the reflexivity statement?

6.10 Open World vs. Closed World

A useful distinction often made in the context of logic-based information
systems is that between closed-world and open-world reasoning. Essen-
tially, this distinction is concerned with the question how missing in-
formation is treated. Under the closed-world assumption (CWA) facts
which cannot be deduced from a knowledge base are supposed to be false

48

whereas under the open-world assumption the truth of these facts is sim-
ply unknown. Expert or database systems often implement the CWA.
Opposed to this, as a consequence of the semantics introduced in Sec-
tion 3, DLs follow the OWA. This is also implied by the fact, that (most)
DLs are fragments of first-order logic, which also adheres to the OWA.

Example 48. Consider the following knowledge base KB containing merely ABox
statements:

Planet(home)

Planet(morning star)

Star(sun)

orbitsAround(home, sun)

orbitsAround(moon, home)

orbitsAround(morning star, sun)

evening star ⇡ morning star

While Planet(evening star) and orbitsAround(evening star, sun) are conse-
quences of KB, negated statements like ¬Star(home) or ¬orbitsAround(sun, moon)
or moon 6⇡ home are not due to the OWA. This can be explained by the fact, that
there are models for the KB where these statements do not hold (but rather their
unnegated variants). In order to enforce these negated statements they would heave
to be explicitly added to the knowledge base.

While the OWA is commonly argued to be the right perspective in the
context of the Semantic Web where completeness seems to be hard to
achieve, there are cases, where e.g. the extension of a concept or a role
is entirely known and one wants to express this information in order to
guarantee that the according additional consequences can be drawn. To
a certain extent, this can be implemented by virtue of nominal concepts.

Example 49. Revisiting Example 48, to obtain the consequence ¬Star(home) we
could alternatively state that sun is the name of the only individual belonging to
the concept Star by adding the TBox axiom Star v {sun}. This has the advantage
that also the concept membership of anonymous individuals is thereby excluded
which cannot be achieved by ABox statements. Yet, in order to get the above
consequence we still have to additionally assert sun 6⇡ home, thereby excluding the
case that home and sun refer to the same individual. In the same way, we can treat
roles. For example, the axiom {home} v 8orbitsAround.{sun} expresses that home
is orbitsAround-connected to nothing but (possibly) sun.

While nominals come handy for making “nothing but” statements, they
cannot fully simulate closed-world behavior. Therefore (local) closed-world
extensions to DLs have been investigated. Notable approaches in that di-
rection are (auto)epistemic DLs, and circumscriptive DLs.

49

7 Reasoning Tasks and

Their Reducibility

A knowledge base with statements in it
Seeks a model sound and nice
No matter, finite or infinite,
It asks a hermit for advice.
Yet, shattering is the reaction:
“Inconsistency detection,
You can’t get no satisfaction.”

It is one of the major selling points of logic-based knowledge representa-
tion in general and of DLs in particular that, once a body of knowledge
has been accumulated and transferred into a logical representation, this
knowledge can be queried and worked with in an intelligent way which
goes well beyond what can be done with traditional information systems
such as databases. In this section we will review typical tasks that can be
performed with DL knowledge bases and that require elaborate inferenc-
ing. We can see that some of those tasks can be reduced to others which
alleviates the task of creating tools performing those tasks.

7.1 Knowledge Base Satisfiability

Remember that a knowledge base KB is called satisfiable (also: consis-
tent) if it has a model, i.e., there is an interpretation I with I |= KB,
otherwise it is called unsatisfiable, inconsistent, or contradictory. Decid-
ing whether a knowledge base is consistent is important in its own right,
as knowledge base inconsistency often hints at severe modeling errors:
since knowledge bases are supposed to describe real state of a↵airs, they
should not be contradictory. Moreover, due to the principle of explosion,
an inconsistent knowledge base entails every statement which renders any
derived information useless. Additionally, as we will see in a bit, axiom
entailment checks can be reduced to detecting inconsistency of knowledge
bases.

7.2 Axiom Entailment

We remember that a knowledge base KB entails a DL axiom ↵ if every
model of KB is also a model of ↵. Axiom entailment can be seen as
the prototypical reasoning task for querying knowledge: given a body of
knowledge formally specified in a knowledge base, this knowledge is to
be “logically queried” by checking whether some statement is necessarily
true, presuming the statements of the knowledge base.
The problem of checking axiom entailment can be reduced to deciding
knowledge base satisfiability. The idea behind this reduction is proof by

50

Table 1. Definition of axiom sets A↵ such that KB |= ↵ exactly if KB[A↵ is unsatis-
fiable. Individual names c with possible subscripts are supposed to be fresh. For GCIs
(third line), the first variant is normally employed, however, we also give a variant
which is equivalent instead of just emulating.

↵ A↵

r1 � . . . � rn v r {¬r(c0, cn), r1(c0, c1), . . . , rn(cn�1, cn)}
Dis(r, r0) {r(c1, c2), r

0(c1, c2)}
C v D {(C u ¬D)(c)} or: {> v 9u(C u ¬D)}

C(a) {¬C(a)}
r(a, b) {¬r(a, b)}

¬r(a, b) {r(a, b)}
a ⇡ b {a 6⇡ b}
a 6⇡ b {a ⇡ b}

contradiction: we show that something holds by assuming the opposite
and deriving a contradiction from that assumption. Suppose ↵ and � are
axioms claiming the opposite of each other. Then every interpretation
(hence in particular every model of the knowledge baseKB) satisfies either
↵ or �, but not both. Now, if ↵ is a consequence of KB, we know that every
model of KB is a model of ↵. This means that no model of KB can be a
model of �. In other words, the extended knowledge base KB0 = KB[{�}
can have no model which just means that KB0 is unsatisfiable. Thus the
axiom entailment problem can be easily recast into a knowledge base
unsatisfiability problem, provided we find such an “opposite” axiom for
the given ↵. In SROIQ this is obvious for some cases. In some other
cases, we have to revert to finding an axiom or a set of axioms emulating
the opposite of ↵, which works just as well. We give the correspondences
for all types of SROIQ axioms in Table 1.

7.3 Concept Satisfiability

Given a knowledge base KB, a concept C 2 C is called satisfiable with
respect to KB, if it may contain individuals, i.e. there is a model I of KB
that maps C to a nonempty set, formally: CI 6= ;. Obviously, there are
concepts which are unsatisfiable irrespective of the underlying knowledge
base, like A u ¬A or simply ?. If, however some atomic concept A 2 NI is
unsatisfiable, this may as well indicate modeling errors. A knowledge base
where all atomic concepts are satisfiable is usually called coherent. Note
that a knowledge base can be incoherent but satisfiable. Like knowledge

51

base satisfiability and axiom entailment, concept satisfiability is a decision
problem, i.e. we get yes or no as an answer.
The problem of deciding concept satisfiability can be reduced to axiom
entailment. An unsatisfiable concept C is necessarily empty in any model
I, i.e., CI = ;. This can be rewritten into CI ✓ ; (since the other
direction is trivial), and further (using the fact that ?I = ;) into CI ✓
?I . However this means I |= C v ? for every model I of KB, therefore
KB |= C v ?. Hence, unsatisfiability of of a concept C with respect to
some knowledge base KB can be decided by checking whether KB entails
the GCI C v ?.

7.4 Instance Retrieval

Given a knowledge base KB and a concept C, it is a rather natural desire
to ask for C’s instances. However, there are two issues with that: First, a
knowledge base usually has many models and a specific individual may be
instance of C in one model but not in another. So, one typically asks for
individuals which are instances of C in every model. The other problem
is that from model to model, the domain �I may vary and does not need
to contain the same individual. The only way to refer to individuals in a
sensible, cross-domain way is via their names. This is why one restricts
to named individuals for the instance retrieval task. Consequently, the
task could be formulated as follows: given a knowledge base KB and a
concept C, give me all individual names a 2 NI for which aI 2 CI for
every model I of KB.

Remark 50. This definition of instance retrieval may even lead to the peculiar
case that one can infer from a knowledge base that a concept C is nonempty in
every model (which can e.g. be tested by asking whether KB |= > v 9u.C) while
the instance retrieval for C yields nothing. A simple example for this would be the
knowledge base containing only the axiom (9r.C)(a).

Given the definition of instance retrieval above, it is obvious that an
individual name a will be delivered as part of the answer of an instance
retrieval with respect to a concept C precisely if KB |= C(a). Therefore,
instance retrieval can be performed by successively checking whether the
considered knowledge base entails C(a) for every individual name a. This
takes |NI(KB)| entailment checks. Depending on what concrete reasoning
algorithm is employed, fewer calls to the reasoning procedure may be
required since it might be possible to retrieve many instances at once. This
particularly applies to reasoning methods based on logic programming
and/or database systems.

52

Sometimes, the term instance retrieval is also used for roles. In that case
we are looking for all pairs ha, bi of individual names a, b 2 NI for which
haI , bIi 2 rI for every model I of KB. This can be easily checked by
asking for the entailment KB |= r(a, b) for every combination of individual
names.

7.5 Classification

Given a knowledge base KB, the concept names occurring therein can be
put into a hierarchy according to their subsumption relationships. More
precisely, if we define a relation vKB on the set NC of concept names by
A vKB B i↵ KB |= A v B, we find that this relation is a preorder, that is,
we have A vKB A for all A 2 NC and from A vKB B and B vKB C follows
A vKB C.

Exercise 32. Prove that vKB is indeed a preorder.

Classification of a knowledge base is the task of entirely determining
vKB. This task is practically important due to several reasons: During
the knowledge base modeling process, the modeler has an overview over
the hierarchical structure of the used concept names which can be dia-
grammatically visualized in a nice, intuitive way. On the other hand, clas-
sification can serve as a preprocessing step that speeds up subsequently
performed reasoning tasks with respect to the underlying knowledge base.
Obviously, classification of a knowledge base can be performed by check-
ing the entailment KB |= A v B for any pair A, B of class names, which
amounts to |NC | · (|NC | � 1) separate entailment checks. However, ex-
ploiting the properties of preorders and concept subsumption statements
explicitly given by GCIs, the number of such checks can be drastically
reduced [Shearer and Horrocks, 2009].

7.6 Conjunctive Query Answering

Conjunctive queries (CQs) and unions of conjunctive queries (UCQs) are
well known in the database community [Chandra and Merlin, 1977] and
constitute an expressive query language with capabilities that go well
beyond standard reasoning tasks in DLs. In terms of first-order logic,
these CQs and UCQs are formulae from the positive existential fragment.
Free variables in a query (not bound by an existential quantifier) are
also called answer variables or distinguished variables, whereas existen-
tially quantified variables are called non-distinguished. As an example,

53

9y9z(childOf(x, y) ^ childOf(x, z) ^ married(y, z)) with distinguished
variable x and non-distinguished variables y and z represents a conjunc-
tive query asking for all children whose parents are married with each
other. If all variables in the query are non-distinguished, the query an-
swer is just true or false and the query is called a Boolean query. Given a
knowledge base KB and a Boolean UCQ q, the query entailment problem
is deciding whether q is true or false w.r.t. KB, i.e., we have to decide
whether each model of KB provides for a suitable assignment for the
variables in q.2 For a query with distinguished variables, the answers to
the query are those tuples of individual names (constants) for which the
knowledge base entails the query that is obtained by replacing the free
variables with the individual names in the answer tuple. The problem of
finding all answer tuples is known as query answering.
In general, conjunctive query answering or checking Boolean conjunctive
query entailment are not easily (more precisely: polynomially) reducible
to any of the other standard reasoning tasks treated above, which can be
concluded from the fact that the worst-case complexities for these prob-
lems are usually way harder than the complexities of the other tasks [Lutz,
2008]. Conversely, it is trivial to reduce the task of checking knowledge
base consistency to checking conjunctive query entailment: for instance,
KB is inconsistent exactly if for fresh concept names Aaux and Baux the
knowledge base KB [{Aaux u Baux v ?} satisfies the conjunctive query
9x(Aaux(x) ^ Baux(x)).

Exercise 33. A conjunctive query is called tree-shaped if for any two query
variables x, y there is exactly one sequence of pairwise di↵erent query variables
z0, . . . , zn and exactly one sequence r1, . . . rn of role names such that z0 = x,
zn = y, and for every 1 i n either ri(zi�1, zi) 2 q or ri(zi, zi�1) 2 q. Argue
that query answering for a tree-shaped conjunctive query with one distinguished
variable can be reduced to (concept) instance retrieval.

7.7 Other Reasoning Tasks

The reasoning tasks described above, excluding conjunctive query answer-
ing, are often referred to as standard reasoning tasks. Still, conjunctive
query answering is conceptually in line with those, since it can be formu-
lated as entailment checking. Beyond those deductive tasks which are all
concerned with determining logical consequences, there are several non-
standard reasoning tasks where the goal is somewhat di↵erent. In the
following, we will briefly go through a selection of these.
2 Note that in general, solving this task is way harder than querying a classical

database, as the considered models may be infinite in both size and number.

54

Induction. As opposed to the aforementioned deductive methods, in-
ductive approaches3 usually take an amount of factual (assertional) data
and try to generalize therefrom by generating hypotheses expressed as
terminological axioms or complex concepts. This sort of reasoning tasks
are related to data mining problems and respective approaches draw their
inspiration from machine learning and in particular inductive logic pro-
gramming (ILP, [Lehmann, 2009]). Since inductive reasoning is not truth-
preserving (i.e. hypotheses which are generated may be falsified), also in-
teractive methods with human expert involvement have been proposed
[Rudolph, 2004].

Abduction. Like induction and unlike deduction, abduction is an infer-
encing method which is not truth-preserving. Roughly speaking, abduc-
tion could be described as “premise guessing.” More precisely, given a
knowledge base KB in some DL and an axiom ↵ such that ↵ is not en-
tailed by KB, abductive reasoning is concerned with finding a knowledge
base KB0 with specific properties such that ↵ is a logical consequence
of KB [KB0. In ontology engineering, abductive reasoning services come
handy when a wanted consequence is not entailed and one wants to de-
termine what information is missing [Noia et al., 2009].

Explanation. If results of automated reasoning are to be shared with
human users, it is often not su�cient to just display the result. Often it is
also desirable to give an account on the cause why some axiom is entailed
by the knowledge base, in other words to give an explanation for it. In
most cases, only few axioms actually contribute to an entailment. Thus it
is already quite helpful to find a minimal subset of a knowledge base for
which the entailment still holds. More precisely, given a knowledge base
KB and an axiom ↵ with KB |= ↵, a justification for the entailment is a
knowledge base KB0 ✓ KB such that KB0 |= ↵ but for every KB00 ⇢ KB0
holds KB00 6|= KB. In general, a justification does not need to be unique,
there might be more than one justification for an entailment [Horridge et
al., 2008].

Module extraction. When confronted with large knowledge bases, it
might be worthwhile to identify natural partitions of them which logi-
cally interact which each other only in a restricted way, such that they
can be handled independently when it comes to query answering or rea-
soning in general. In other cases, one may be interested only in a part
3 Not to be confused with the mathematical proof technique of induction.

55

of the knowledge specified in a knowledge base which is expressible in a
certain fraction of the vocabulary. In general, the task of identifying or
computing such knowledge base parts is referred to as module extraction
[Stuckenschmidt et al., 2009].

8 Algorithmic Approaches to

DL Reasoning

Is it consequence-driven
Automatically given
What we base our system upon?
Or do, fueled by Rousseau,
we say “Guerre aux tableaux!
Et vive la resolution!”?

Various reasoning paradigms have been investigated with respect to their
applicability to DLs. Most of them originate from well-known approaches
for theorem proving in a first-order logic setting. However, in contrast
to the unavoidable downside that reasoning methods for first-order logic
cannot be sound, complete, and terminating, approaches to reasoning
in DLs aim at a sound and complete decision procedures, whence the
adopted reasoning techniques have to be adapted in order to guarantee
termination.
The majority of state-of-the art OWL reasoners, such as Pellet [Sirin et
al., 2007], FaCT++ [Tsarkov and Horrocks, 2006], or RacerPro [Haarslev
and Möller, 2001] use tableau methods with good performance results,
but even those successful systems are not applicable in all practical sce-
narios. This motivates the search for alternative reasoning approaches
that employ di↵erent methods in order to address cases where tableau al-
gorithms exhibit certain weaknesses. Successful examples in this respect
are the works based on resolution [Motik and Sattler, 2006] and hyper-
tableaux [Motik et al., 2009c] as well as consequence-based approaches
[Kazakov, 2009].
As we have seen in the previous section, many important reasoning tasks
can be reduced to checking knowledge base satisfiability, hence we will fo-
cus on this specific task. In general, reasoning methods can be subdivided
into model-theoretic methods on one hand and proof-theoretic methods
on the other.
Model-theoretic methods essentially try to construct models of a given
knowledge base in an organized way. If this succeeds, the knowledge base
has obviously been shown to be satisfiable, if it can be shown that the
construction must necessarily fail, unsatisfiability has been established.
Typical reasoning paradigms of that sort are tableau procedures and
automata-based approaches.

56

Remark 51. If models are represented explicitly (i.e., for an interpretation I =
(�I

, ·I) both �I and ·I are stored in some data structure), a näıve model con-
struction strategy can only arrive at finite models, obviously. While this may be
enough for logics that satisfy the finite model property, it is insu�cient in the
general case. However, this problem can be circumvented if one reverts to finite
model representations, which only store a finite part of the model explicitly and
provide additional (finite) information how this partial model could be determinis-
tically extended into a real model. Intuitively, this can be compared to the decimal
representation of rational numbers: while the correct value of 13

11 = 1.18181818 . . .

needs infinitely many digits to be precisely noted down, it is not hard to come up
with a finite representation, namely 1.18 which, by virtue of the additional extra
information provided by the overline, shows how the infinite “pure” representation
could be constructed (if one had infinite time and memory). Of course, when work-
ing with finite representations, it is crucial that these allow for e↵ective detection
of axiom satisfaction.

As opposed to model-theoretic reasoning methods, proof-theoretic ap-
proaches operate more on the syntactic side: starting out from a normal-
ized version of the knowledge base, deduction rules are applied to derive
further logical statements about a potential model. If, in the course of
these derivations an overt contradiction is derived, the considered knowl-
edge base has shown to be unsatisfiable. In order to guarantee a termina-
tion of the procedure also in the case of satisfiability it is crucial that in
the course of derivation, some sort of saturation will be reached in finite
time. This can e.g. be achieved by restricting the relevant propositions
(which may or may not be derived) to a finite set.
In the following, we will survey some well-known reasoning paradigms for
DLs without going into technical details.

8.1 Tableau

Tableau procedures aim at constructing a model that satisfies all axioms
of the given knowledge base. The strategy here is to maintain a set D
of elements representing domain individuals (including anonymous ones)
and acquire information about their concept memberships and role inter-
relatedness. D is initialized by all the individual names and the according
ABox facts. Normally, the partial model thus constructed does not sat-
isfy all the TBox and RBox axioms. Thus, the intermediate model is
“repaired” as required by the axioms. This may mean to establish new
concept membership or role interrelatedness information about the main-
tained elements, yet sometimes it may also be necessary to extend the set
of considered domain individuals. Now and again, it might be required to
make case distinctions and backtrack later. If we arrive at a state, where
the intermediate model satisfies all the axioms and hence does not need

57

to be repaired further, the knowledge base is satisfiable. If the interme-
diate model contains overt contradictions (such as an element marked as
instance of a concept C and its negation ¬C or an element marked as an
instance of ?), we can be sure that repairing it further by adding more
information will never lead to a proper model, hence we are in a “dead
end” need to backtrack. If every alternative branch thus followed leads
into such a “dead end”, we can be sure that no model can exist.

Example 52. Omitting a lot of technical details, we shortly explain how the
satisfiability of the knowledge base from Example 12 would be established by a
tableau algorithm. For better reference, we first recap the knowledge base.

owns v caresFor (5)

Healthy v ¬Dead (6)

Cat v Dead t Alive (7)

HappyCatOwner v 9owns.Cat u 8caresFor.Healthy (8)

HappyCatOwner(schrödinger) (9)

As explained we first initialize the set of domain elements by letting D =
{schrödinger}, moreover, due to the only ABox axiom (9) we mark schrödinger
with HappyCatOwner. Inspecting the axioms, we find that (8) is not satisfied by the
current representation. Thus, we repair it as required by (8), “inventing” a new
element, say , and adding it to D. Accordingly, we stipulate that schrödinger
is connected to by an owns relation and marking with Cat. We find that,
as a consequence of these changes, (8) is satisfied (for the moment). However, the
changes have invalidated axioms (5) and (7). We account for the former by in-
troducing a caresFor connection from schrödinger to . The latter essentially
leaves us with two options: we need to mark either by Dead or by Alive. This
means, we have to make a case distinction and investigate each option separately.

– Let us try and pick Dead. Again, examining the axioms, we find (8) violated
due to the second part of its consequence. Repairing this requires to mark

with Healthy which in turn invalidates (6). Hence we have to mark by
¬Dead. Unfortunately, we now observe that is marked both by Dead and
¬Dead, thus we have reached a “dead end” and need to backtrack.

– So, we mark by Alive. Also here, we find (8) violated and repair it by
marking with Healthy, obtaining invalidation of (6) and coping with it by
marking by ¬Dead. We have thus arrived at a state where our intermediate
model satisfies all axioms. Hence, we have obtained a proper model of KB and
conclude that the knowledge base is satisfiable.

However, note that the continued “repairing” performed in a tableau
procedure does not necessarily terminate, since performing one repair
might cause the need for another repair and so forth ad infinitum.

58

Example 53. Consider the knowledge base containing the single axiom > v
9succ.>, which forces every domain element to have a successor. Applying the
näıve repair approach from above we will need to introduce a successor for every
individual, then successors of successors etc.

Therefore, in order to be applicable as a decision procedure, these infi-
nite computations must be prevented to ensure termination. This can be
achieved by a strategy called blocking, where certain domain elements
are “blocked” (which essentially means that they are exempt from the
necessity of being repaired) by other domain individuals which “look the
same” in terms of concept memberships. For more advanced DLs, more
complicated blocking strategies are needed.
A tableau algorithm for SHOIQ is described by Horrocks and Sattler
[2007]. A refinement of the tableau technique, called hypertableau is at
the core of the OWL 2 DL reasoner HermiT [Motik et al., 2009c].

8.2 Automata

As mentioned earlier, most DLs satisfy some sort of tree-model property.
On the other hand, families of trees (in other words: tree languages) can
be represented by appropriate tree-automata. Thus, given an automaton
that characterizes the tree models of a knowledge base, the problem of
knowledge base satisfiability can be rephrased into the question whether
the tree language represented by this corresponding automaton is non-
empty. This line of research has been followed by several investigations
targeted at standard reasoning as well as conjunctive query answering.
Approaches along those lines are e.g. described by Glimm et al. [2008a]
and Calvanese et al. [2009].

Exercise 34. To get a feeling for the relatedness between automata and DL rea-
soning, try to design an ALC knowledge base KB with the property that for any
r1, r2, . . . , rn 2 NR we have that KB |= A v 9r19r2 . . . 9rn.B exactly if the word
r1r2 . . . rn matches the regular expression s⇤(rs|srr)⇤.

8.3 Consequence-Based Reasoning

As suggested by their name, consequence-based (also: consequence-driven)
reasoning approaches start from the given knowledge base and derive log-
ical consequences of it by means of applying deduction rules. A deduction
rule has the shape

name
↵1 · · · ↵n

↵

59

with ↵,↵1, . . . ,↵n being axioms of the underlying logic. To apply a de-
duction rule means to add ↵ to the set of statements known to be true if
truth is already established for ↵1, . . . ,↵n (be it due to their presence in
the knowledge base or because they have been derived by an earlier appli-
cation of a deduction rule). If, given a set D of deduction rules, an axiom
� can be generated like this from an axiom set {�1, . . . ,�k} by (possibly
manifold) applications of deduction rules, we say that � is derivable from
{�1, . . . ,�k} and write {�1, . . . ,�k} ` �.
In order to be of proper use for the reasoning, the used set D of de-
duction rules (also jointly called a deduction calculus) has to mimic the
logical entailment as defined by the formal semantics. That means that on
one hand, � must be a logical consequence of {�1, . . . ,�k} whenever � is
derivable therefrom (in short: {�1, . . . ,�k} ` � implies {�1, . . . ,�k} |= �)
– a property called soundness of the deduction calculus. On the other
hand, we require its completeness, i.e. that every logical consequence of
{�1, . . . ,�k} can also be derived from it (in short: {�1, . . . ,�k} |= � im-
plies {�1, . . . ,�k} ` �). Sometimes, completeness is constrained to specific
axiom types �, e.g. a deduction calculus is called refutationally complete,
if inconsistency of a knowledge base implies derivability of > v ?.

Example 54. The following deduction calculus is sound and refutationally com-
plete for ALC TBoxes in an appropriate normal form (for details see Simancik et
al. [2011]). Thereby A and B denote concept names, H and K are conjunctions of
negated and unnegated concept names, whereas M , N , and Ni are disjunctions of
concept names.

R+
A A uH v A

R�
A

¬A uH v N t A

¬A uH v N

Rn
u

H v N1 t A1 · · · H v Nn t An
dn

i=1 Ai v M

H v M t
Fn

i=1 Ni

R+
9

H v N t A A v 9r.B
H v N t 9r.B

R�
9

H v N t 9r.K K v N t A 9r.A v B

H v M t B t 9r.(K u ¬A)

R?
9

H v N t 9r.K K v ?
H v M

R8
H v N t 9r.K H v N t A A v 8r.B

H v M tN t 9r.(K u B)

Exercise 35. Using the above deduction calculus, show that the axiom D v G can
be derived from the knowledge base containing the axioms
A v B t C D v 8r.A 9r.B v E D v F t 9r.¬C E u F v G.

60

However, just a sound and complete deduction calculus is not su�cient for
a decision procedure (note that FOL itself has such a calculus while being
undecidable). In addition to that, one has to ensure that the “enrichment
process” of adding more and more derived consequences to the set of true
statements will terminate at some point. One way to guarantee this is to
make sure that only finitely many (syntactically) di↵erent axioms can be
derived. Consequence-driven approaches are described e.g. by Kazakov
[2009] and Simancik et al. [2011].

8.4 Resolution

Resolution is a technique prominently used in first-order logic theorem
proving. At the core of reasoning via resolution is the resolution rule
which looks as follows:

Res
A1 _ . . . _Ai _ . . . An B1 _ . . . _Bj _ . . . Bm

A1 _ . . . _Ai�1 _Ai+1 _ . . . An _B1 _ . . . _Bj�1 _Bj+1 _ . . . Bm

Thereby, Ak and Bk denote literals, i.e. negated or unnegated FOL atoms
and the two literals Ai and Bj are assumed to be complements of each
other (i.e. Ai = ¬Bj or Bj = ¬Ai). As the resolution rule is a deduction
rule, resolution can be seen as a variant of consequence-based reasoning.
One of the di↵erences is that resolution is performed not on DL knowledge
bases directly but on a FOL translation thereof. Resolution-based meth-
ods have been described for DLs up to SHOIQ [Motik and Sattler, 2006;
Kazakov and Motik, 2008].

9 Description Logics

and OWL
In fact, in terms of syntax, OWL
Just tends to be a bulky fowl,
However, if it mates with Turtle
This union turns out rather fertile;
I deem the o↵spring of this love
As graceful as a turtledove.

As mentioned before, the web ontology language OWL is based on De-
scription Logics but also features additional types of extra-logical informa-
tion, concerning, e.g., ontology versioning information and annotations.
Moreover, OWL supports modeling and reasoning with datatypes which
we omitted from our consideration. Likewise, keys are supported in OWL
but not discussed here.

61

In this section, we will see how any OWL DL compliant reasoning tool
can be used to decide SROIQ knowledge base satisfiability as well as
any other reasoning task which can be reduced to it.
“OWL speak” di↵ers partially from the terms normally used in descrip-
tion logics. The following table gives a synopsis of the corresponding terms
used in the OWL vs. the DL community as well as in the domain of clas-
sical first-order logic.

OWL DL FOL

class name concept name unary predicate
class concept formula with one free variable
object property name role name binary predicate
object property role formula with two free variables
ontology knowledge base theory
axiom axiom sentence
vocabulary vocabulary / signature signature

In the next two sections, we briefly explain how a SROIQ knowledge base
can be translated into an OWL 2 DL ontology such that satisfiability and
entailment checks can be performed by OWL reasoning engines.

9.1 Translating DL KBs into OWL

For translating a SROIQ knowledge base into an OWL ontology, some
technical issues need to be taken care of. First of all, both the used vocab-
ulary as well as the constructors have to be URIs (i.e. uniform resource
identifiers, that is, terms following the prescribed naming scheme preva-
lent in the Semantic Web). The URIs for the used individual, concept,
and role names can be chosen rather arbitrarily, while the URIs for con-
structors etc. are prescribed and associated to specific namespaces usually
associated to the prefixes owl:, rdfs:, rdf:, and xsd:. For the sake of
simplicity, we will assume that all used individual, concept and role names
from the DL knowledge base are syntactically well-formed URIs.
Second, the mainly used encoding of OWL is as an RDF document
[Manola and Miller, 2004]. One one hand, this is advantageous from a
downward compatibility and tool interoperability point of view; in fact
the encoding of concept and role assertions in OWL and RDF coincide
and some other RDFS statements are available in OWL as well with a
similar semantics. On the other hand, the encoding as RDF also imposes
some restrictions on the way logical axioms can be encoded. As RDF is a
graph-based formalism consisting of node-edge-node triples, DL axioms

62

and complex concepts have to be transformed into a graph-like represen-
tation. This is done by virtue of the typical means used to encode complex
structures in RDF: structural bnodes and graph-based encoding of lists.

For our treatise, we will use the Turtle [Beckett and Berners-Lee, 14
January 2008] notation, which seems most appropriate as it illustrates the
underlying RDF triple structure while at the same time hiding the very
low-level details (such as the triplification of the list structures employed
for the RDF encoding of OWL).

The translation of a SROIQ knowledge base KB contains three parts:
a preamble containing the definition of namespaces, declarations of the
used concept (resp. class) and role (resp. object property) names, and
finally a part containing the OWL counterparts of the axioms from KB.
Hence, we let

[[KB]] = Pre + Dec(KB) +
X

↵2KB
[[↵]]

where + denotes concatenation of strings. Thereby the preamble is defined
by

Pre =

8
><

>:

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

whereas the declarations are expressed by according typing statements:

Dec(KB) =
P

A2NC(KB) A rdf:type owl:Class .

+
P

r2NR(KB) r rdf:type owl:ObjectProperty .

As displayed above, the actual knowledge base is translated axiom-wise
via the function [[·]] defined on the next page. The latter makes calls to the
functions [[·]]C and [[·]]R given further below, which are used to decompose
and recursively translate complex concepts and roles, respectively.

63

[[r1 � . . . � rn v r]] = [[r]]R owl:propertyChainAxiom ([[r1]]R · · · [[rn]]R) .

[[Dis(r, r0)]] = [[r]]R owl:propertyDisjointWith [[r0]]R .

[[C v D]] = [[C]]C rdfs:subClassOf [[D]]C .

[[C(a)]] = a rdf:type [[C]]C .

[[r (a , b)]] = a r b .

[[r�(a , b)]] = b r a .

[[¬r(a , b)]] = [] rdf:type owl:NegativePropertyAssertion ;
owl:assertionProperty [[r]]R ;
owl:sourceIndividual a ; owl:targetValue b .

[[a ⇡ b]] = a owl:sameAs b .

[[a 6⇡ b]] = a owl:differentFrom b .

[[u]]R = owl:topObjectProperty

[[r]]R = r

[[r �]]R = [owl:inverseOf :r]

[[A]]C = A

[[>]]C = owl:Thing

[[?]]C = owl:Nothing

[[{a1, . . . , an}]]C = [rdf:type owl:Class ; owl:oneOf (:a1 . . . :an)]

[[¬C]]C = [rdf:type owl:Class ; owl:complementOf [[C]]C]

[[C1u. . .uCn]]C = [rdf:type owl:Class ; owl:intersectionOf ([[C1]]C . . . [[Cn]]C)]

[[C1t. . .tCn]]C = [rdf:type owl:Class ; owl:unionOf ([[C1]]C . . . [[Cn]]C)]

[[9r.C]]C = [rdf:type owl:Restriction ;
owl:onProperty [[r]]R ; owl:someValuesFrom [[C]]C]

[[8r.C]]C = [rdf:type owl:Restriction ;
owl:onProperty [[r]]R ; owl:allValuesFrom [[C]]C]

[[9r.Self]]C = [rdf:type owl:Restriction ;
owl:onProperty [[r]]R ; owl:hasSelf ’’true’’^^xsd:boolean]

[[>n r.C]]C = [rdf:type owl:Restriction ;
owl:minQualifiedCardinality n ^^xsd:nonNegativeInteger ;
owl:onProperty [[r]]R ; owl:onClass [[C]]C]

[[6n r.C]]C = [rdf:type owl:Restriction ;
owl:maxQualifiedCardinality n ^^xsd:nonNegativeInteger ;
owl:onProperty [[r]]R ; owl:onClass [[C]]C]

64

Example 55. For the knowledge base KB from Example 12, the transla-
tion [[KB]] looks as follows (for better readability, we use the namespace
http://www.example.org/# for individual, concept, and role names and abbrevi-
ate it by the empty prefix as shown in the first line of the translation):

@prefix : <http://www.example.org/#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:owns rdf:type owl:ObjectProperty .
:caresFor rdf:type owl:ObjectProperty .
:Cat rdf:type owl:Class .
:Dead rdf:type owl:Class .
:Alive rdf:type owl:Class .
:Healthy rdf:type owl:Class .
:HappyCatOwner rdf:type owl:Class .

:owns rdfs:subPropertyOf :caresFor .

:Healthy rdfs:subClassOf [owl:complementOf :Dead] .
:Cat rdfs:subClassOf [owl:unionOf (:Dead :Alive)] .
:HappyCatOwner rdfs:subClassOf

[owl:intersectionOf
([rdf:type owl:Restriction ;

owl:onProperty :owns ; owl:someValuesFrom :Cat]
[rdf:type owl:Restriction ;
owl:onProperty :caresFor ; owl:allValuesFrom :Healthy])

] .

:schrödinger rdf:type :HappyCatOwner .

To give an idea, how the RDF graph representation of an OWL ontology looks
like, the last TBox axiom is displayed graphically in the following picture.

rdfs:subClassOf

owl:Rest
riction

:Cat

:Healthy

:caresFo
r

:owns

rdf:nil

rdf
:fir
st

rd
f:r
es
t

rd
f:r
es
trdf:type

rdf:type

owl:onProperty

owl:onProperty

owl:allvalue
sFrom

owl:someValuesFrom

owl:intersectionOf

rdf
:fir
st

owl:Restriction

:Cat

:Healthy

:caresFor

:owns

:HappyCatOwner

65

Exercise 36. Translate the knowledge base from Example 21 and the initial axiom
from Example 33 into OWL ontologies in Turtle syntax.

9.2 Expressing OWL Axioms in SROIQ

In fact, the OWL specification features much more axiom types than
the ones used above to translate SROIQ knowledge bases. As far as the
purely logical axioms are concerned (i.e. excluding everything referring to
datatypes, keys, annotations, or the like), all these axioms can be consid-
ered as syntactic sugar, i.e., they can be conceived as shortcuts for other
axioms expressed in the “core” OWL language used in the definitions
above. In the sequel, we give the DL paraphrases of these axioms

Axiom type Turtle notation DL paraphrase

Class Equivalence [[C]]C owl:equivalentClass [[D]]C . C v D, D v C

Class Disjointness [[C]]C owl:disjointWith [[D]]C . C uD v ?
Disjoint Classes [] rdf:type owl:AllDisjointClasses ; Ci u Cj v ?

owl:members ([[C1]]C ... [[Cn]]C) . for all 1i<jn

Disjoint Union [[C]]C owl:disjointUnionOf
F

i<j
Ci v C

([[C1]]C ... [[Cn]]C) . Ci u Cj v ?
for all 1i<jn

Property Equivalence [[r]]R owl:equivalentProperty [[s]]R . r v s, s v r

Disjoint Properties [] rdf:type owl:AllDisjointProperties ; Dis(ri, rj)
owl:members ([[r1]]R ... [[rn]]R) . for all 1i<jn

Inverse Properties [[r]]R owl:inverseOf [[s]]R . Inv(r) v s

Property Domain [[r]]R rdfs:domain [[C]]C . 9r.> v C

Property Range [[r]]R rdfs:range [[C]]C . > v 8r.C
Functional Property [[r]]R rdf:type owl:FunctionalProperty . > v 61r.>
Inverse Functional [[r]]R rdf:type

Property owl:InverseFunctionalProperty . > v 61Inv(r).>
Reflexive Property [[r]]R rdf:type owl:ReflexiveProperty . > v 9r.Self

Irreflexive Property [[r]]R rdf:type owl:IrreflexiveProperty . 9r.Self v ?
Symmetric Property [[r]]R rdf:type owl:SymmetricProperty . Inv(r) v r

Asymmetric Property [[r]]R rdf:type owl:AsymmetricProperty . Dis(Inv(r), r)

Transitive Property [[r]]R rdf:type owl:TransitiveProperty . r � r v r

Di↵erent Individuals [] rdf:type owl:AllDifferent ; ai 6⇡ aj

owl:members (a1 . . . an) . for all 1i<jn

66

Further Reading

At the end of this chapter, we give a few pointers to further reading with
respect to di↵erent aspects of the contents presented here. Note that this
list is certainly incomplete and subject to personal inclinations.

Description Logics. As central reference to the area of Description
Logics, the primary resource is certainly the Description Logic Handbook
[Baader et al., 2007], providing an overview of the subject, introductory
parts as well as parts dedicated to advanced issues. The description logic
SROIQ which, together with its sub-logics, was the main subject of our
treatise is introduced by Horrocks et al. [2006], the according reasoning
complexity results are established by Kazakov [2008].

Conjunctive Queries in Description Logics. While the principled
problem of reasoning in DLs up to SROIQ can considered to be solved,
conjunctive query answering is still a subject of active research and only
preliminary decidability and complexity results are available. Most no-
tably, decidability of SROIQ and even of SHOIQ is unsolved. On the
other hand, the problem is settled for SHIQ [Glimm et al., 2008c] and
SHOQ [Glimm et al., 2008b]. Moreover, Calvanese et al. [2009] captured
additionally SHOI and extended the results to regular path queries. The
most expressive Boolean-closed DL simultaneously featuring nominal con-
cepts, inverses and number restrictions (i.e., O, I, and Q) for which de-
cidability is known is ALCHOIQb [Rudolph and Glimm, 2010].

Relations to Logics in General. For foundations of logics, the text-
book by Schöning [2008] is certainly a good starting point in particular
for computer scientists, whereas Ebbinghaus et al. [1996] capture mathe-
matical aspects. Model theory is treated in depth by Chang and Keisler
[1990]. For an introduction into the area of theorem proving in a first-order
logic setting, we recommend the textbook by Fitting [1996]. We suggest
to consult Papadimitriou [1994] for the study of algorithmic complexity
theory.
The correspondence of DLs and first-order logic (in particular the 2-
variable fragment) has e.g. been described by Borgida [1996], the complex-
ity treatment on the 2-variable fragment of FOL with counting quantifiers
by Pratt-Hartmann [2005] has served as basis for a row of DL complexity
results. The relatedness of DLs with modal logics (see the textbook by
Blackburn et al. [2006] for a thorough introduction) is treated by Schild
[1991]. As another closely related logic, the guarded fragment of FOL is
described by Andréka et al. [1998].

67

AI and Knowledge Representation. A central reference for a com-
prehensive overview of the area of AI as a whole is the seminal textbook
by Russell and Norvig [2003]. Knowledge Representation in particular is
treated by Sowa [1984] and van Harmelen et al. [2008].

Semantic Web and OWL. The Semantic Web vision is described in
the seminal paper by Berners-Lee et al. [2001]. In order to get an overview
over all aspects of (Web) ontologies, the Ontology Handbook by Staab
and Studer [2009] is a central reference.
As far as technical questions about syntax and semantics of OWL is con-
cerned, the primary resource are the W3C Recommendation Documents.
Next to an overview [OWL Working Group, 2009], syntax and semantics
are treated by Motik et al. [2009b] and Motik et al. [2009a], respectively,
whereas Patel-Schneider and Motik [2009] tackle the RDF serialization
of OWL. The OWL 2 Primer by Hitzler et al. [2009a] gives an infor-
mal introduction into the use of OWL. A thorough treatment of all the
standardized Semantic Web formalisms is provided by the textbook Foun-
dations of Semantic Web Technologies [Hitzler et al., 2009b].

Acknowledgements

I thank all people who helped me in one or the other way to accumulate
the knowledge about DLs which I gave a partial overview of in this lecture.
I am grateful to the organizers of the Reasoning Web Summer School
2011 for giving me the opportunity to teach. I thank the anonymous
reviewers for their comments on an earlier version of this document. I
am indebted to Anees ul Mehdi, Nadeschda Nikitina and Jens Wissmann
for their thorough proofreading. Special thanks go to Ian Horrocks for
his valuable feedback in terms of poetic quality assurance. The DL logo
displayed at the beginning of the chapter goes back to Enrico Franconi,
the deduction calculus for ALC comes from Yevgeny Kazakov. Further
inspiration was drawn from (in alphabetical order) Benedict XVI, Nicolas
Chamfort, Edward Lear, the Rolling Stones, William Shakespeare and
W.A. Spooner.

68

References

[Andréka et al., 1998] Hajnal Andréka, Johan F. A. K. van Benthem, and István
Németi. Modal languages and bounded fragments of predicate logic. Journal of
Philosophical Logic, 27(3):217–274, 1998.

[Baader et al., 2007] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele
Nardi, and Peter Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, second edition, 2007.

[Beckett and Berners-Lee, 14 January 2008] D. Beckett and T. Berners-Lee. Turtle –
Terse RDF Triple Language. W3C Team Submission, 14 January 2008. Available at
http://www.w3.org/TeamSubmission/turtle/.

[Berners-Lee et al., 2001] Tim Berners-Lee, James Hendler, and Ora Lassila. The Se-
mantic Web. Scientific American, pages 96–101, May 2001.

[Blackburn et al., 2006] Patrick Blackburn, Johan F. A. K. van Benthem, and Frank
Wolter, editors. Handbook of Modal Logic, volume 3 of Studies in Logic and Practical
Reasoning. Elsevier Science, 2006.

[Borgida, 1996] Alex Borgida. On the relative expressiveness of description logics and
predicate logics. Artificial Intelligence, 82(1–2):353–367, 1996.

[Brachman and Levesque, 1984] Ronald J. Brachman and Hector J. Levesque. The
tractability of subsumption in frame-based description languages. In Ronald J.
Brachman, editor, Proceedings of the 4th National Conference on Artificial Intel-
ligence (AAAI’84), pages 34–37. AAAI Press, 1984.

[Calvanese et al., 2009] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Reg-
ular path queries in expressive description logics with nominals. In Craig Boutilier,
editor, Proceedings of the 21st International Conference on Artificial Intelligence (IJ-
CAI’09), pages 714–720. IJCAI, 2009.

[Chandra and Merlin, 1977] Ashok K. Chandra and P.M. Merlin. Optimal implemen-
tation of conjunctive queries in relational data bases. In J.E. Hopcroft, E.P. Fried-
man, and M.A. Harrison, editors, Proceedings of the 9th Annual ACM Symposium
on Theory of Computing (STOC-77), pages 77–90. ACM Press, 1977.

[Chang and Keisler, 1990] Chen Chung Chang and H. Jerome Keisler. Model Theory,
volume 73 of Studies in Logic and the Foundations of Mathematics. North Holland,
third edition, 1990.

[Ebbinghaus et al., 1996] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical
Logic. Springer, 1996.

[Fitting, 1996] Melvin Fitting. First-Order Logic and Automated Theorem Proving.
Springer, 2nd edition, 1996.

[Ganter and Wille, 1997] Bernhard Ganter and Rudolph Wille. Formal Concept Anal-
ysis: Mathematical Foundations. Springer, 1997.

[Glimm et al., 2008a] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Deciding
SHOQ\ knowledge base consistency using alternating automata. In Franz Baader,
Carsten Lutz, and Boris Motik, editors, Description Logics, volume 353 of CEUR
Workshop Proceedings. CEUR-WS.org, 2008.

[Glimm et al., 2008b] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of con-
junctive queries in SHOQ. In Gerhard Brewka and Jérôme Lang, editors, Proceedings
of the 11th International Conference on Principles of Knowledge Representation and
Reasoning (KR’08), pages 252–262. AAAI Press, 2008.

[Glimm et al., 2008c] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler.
Answering conjunctive queries in the SHIQ description logic. Journal of Artificial
Intelligence Research, 31:150–197, 2008.

69

[Golbreich et al., 2006] Christine Golbreich, Songmao Zhang, and Olivier Bodenreider.
The foundational model of anatomy in OWL: Experience and perspectives. Journal
of Web Semantics, 4(3), 2006.

[Haarslev and Möller, 2001] Volker Haarslev and Ralf Möller. Racer system descrip-
tion. In Rajeev Gor, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of
the 1st International Joint Conference on Automated Reasoning (IJCAR’01), volume
2083 of LNCS, pages 701–705. Springer, 2001.

[Hitzler et al., 2009a] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-
Schneider, and Sebastian Rudolph, editors. OWL 2 Web Ontology Language: Primer.
W3C Recommendation, 2009. Available at http://www.w3.org/TR/owl2-primer/.

[Hitzler et al., 2009b] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foun-
dations of Semantic Web Technologies. Chapman & Hall/CRC, 2009.

[Horridge et al., 2008] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic
and precise justifications in OWL. In Amit Sheth, Ste↵en Staab, Mike Dean, Massimo
Paolucci, Diana Maynard, Timothy Finin, and Krishnaprasad Thirunarayan, editors,
Proceedings of the 7th International Semantic Web Conference (ISWC’08), volume
5318 of LNCS, pages 323–338. Springer, 2008.

[Horrocks and Sattler, 2007] I. Horrocks and U. Sattler. A tableau decision procedure
for SHOIQ. Journal of Automated Reasoning, 39(3):249–276, 2007.

[Horrocks et al., 2006] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more
irresistible SROIQ. In Patrick Doherty, John Mylopoulos, and Christopher A. Welty,
editors, Proceedings of the 10th International Conference on Principles of Knowledge
Representation and Reasoning (KR’06), pages 57–67. AAAI Press, 2006.

[Kazakov and Motik, 2008] Yevgeny Kazakov and Boris Motik. A resolution-based
decision procedure for SHOIQ. Journal of Automated Reasoning, 40(2-3):89–116,
2008.

[Kazakov, 2008] Yevgeny Kazakov. RIQ and SROIQ are harder than SHOIQ. In
Gerhard Brewka and Jérôme Lang, editors, Proceedings of the 11th International
Conference on Principles of Knowledge Representation and Reasoning (KR’08),
pages 274–284. AAAI Press, 2008.

[Kazakov, 2009] Yevgeny Kazakov. Consequence-driven reasoning for horn SHIQ on-
tologies. In Craig Boutilier, editor, Proceedings of the 21st International Conference
on Artificial Intelligence (IJCAI’09), pages 2040–2045. IJCAI, 2009.

[Krötzsch et al., 2008] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. De-
scription logic rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis,
and Nikos Avouris, editors, Proceedings of the 18th European Conference on Artificial
Intelligence (ECAI’08), pages 80–84. IOS Press, 2008.

[Lehmann, 2009] Jens Lehmann. Dl-learner: Learning concepts in description logics.
Journal of Machine Learning Research, 10:2639–2642, 2009.

[Lloyd and Topor, 1984] John W. Lloyd and Rodney W. Topor. Making prolog more
expressive. Journal of Logic Programming, 1(3):225–240, 1984.

[Lutz, 2008] Carsten Lutz. The complexity of conjunctive query answering in ex-
pressive description logics. In Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, Proceedings of the 4th International Joint Conference on Automated
Reasoning (IJCAR’08), number 5195 in LNAI, pages 179–193. Springer, 2008.

[Manola and Miller, 2004] Frank Manola and Eric Miller, editors. Resource Descrip-
tion Framework (RDF): Primer. W3C Recommendation, 2004. Available at
http://www.w3.org/TR/rdf-primer/.

[Minsky, 1974] Marvin Minsky. A framework for representing knowledge. Artificial in-
telligence memo, A.I. Laboratory, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1974.

70

[Motik and Sattler, 2006] Boris Motik and Ulrike Sattler. A comparison of reasoning
techniques for querying large description logic ABoxes. In Miki Hermann and Andrei
Voronkov, editors, Proceedings of the 13th International Conference on Logic for
Programming, Artificial Intelligencen, and Reasoning (LPAR’01), volume 4246 of
LNCS, pages 227–241. Springer, 2006.

[Motik et al., 2009a] Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca
Grau, editors. OWL 2 Web Ontology Language: Direct Semantics. W3C Recom-
mendation, 2009. Available at http://www.w3.org/TR/owl2-direct-semantics/.

[Motik et al., 2009b] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia, edi-
tors. OWL 2 Web Ontology Language: Structural Specification and Functional-Style
Syntax. W3C Recommendation, 2009. Available at http://www.w3.org/TR/owl2-
syntax/.

[Motik et al., 2009c] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau rea-
soning for description logics. Journal of Artificial Intelligence Research (JAIR),
36:165–228, 2009.

[Noia et al., 2009] Tommaso Di Noia, Eugenio Di Sciascio, and Francesco M. Donini.
A tableaux-based calculus for abduction in expressive description logics: Preliminary
results. In Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler,
editors, Description Logics, volume 477 of CEUR Workshop Proceedings. CEUR-
WS.org, 2009.

[OWL Working Group, 2009] W3C OWL Working Group. OWL 2 Web Ontol-
ogy Language: Document Overview. W3C Recommendation, 2009. Available at
http://www.w3.org/TR/owl2-overview/.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computational Complexity. Addi-
son Wesley, 1994.

[Patel-Schneider and Motik, 2009] Peter F. Patel-Schneider and Boris Motik, editors.
OWL 2 Web Ontology Language: Mapping to RDF Graphs. W3C Recommendation,
2009. Available at http://www.w3.org/TR/owl2-mapping-to-rdf/.

[Pratt-Hartmann, 2005] Ian Pratt-Hartmann. Complexity of the two-variable frag-
ment with counting quantifiers. Journal of Logic, Language and Information, 14:369–
395, 2005.

[Quillian, 1968] M. Ross Quillian. Semantic memory. In Marvin Minsky, editor, Se-
mantic Information Processing, chapter 4, pages 227–270. MIT Press, 1968.

[Rudolph and Glimm, 2010] Sebastian Rudolph and Birte Glimm. Nominals, inverses,
counting, and conjunctive queries or: Why infinity is your friend! Journal of Artificial
Intelligence Research (JAIR), 39:429–481, 2010.

[Rudolph et al., 2008a] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. All
elephants are bigger than all mice. In Franz Baader, Carsten Lutz, and Boris
Motik, editors, Proceedings of the 21st International Workshop on Description Logics
(DL’08), volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[Rudolph et al., 2008b] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Ter-
minological reasoning in SHIQ with ordered binary decision diagrams. In Pro-
ceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI’08), pages
529–534. AAAI Press, 2008.

[Rudolph, 2004] Sebastian Rudolph. Exploring relational structures via FLE. In
Karl Erich Wol↵, Heather D. Pfei↵er, and Harry S. Delugach, editors, Conceptual
Structures at Work: 12th International Conf. on Conceptual Structures, volume 3127
of LNCS, pages 196 – 212, Huntsville, AL, USA, JUL 2004. Springer.

[Russell and Norvig, 2003] Stuart Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, second edition, 2003.

71

[Schild, 1991] Klaus Schild. A correspondence theory for terminological logics: Pre-
liminary report. In John Mylopoulos and Raymond Reiter, editors, Proceedings of
the 12th International Joint Conference on Artificial Intelligence (IJCAI’91), pages
466–471. Morgan Kaufmann, 1991.

[Schmidt-Schauß and Smolka, 1991] Manfred Schmidt-Schauß and Gert Smolka. At-
tributive concept descriptions with complements. Journal of Artificial Intelligence,
48:1–26, 1991.

[Schöning, 2008] U. Schöning. Logic for Computer Scientists. Birkhäuser, 2008.
[Shearer and Horrocks, 2009] Rob Shearer and Ian Horrocks. Exploiting partial in-

formation in taxonomy construction. In Abraham Bernstein, David R. Karger,
Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad
Thirunarayan, editors, International Semantic Web Conference, volume 5823 of Lec-
ture Notes in Computer Science, pages 569–584. Springer, 2009.

[Sidhu et al., 2005] Amandeep Sidhu, Tharam Dillon, Elisabeth Chang, and Baldev S.
Sidhu. Protein ontology development using OWL. In Proceedings of the 1st OWL Ex-
periences and Directions Workshop (OWLED 2005), volume 188 of CEUR Workshop
Proceedings. CEUR (http://ceur-ws.org/), 2005.

[Simancik et al., 2011] Frantisek Simancik, Yevgeny Kazakov, and Ian Horrocks.
Consequence-based reasoning beyond horn ontologies. In Toby Walsh, editor, Pro-
ceedings of the 22nd International Conference on Artificial Intelligence (IJCAI’11).
IJCAI, 2011.

[Sirin et al., 2007] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyan-
pur, and Yarden Katz. Pellet: A practical OWL-DL reasoner. Journal of Web
Semantics, 5(2):51–53, 2007.

[Sowa, 1984] J. F. Sowa. Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley, 1984.

[Staab and Studer, 2009] S. Staab and R. Studer, editors. Handbook on Ontologies.
International Handbooks on Information Systems. Springer, 2nd edition, 2009.

[Stuckenschmidt et al., 2009] Heiner Stuckenschmidt, Christine Parent, and Stefano
Spaccapietra, editors. Modular Ontologies: Concepts, Theories and Techniques for
Knowledge Modularization, volume 5445 of Lecture Notes in Computer Science.
Springer, 2009.

[Tsarkov and Horrocks, 2006] Dmitry Tsarkov and Ian Horrocks. FaCT++ descrip-
tion logic reasoner: System description. In Ulrich Furbach and Natarajan Shankar,
editors, Proceedings of the 3rd International Joint Conference on Automated Reason-
ing (IJCAR’06), volume 4130 of LNCS, pages 292–297. Springer, 2006.

[van Harmelen et al., 2008] Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter.
Handbook of Knowledge Representation. Foundations of Artificial Intelligence. Else-
vier, 2008.

[Wolstencroft et al., 2005] Katy Wolstencroft, Andy Brass, Ian Horrocks, Phil Lord,
Ulrike Sattler, Daniele Turi, and Robert Stevens. A Little Semantic Web Goes a Long
Way in Biology. In Proceedings of the 5th International Semantic Web Conference
(ISWC 2005). Springer, 2005.

72

