Complexity Theory

Exercise 6: Diagonalisation and Alternation

Exercise 6.1. Show that Cook-reducibility is transitive. In other words, show that if **A** is Cook-reducible to **B** and **B** is Cook-reducible to **C**, then **A** is Cook-reducible to **C**.

Exercise 6.2. Show that there exists an oracle C such that $NP^C \neq CONP^C$.

Hint:

Baker-Gill-Solovay Theorem for CONP instead of P.

What kind of Turing machines exist for languages in CONP? Use the answer to adapt the proof of the

Exercise 6.3. Describe a polynomial-time ATM solving **EXACT INDEPENDENT SET**:

Input: Given a graph G and some number k.

Question: Does there exists a maximal independent set in G of size exactly k?

Exercise 6.4. Consider the Japanese game *go-moku* that is played by two players X and O on a 19x19 board. Players alternately place markers on the board, and the first one to have five of its markers in a row, column, or diagonal wins.

Consider the generalised version of go-moku on an $n \times n$ board. Say that a *position* of go-moku is a placement of markers on such a board as it could occur during the game. Define

GM = $\{\langle B \rangle \mid B \text{ is a position of go-moku where X has a winning strategy}\}.$

Describe a polynomial-time ATM solving **GM**.

Exercise 6.5. Show that AEXPTIME = EXPSPACE.

* **Exercise 6.6.** Show that $\Sigma_2 \mathsf{QBF}$ is complete for $\Sigma_2 \mathsf{P}$. Generalise your argument to show that $\Sigma_i \mathsf{QBF}$ is complete for $\Sigma_i \mathsf{P}$ for all $i \geq 1$.

Exercise 6.7. Show that if P = NP, then P = PH.

Exercise 6.8. Describe a polynomial-time ATM solving **EXACT INDEPENDENT SET**.

EXACTIS =
$$\{(G, k) \mid |S| = k \text{ for some independent set } S \text{ in } G \text{ and } |S'| < k \text{ for every independent set } S' \text{ in } G\}$$

Find a level of the polynomial hierarchy where this problem is contained in.

Exercise 6.9. Consider the Japanese game *go-moku* that is played by two players X and O on a 19x19 board. Players alternately place markers on the board, and the first one to have five of its markers in a row, column, or diagonal wins.

Consider the generalised version of go-moku on an $n \times n$ board. Say that a *position* of go-moku is a placement of markers on such a board as it could occur during the game. Define

 $\mathbf{GM} = \{\langle B \rangle \mid B \text{ is a position of go-moku where X has a winning strategy}\}.$

Describe a polynomial-time ATM solving **GM** and informally argue why this problem is not in any level of the polynomial hierarchy.

Exercise 6.10. Show $NP^{SAT} \subseteq \Sigma_2 P$.

Exercise 6.11. Show the following result: If there is any k such that $\Sigma_k^{\mathrm{P}} = \Sigma_{k+1}^{\mathrm{P}}$ then $\Sigma_j^{\mathrm{P}} = \Pi_j^{\mathrm{P}} = \Sigma_k^{\mathrm{P}}$ for all j > k, and therefore $\mathrm{PH} = \Sigma_k^{\mathrm{P}}$.

Exercise 6.12. Show that $PH \subseteq PSPACE$.

Exercise 6.13. Let **A** be a language and let **F** be a finite set with $\mathbf{A} \cap \mathbf{F} = \emptyset$. Show that $P^{\mathbf{A}} = P^{\mathbf{A} \cup \mathbf{F}}$ and $NP^{\mathbf{A}} = NP^{\mathbf{A} \cup \mathbf{F}}$.