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Abstract. Although mathematical morphology and formal concept anal-
ysis are two lattice-based data analysis theories, they are still developed
in two disconnected research communities. The aim of this paper is to
contribute to fill this gap, beyond the classical relationship between the
Galois connections defined by the derivation operators and the adjunc-
tions underlying the algebraic mathematical morphology framework. In
particular we define mathematical morphology operators over concept
lattices, based on distances, valuations, or neighborhood relations in
concept lattices. Their properties are also discussed. These operators
provide new tools for reasoning over concept lattices.

1 Introduction

Formal concept analysis and mathematical morphology are two important theories
used for knowledge representation and information processing, and are both based
on lattice theory. Although they have been mostly developed independently, their
common algebraic framework leads to similarities that deserve to be investigated.
In this paper, we propose to contribute to filling this gap by establishing some
links between both domains. Several applications can benefit from such links. For
instance, non-monotonic reasoning operators can be proposed [1], by exploiting
also the links between formal concept analysis and description logics [2] (in earlier
works morphological reasoning operators have been proven to be interesting
in the case of propositional logics, e.g. [7]). Besides, these operators can be
exploited in the context of logical concept analysis [8] to propose new reasoning
services. Extensions to fuzzy formal concept analysis, based on fuzzy mathematical
morphology [6] can then be derived (with links also with rough sets and fuzzy
rough sets [4]).

Our main contributions are definitions of mathematical morphology operators
on concept lattices, which provide tools for handling information represented by
pairs of objects and attributes.

In Section 2, we recall some basic definitions and notations of both domains,
which will be used in the following. In Section 3, we highlight some similarities
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between two basic morphological operators, dilation and erosion, and the deriva-
tion operators commonly used in formal concept analysis. Our main contribution
is then developed in Section 4, where we propose original definitions of dilations
and erosions, on the power set of objects (or attributes), and on the concept
lattice itself. The proposed definitions are based on distances, valuations, and
neighborhood relations. They enjoy good formal properties.

2 Preliminaries

2.1 Formal Concept Analysis

We assume the reader to be familiar with formal concept analysis (FCA) [9],
and restrict this section to the introduction of notations, and of some definitions
and results that will be useful in the sequel. A formal context is defined as a
triple K = (G,M, I), where G is the set of objects, M the set of attributes, and
I ⊆ G×M a relation between the objects and the attributes. A pair (g,m) ∈ I
stands for “the object g has the attribute m”. The formal concepts of the context
K are all pairs (X,Y ) with X ⊆ G and Y ⊆M such that (X,Y ) is maximal with
the property X × Y ⊆ I. The set X is called the extent and the set Y is called
the intent of the formal concept (X,Y ). For any formal concept a, we denote its
extent by e(a) and its intent by i(a), i.e. a = (e(a), i(a)). The set of all formal
concepts of a given context can be hierarchically ordered by inclusion of their
extent: (X1, Y1) � (X2, Y2) ⇔ X1 ⊆ X2 (⇔ Y2 ⊆ Y1). This order, that reflects
the subconcept-superconcept relation, always induces a complete lattice which is
called the concept lattice of the context (G,M, I), denoted C(K). For X ⊆ G and
Y ⊆M , the derivation operators α and β are defined as α(X) = {m ∈M | ∀g ∈
X, (g,m) ∈ I}, and β(Y ) = {g ∈ G | ∀m ∈ Y, (g,m) ∈ I}.
Definition 1. Let (L,�) and (L′,�′) be two partially ordered sets. A pair of
operators (α, β), α : L → L′, β : L′ → L, defines a Galois-connection if ∀x ∈
L,∀y ∈ L′, y �′ α(x) ⇐⇒ x � β(y).

The pair (α, β) is a Galois connection between the partially ordered power sets
(P(G),⊆) and (P(M),⊆). Therefore, for X1 ⊆ X2 ⊆ G (resp. Y1 ⊆ Y2 ⊆M), the
following holds: (i) α(X2) ⊆ α(X1) (resp. β(Y2) ⊆ β(Y1)), (ii) X1 ⊆ β(α(X1))
and α(X1) = α(β(α(X1))) (resp. Y1 ⊆ α(β(Y1)) and β(Y1) = β(α(β(Y1)))).
Saying that (X,Y ) with X ⊆ G and Y ⊆M is a formal concept is equivalent to
α(X) = Y and β(Y ) = X. Given an element a ∈ C, the set Fa = {b ∈ C | a � b}
is called the principal filter generated by the element a. The set Ia = {b ∈ C |
b � a} is called the principal ideal generated by the concept a.

Theorem 1 ([9]). In a concept lattice, infimum and supremum of a family of
formal concepts (Xt, Yt)t∈T are given by:∧
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Every complete lattice can be viewed as a concept lattice. A complete lattice (L,�)
is isomorphic to the concept lattice C(L,L,�).

In Section 4 we introduce morphological operators defined on the powerset
of the set of objects or the set of attributes. Two mappings will be of particular
interest: attribute concept and object concept.

Definition 2 (Object and attribute concept). Let (G,M, I) be a context
with the associated concept lattice C. Let g ∈ G be an object and m ∈ M an
attribute. The concept γg =

(
βα(g), α(g)

)
is called the object concept of g and

the concept µm =
(
β(m), αβ(m)

)
is called the attribute concept of m. We define

the mappings pC and qC which project objects and attributes to their respective
object and attribute concepts as follows.

pC : G −→ C
g 7−→ γg

qC : M −→ C
m 7−→ µm

(3)

b

Theorem 2 ([9]). Let (G,M, I) be a context with associated (complete) concept
lattice C and let pC and qC be mappings as defined in Definition 2. Then, pC(G)
is join-dense in C and qC(M) is meet-dense in C. Also (g,m) ∈ I is equivalent
to pC(g) � qC(m) for all g ∈ G and all m ∈M , with the usual partial ordering
on C.

Every concept (X,Y ) is the join of all its sub-object-concepts, and is the meet
of its super-attribute-concepts:

(X,Y ) =
∨
g∈X

pC(g) =
∧

m∈Y
qC(m). (4)

Let us now introduce other decompositions of concepts. Note that decomposi-
tions of a concept as a supremum (respectively as an infimum) will be directly
used to compute dilations (respectively erosions) in Section 4.3.

Definition 3. An element a in the lattice C is join-irreducible if (i) a 6= 0C
(where 0C denotes the least element of the lattice), and (ii) ∀(a, b) ∈ C2, a =
b ∨ c⇒ a = b or a = c. The set of all join-irreducible elements in C is denoted
by J (C) and the set of all meet-irreducible elements (defined in a similar way)
byM(C).

Every element in C can be written as the supremum of a set of join-irreducible
elements in C and as the infimum of a set of meet-irreducible elements in C:

∀a ∈ C, a =
∨
{b ∈ J (C) | b � a} =

∧
{b ∈M(C) | a � b}.

Note that join-irreducible and meet-irreducible decompositions of an element a
in C are not unique in general unless the lattice enjoys some local distributivity
properties [20]. We consider here a minimal decomposition that is intended in
the following sense:
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Definition 4. Let A,B ⊆ C, we say that A refines B (written A � B) if for
each a ∈ A there exists b ∈ B with a � b. A set B ⊆ J (C) is called a join-
irreducible decomposition of a in C iff

∨
B = a. B is said to be minimal if every

join-irreducible decomposition C of a satisfies C � B =⇒ B ⊆ C. (Minimal)
meet-irreducible decompositions can be defined analogously.

Example 1. We consider a classical example to illustrate the definitions introduced
above. Furthermore this example will be used throughout the paper to illustrate
and discuss the proposed operators. The considered formal context and the
associated concept lattice are depicted in Figure 1.

K composite even odd prime square

1 × ×
2 × ×
3 × ×
4 × × ×
5 × ×
6 × ×
7 × ×
8 × ×
9 × × ×
10 × ×

Fig. 1. A simple example of a context and its concept lattice from Wikipedia (objects
are integers from 1 to 10, and attributes are composite, even, odd, prime and square).

2.2 Mathematical Morphology

Mathematical morphology [17], in its deterministic part dealing with increasing
operators, usually relies on the algebraic framework of complete lattices [3]. Let
us first recall this basic algebraic framework. Let (L,�) and (L′,�′) be two
complete lattices (which do not need to be equal). All the following definitions
and results are common to the general algebraic framework of mathematical
morphology in complete lattices [10, 11, 15, 18].

Different terminologies can be found in different lattice theory related contexts
(refer to [16] for equivalence tables). Some of these equivalences will be given in
Section 3.

Definition 5. An operator δ : L → L′ is a dilation if it commutes with the
supremum (sup-preserving mapping): ∀(xi) ∈ L, δ(∨ixi) = ∨′iδ(xi), where ∨
denotes the supremum associated with � and ∨′ the one associated with �′.
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An operator ε : L′ → L is an erosion if it commutes with the infimum (inf-
preserving mapping): ∀(xi) ∈ L′, ε(∧′ixi) = ∧iε(xi), where ∧ and ∧′ denote the
infimum associated with � and �′, respectively.

Algebraic dilations δ and erosions ε are increasing operators; moreover δ
preserves the smallest element and ε preserves the largest element.

A fundamental notion in this algebraic framework is the one of adjunction.

Definition 6. A pair of operators (ε, δ), δ : L → L′, ε : L′ → L, defines an
adjunction if ∀x ∈ L,∀y ∈ L′, δ(x) �′ y ⇐⇒ x � ε(y).

The main properties, that will be used in the following, are summarized as
follows.

Proposition 1 ([10, 11, 15, 18]). If a pair of operators (ε, δ) defines an ad-
junction, then the following results hold:

– δ preserves the smallest element and ε preserves the largest element;
– δ is a dilation and ε is an erosion (in the sense of Definition 5);
– δε is anti-extensive: δε �′ IdL′ , where IdL′ denotes the identity mapping on
L′, and εδ is extensive: IdL � εδ. The compositions δε and εδ are called
morphological opening and morphological closing, respectively;

– εδε = ε, δεδ = δ, δεδε = δε and εδεδ = εδ, i.e. morphological opening and
closing are idempotent operators.

Let δ and ε be two increasing operators such that δε is anti-extensive and εδ is
extensive. Then (ε, δ) is an adjunction.

The following representation result also holds. If ε is an increasing operator,
it is an algebraic erosion if and only if there exists δ such that (ε, δ) is an
adjunction. The operator δ is then an algebraic dilation and can be expressed as
δ(x) =

∧′{y ∈ L′ | x � ε(y)}. A similar representation result holds for erosion.

Particular forms of dilations and erosions can be defined based on the notion
of a structuring element, which can be a neighborhood relation or any binary
relation. Let us for instance assume that L and L′ are power sets of some sets,
denoted by L = P(M) and L′ = P(G), and let I be a binary relation between G
and M . By construction (L,L′, I) is a formal context if G, M and I are defined
as in Section 2.1.

A structuring element centered at m ∈ M , or a neighborhood of m, is the
set of g ∈ G such that (g,m) ∈ I. Morphological dilations and erosions are then
defined as:

∀Y ∈ P(M), δI(Y ) =
{
g ∈ G | ∃m ∈ Y, (g,m) ∈ I

}
∀X ∈ P(G), εI(X) =

{
m ∈M | ∀g ∈ G, (g,m) ∈ I =⇒ g ∈ X

}
.

Using the FCA derivation operators on the context (G,M, I) the operators δI
and εI can be expressed as: δI(Y ) =

⋃
m∈Y β(m), and εI(X) = {m | α(m) ⊆ X}.

If L = L′, we have the following equivalences:
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I reflexive ⇐⇒ δI extensive ⇐⇒ εI anti-extensive.
Other properties can be found e.g. in [5].
As an example, let us consider that L = L′ = P(R2), with set inclusion as

partial ordering. Let us denote by B a structuring element (subset of R2), B̌
its symmetrical with respect to the origin of the space, and Bx its translation
at point x. Translation invariant operators are then expressed as: ∀X ⊆ R2,
δB(X) = {x ∈ R2 | B̌x ∩X 6= ∅}, εB(X) = {x ∈ R2 | Bx ⊆ X}. These operations
are illustrated in Figure 2 for B being a ball of the Euclidean distance. Intuitively,
the dilation extendsX by an amount corresponding to the radius of the structuring
element, while erosion reduces X. Dilation may connect connected components
and close holes, while erosion may suppress some connected components, or parts
of them that are smaller than the structuring element (in terms of inclusion).

(a) (b) (c) (d)

Fig. 2. (a) Structuring element B (ball of the Euclidean distance). (b) Subset X in the
Euclidean plane (in white). (c) Its dilation δB(X). (d) Its erosion εB(X).

3 A First Link between FCA and Mathematical
Morphology

As already briefly noticed e.g. in [5] FCA and mathematical morphology both
rely on complete lattice structures which share some similarities. In this section,
we highlight some parallel properties of dilations and erosions on the one hand,
and of derivation operators on the other hand. The first important link is that
(ε, δ) is an adjunction (sometimes called monotone Galois connection), while
(α, β) is an antitone Galois connection. It is obvious from Definitions 1 and 6 that
the two properties are equivalent if we reverse the order for one of the lattices.
The same holds for all properties derived from adjunctions or Galois connections
(cf. Proposition 1). The most important ones are summarized in Table 15.

One should note that the two fields typically use different terminology for
equivalent concepts: increasing, idempotent and extensive operator are called
5 In the table we denote by Inv(ϕ) the set of invariants of an operator ϕ (i.e. x ∈ Inv(ϕ)
iff ϕ(x) = x).
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Table 1. Similarities between Mathematical Morphology and Formal Concept Analysis.

Adjunctions, dilations and erosions Galois connection, derivation operators

δ : L→ L′, ε : L′ → L α : P(G)→ P(M), β : P(M)→ P(G)

δ(x) �′ y ⇐⇒ x � ε(y) X ⊆ α(Y ) ⇐⇒ Y ⊆ β(X)

increasing operators decreasing operators
εδε = ε, δεδ = δ αβα = α, βαβ = β

εδ closing (closure operator), δε opening
(kernel operator)

αβ and βα both closure operators (closings)

Inv(εδ) = ε(L′), Inv(δε) = δ(L) Inv(αβ) = α
(
P(G)

)
, Inv(βα) = β

(
P(M)

)
ε(L′) is a Moore family,
δ(L) is a dual Moore family

α
(
P(G)

)
and β

(
P(M)

)
are Moore families

(or closure systems)
δ is a dilation: δ(∨xi) = ∨′(δ(xi)) α is an anti-dilation: α(∪Yi) = ∩α(Yi)

ε is an erosion: ε(∧′yi) = ∧
(
ε(yi)

)
β is an anti-dilation: β(∪Xi) = ∩β(Xi)

closings in MM and closure operators in FCA, while increasing, idempotent and
anti-extensive operators are called openings in MM and kernel operators in FCA.
Similarly, in FCA literature it is more common to speak of closure systems,
instead of Moore families.

In the following sections, we go beyond this simple translation of terminology
from one theory to the other. We propose new morphological operators acting
on concept lattices. These operators can then be used to reason on such lattices.

4 Mathematical Morphology Operators over Concept
Lattices

Here we consider operators over the concept lattice (C,�), denoted as C in the
sequel when no confusion occurs, associated with a given context K = (G,M, I).
As in any complete lattice, we define dilations and erosions in the concept lattice
as operations that commute with the supremum and the infimum, respectively.

In the following, we propose two approaches to concretely define these opera-
tions on (C,�): The first one (Section 4.2) is based on the notion of structuring
element, defined as an elementary neighborhood of elements of G or as a binary
relation between elements of G. We define such a neighborhood as a ball of radius
1 of some distance function on G derived from a distance on C. The second
approach (Section 4.3) defines morphological operators directly from a distance
on C.

While defining morphological operators on the power set of a given set by using
a structuring element is common in the mathematical morphology community,
defining these operators directly from a distance on the underlying lattice (C
here) is completely new.
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Since the notion of distance is central for both approaches, we discuss in the
next subsection how to construct metrics on concept lattices, based in particular
on valuations.

4.1 Distances from Valuations on (C,�)

Let us first introduce a lattice metric from any function defined on C.

Definition 7. Let f be a real-valued decreasing function on C. If a and b are
elements of C such that b covers a, then the lattice metric d is defined as

d(a, b) = d(b, a) = f(b)− f(a).

For any other elements, we define

d(a, b) = inf

n∑
i=1

d(ai, ai−1)

where a = a0, a1, · · · , an = b is a path from a to b (i.e. either ai−1 covers ai or
the contrary), and the infimum is taken over all paths.

With additional properties on the real-valued function, some metrics or
pseudo-metrics (i.e. the separability axiom may not hold) can be defined explicitly,
without requiring the computation of the infimum over a set of paths.

Definition 8. Let (C,�) be a concept lattice. A real-valued function ω on (C,�)
is a lower valuation if it satisfies the following (supermodular) property:

∀(a1, a2) ∈ C2, ω(a1) + ω(a2) ≤ ω(a1 ∧ a2) + ω(a1 ∨ a2), (5)

and is an upper valuation if it satisfies the following (submodular) property:

∀(a1, a2) ∈ C2, ω(a1) + ω(a2) ≥ ω(a1 ∧ a2) + ω(a1 ∨ a2) (6)

A real-valued function is increasing (isotone) if a1 � a2 implies ω(a1) ≤ ω(a2)
and decreasing (antitone) if a1 � a2 implies ω(a1) ≥ ω(a2).

Theorem 3 ([13, 19, 12]). Let ω be a real-valued function on a concept lattice
(C,�). Then the function defined as:

∀(a1, a2) ∈ C2, dω(a1, a2) = 2ω(a1 ∧ a2)− ω(a1)− ω(a2) (7)

is a pseudo-metric if and only if ω is a decreasing upper valuation.
The function defined as:

∀(a1, a2) ∈ C2, dω(a1, a2) = ω(a1) + ω(a2)− 2ω(a1 ∨ a2) (8)

is a pseudo-metric if and only if ω is a decreasing lower valuation.
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Owing to this result, one can obtain metrics by first defining suitable valuations
on (C,�). In what follows we introduce some examples of such valuations. We
denote by | · | the cardinality (and restrict ourselves to the finite case).

Proposition 2. On (C,�) associated with K = (G,M, I), the real-valued func-
tion defined as:

∀a ∈ C, ωG(a) = |G| − |e(a)| (9)

is a strictly decreasing upper valuation.

Proof. Let a1 = (X1, Y1) and a2 = (X2, Y2) be two formal concepts. The anti-
monotonicity of ωG follows from the fact that: (X1, Y1) � (X2, Y2) implies
X1 ⊆ X2, hence |G| − |X1| ≥ |G| − |X2|. Let us now prove that ωG is an upper
valuation, i.e. it satisfies the submodular property.

From Equation 1 we have:

ωG(a1 ∧ a2) + ωG(a1 ∨ a2) = 2|G| − |X1 ∩X2| − |β (α (X1 ∪X2))|

then

ωG(a1) + ωG(a2)− ωG(a1 ∧ a2)− ωG(a1 ∨ a2)

= |X1 ∩X2| − |X1| − |X2|+
∣∣β(α(X1 ∪X2)

)∣∣
=
∣∣β(α(X1 ∪X2)

)∣∣− |X1 ∪X2|
≥ 0

since the closure operator βα is extensive (X ⊆ β(α(X))). This completes the
proof. �

Proposition 3. The function defined as:

∀(a1, a2) ∈ C2, dωG
(a1, a2) = 2ωG(a1 ∧ a2)− ωG(a1)− ωG(a2) (10)

is a metric on (C,�).

Proof. From Theorem 3 and Proposition 2, dωG
is a pseudo-metric. Let a1 =

(X1, Y1), a2 = (X2, Y2) be formal concepts in C. Then dωG
(a1, a2) can be written

as:
dωG

(a1, a2) = |X1|+ |X2| − 2|X1 ∩X2| = |X1 ∪X2| − |X1 ∩X2|

and is then a metric on C since |X1 ∪X2| − |X1 ∩X2| = 0 implies a1 = a2. �

Proposition 4. On (C,�) associated with K = (G,M, I), the real-valued func-
tion defined as:

∀a ∈ C, ωM (a) = |i(a)| (11)

is a strictly decreasing lower valuation.

The proof is the same as for dωG
and is therefore omitted here.
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Proposition 5. The function defined as:

∀(a1, a2) ∈ C2, dωM
(a1, a2) = ωM (a1) + ωM (a2)− 2ωM (a1 ∨ a2) (12)

is a metric on (C,�).

Proof. As for dωG
(a1, a2), dωM

(a1, a2) is a pseudo-metric from Theorem 3 and
Proposition 4, and it can be written as |Y1|+|Y2|−2|Y1∩Y2| = |Y1∪Y2|−|Y1∩Y2|.
It is then a metric on C since |Y1 ∪ Y2| − |Y1 ∩ Y2| = 0 implies a1 = a2. �

Other possible valuations and inherited distances on C are listed below. Note
that some of these valuations were introduced in [14], and the proofs are therefore
omitted.

– ωI(a) = |Ia|, the cardinality of the ideal generated by an element a of C,
is increasing and supermodular (lower valuation). Then one can define a
pseudo-metric as:

dωI
(a1, a2) = ωI(a1) + ωI(a2)− 2ωI(a1 ∧ a2)

(this is derived from the fact that −ωI is a decreasing upper valuation and
from Theorem 3 applied on −ωI).

– ωF (a) = |Fa|, the cardinality of the filter generated by an element a of C,
is decreasing and supermodular (lower valuation). Then one can define a
pseudo-metric as:

dωF
(a1, a2) = ωF (a1) + ωF (a2)− 2ωF (a1 ∨ a2).

– By generalizing the previous valuations, one can define the following ones:
consider a non-negative real-valued function f on C, then the function defined
as:

ωf (a) =
∑
b�a

f(b)

is an increasing lower valuation, and

ωf (a) =
∑
a�b

f(b)

is a decreasing lower valuations.
– Based on notions from the theory of graded lattices [3], we can equip C, since

it is complete and finite, with a height function `, defined as the supremum
of the lengths of all chains that join the smallest element of the lattice to
the considered element. This function is strictly increasing and satisfies the
following property: if b covers a (i.e. a ⊂ b and @c such that a ⊂ c ⊂ b), then
`(b) = `(a) + 1. Hence this function endows the concept lattice with a graded
lattice structure. In a general graded lattice, a pseudo-metric can be defined
as

d(a1, a2) = `(a1) + `(a2)− 2`(a1 ∧ a2) .

Note that if the lattice is the power set of some set, with the inclusion relation
as partial ordering, then ` is equivalent to the cardinality and d is a metric.
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Illustration on the Numbers Example. Let us illustrate some of the in-
troduced distances on the example in Figure 1. Let a1 = ({4, 9}, {c, s}) and
a2 = ({1, 9}, {o, s}), then:

– dωG
(a1, a2) = |e(a1) ∪ e(a2)| − |e(a1) ∩ e(a2)| = |{4, 9, 1}| − |{9}| = 2,

– dωM
(a1, a2) = |i(a1) ∪ i(a2)| − |i(a1) ∩ i(a2)| = |{c, s, o}| − |{c}| = 2,

– dωI
(a1, a2) = |Ia1

|+ |Ia2
| − 2|Ia1∧a2

| = 4 + 3− 2× 2 = 3,
– dωF

(a1, a2) = |Fa1
|+ |Fa2

| − 2|Fa1∨a2
| = 4 + 4− 2× 2 = 4.

4.2 Operators on P(G) from Structuring Elements on C

In order to define explicit operations on the concept lattice, we will make use of
particular erosions and dilations, called morphological ones [17], which involve
the notion of structuring element, i.e. a binary relation b between elements of
G. For g ∈ G, we denote by b(g) the set of elements of G in relation with g. For
instance, b can represent a neighborhood system in G or a distance relation. For
a distance d between elements of G, structuring elements can be defined as balls
of this distance. The particularity here relies in the choice of the distance. The
distance in G will be derived from a distance in C and a mapping from G into
C. Balls of the distance and neighborhoods will be derived accordingly. In the
sequel, we will rely on the mapping pC introduced in Definition 2, and the link
between the neighborhood systems in both spaces for introducing the underlying
dilation and erosion.

Definition 9. Let us denote by dC any metric defined on C. We define d on G
as:

∀(g1, g2) ∈ G2, d(g1, g2) = dC(pC(g1), pC(g2)) (13)

Proposition 6. d is a pseudo-metric in G.

Proof. Since dC is a metric, it follows directly that d is positive, symmetrical,
satisfies the triangular inequality, and ∀g ∈ G, d(g, g) = 0. However d is not
separable. As a counter-example, let us consider the lattice in Figure 1, and
g1 = 5, g2 = 7. We have pC(g1) = pC(g2) = ({3, 5, 7}, {o, p}) and d(g1, g2) = 0
(but g1 6= g2). �

Examples of metrics dC on C can be found in Section 4.1, and can be used
here to derive pseudo-metrics on G using Equation 13.

Definition 10. Let d be a pseudo-metric on G defined from dC as in Equation 13.
An elementary structuring element (neighborhood) of each element of G is defined
as:

∀g ∈ G, b(g) = {g1 ∈ G | d(g, g1) ≤ 1} (14)
= {g1 ∈ G | dC(pC(g), pC(g1)) ≤ 1}. (15)

We now define dilations and erosions on the lattice (P(G),⊆).
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Definition 11. The morphological dilation of a subset X of G with respect to b
is expressed as:

δb(X) = {g ∈ G | b(g) ∩X 6= ∅}. (16)

The morphological erosion of X is expressed as:

εb(X) = {g ∈ G | b(g) ⊆ X}. (17)

These definitions provide results in P(G). They can be further restricted to
get results in e(C), where e(C) denotes the image of C by the extent mapping,
by applying βα on the resulting subset (i.e. β(α(δb(X))) and β(α(εb(X)))).

These definitions extend to neighborhoods, dilations and erosions of any size
n (n ∈ R+):

bn(g) = {g1 ∈ G | d(g, g1) ≤ n},
δbn(X) = {g ∈ G | bn(g) ∩X 6= ∅},
εbn(X) = {g ∈ G | bn(g) ⊆ X}.

These definitions enjoy all classical properties of mathematical morphology
(since they correspond to a standard construction from a neighborhood relation).
Moreover we have the following properties:

Proposition 7. The dilation δb (and any δbn) is extensive (i.e. ∀X ⊆ G,X ⊆
δb(X)). The erosion εb (and any εbn) is anti-extensive (i.e. ∀X ⊆ G, εb(X) ⊆ X).

Proof. This follows directly from the fact that ∀g ∈ G, d(g, g) = 0 and hence
g ∈ b(g). �

Note that for n = 0, the dilation (respectively the erosion) does not reduce to
the identity mapping. This comes from the fact that d is only a pseudo-metric
(i.e. non separable), and {g1 ∈ G | d(g, g1) = 0} is not reduced to g.

Similar definitions on the lattice (P(M),⊆) can be provided. The construction
and the properties are similar, by replacing pC by qC (cf. Definition 2), and are
therefore not detailed here.

Now from operations on P(G) and P(M), we can derive operators on C. We
suggest here a few ways to do so:

– Since C is sup-generated by the set pC(G), it is sufficient to define a dilation
δp on the image of G by pC, and then use the sup-generating property and
the definition of dilation as an operator that commutes with the supremum
to derive:

∀a ∈ C, δ(a) =
∨

g∈e(a)

δp(pC(g)). (18)

The definition of δp(pC(g)) can be built for instance from a valuation. Note
however that the decomposition using pC does not always lead to “simpler”
elements6.

6 For instance, let us consider the example in Figure 1 and a = ({3, 5, 7}, {o, p}). We
have pC(3) = pC(5) = pC(7) = a.
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– Similarly, since C is inf-generated by the qC(m), an erosion εq can be defined
on the image of M by qC and then an erosion on C is defined as:

∀a ∈ C, ε(a) =
∧

m∈i(a)

εq(qC(m)).

Note that if (εq, δp) forms an adjunction, then (ε, δ) is an adjunction.
– Another possibility is to build a dilation from the lattice (C,�) to the lattice

(P(G),P(M),�) from δb and εb: ∀a ∈ C, δ(a) = (δb(e(a)), εb(i(a)), and the
adjoint erosion: ∀a ∈ C, ε(a) = (εb(e(a)), δb(i(a)).

– Similarly dilations and erosions in the lattice (C,�) can be defined by using
additionally the derivation operators to ensure that the results are in C, e.g.
δ(a) = (βα(δb(e(a))), α(δb(e(a)))) = (βα(δb(e(a))), α(δb(β(i(a))))).

We do not further detail these possibilities here. The next section details other
examples of operators on (C,�), based on different decompositions of formal
concepts.

4.3 Operators from Distances on (C,�)

In this section we define morphological operators directly on C. We introduce two
approaches, both based on the property that C is sup-generated by the subset of
join-irreducible elements.

Join-Meet Generating Operators

Let us discuss the dilation case. A first idea, exploiting the sup-generating
property of C, is to define an elementary dilation on join-irreducible elements of
the lattice, and then derive dilation for any element in the lattice as a supremum
of its join elements dilation. This is similar to the definition in Equation 18, except
that the decomposition is different. We rely here as mentioned above on the
join-irreducible decomposition of the element to dilate as stated in Definition 3.

A dilation on C is then based on two steps. We first define a distance-based
elementary dilation of join-irreducible elements as:

∀a ∈ J (C), δ′(a) =
∨
{b ∈ C | d(a, b) ≤ n}

with J (C) as introduced in Definition 3, and then derive a dilation on C by using
the sup-generating properties and the fact that a dilation commutes with the
supremum.

In the following, to simplify notations, J (a) will denote a mapping of a
concept a ∈ C to a minimal join-irreducible decomposition of a (M(a) is defined
analogously).

Proposition 8. Let δ′ be an elementary dilation defined on J (C). Then the
following mapping:

δd : C −→ C
a 7−→

∨
b∈J (a) δ

′(b)
(19)
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is a dilation.

Note that when a is join-irreducible then δd(a) = δ′(a).
Let us now define the erosion operator by following the same pattern as for

dilation. Let ε′ be an elementary erosion defined onM(C) as:

∀a ∈M(C), ε′(a) =
∧
{b ∈ C | d(a, b) ≤ n}

Proposition 9. Let ε′ be an elementary erosion defined on M(C). Then the
following mapping:

εd : C −→ C
a 7−→

∧
b∈M(a) ε

′(b)
(20)

is an erosion.

Operators based on ∨,∧-Compatible Distances

Based on the decomposition into irreducible elements, one can also define
dilations and erosions using set-like distances7 that satisfy some compatibility
criteria. In this section we discuss these compatibility criteria and provide some
examples of set-like distances and their associated dilations and erosions.

Definition 12. A distance is said to be ∧-compatible, and denoted by d∧, if for
any n in R+ and any family (ai) of elements of C:

{b ∈ C | d∧(∧iai, b) ≤ n} =
⋂
i

{b ∈ C | d∧(ai, b) ≤ n}.

Definition 13. A distance is said to be ∨-compatible, and denoted by d∨, if for
any n in R+ and any family (ai) of elements of C:

{b ∈ C | d∨(∨iai, b) ≤ n} =
⋃
i

{b ∈ C | d∨(ai, b) ≤ n}.

Proposition 10. Let d be any distance on the concept lattice (C,�), and J the
join-irreducible decomposition operator on (C,�), then the following operator:

∀(a, b) ∈ C2, d∨(a, b) = inf
ai∈J (a)

d(ai, b)

is ∨-compatible.

Proof. We have: {b | d∨(a, b) ≤ n} = {b | infai∈J (a) d(ai, b) ≤ n} = {b | ∃ai ∈
J (a), d(ai, b) ≤ n} =

⋃
i{b | d(ai, b) ≤ n} =

⋃
i{b | d∨(ai, b) ≤ n}, since for any

join-irreducible element ai, d∨(ai, b) = d(ai, b). The result generalizes to any
supremum ∨iai of (possibly reducible) elements, by virtue of associative and
commutative properties of the

⋃
operator. �.

7 Note that we use the term distance in an extended sense, i.e. it does not necessarily
satisfy all metrics properties.
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Proposition 11. Let d be any distance on the concept lattice (C,�), and J the
join-irreducible decomposition operator on (C,�), then the following operator:

∀(a, b) ∈ C2, d∧(a, b) = sup
ai∈J (a)

d(ai, b)

is ∧-compatible.

Proof. We have: {b | d∧(a, b) ≤ n} = {b | supai∈J (a) d(ai, b) ≤ n} = {b | ∀ai ∈
J (a), d(ai, b) ≤ n} =

⋂
i{b | d(ai, b) ≤ n} =

⋂
i{b | d∧(ai, b) ≤ n}, since for any

join-irreducible element ai, d∧(ai, b) = d(ai, b). The result generalizes to any
supremum ∨iai of (possibly reducible) elements, by virtue of associative and
commutative properties of the

⋂
operator. �

Furthermore d∧ and d∨ satisfy the identity property, i.e. d∧(a, a) = 0 and
d∨(a, a) = 0, if d does, but they are not symmetrical.

Proposition 12. Let C be a complete concept lattice, and let d∨ be a ∨-compatible
distance on (C,�). For any n in N, the operator expressed as:

δc : C −→ C
a 7−→

∨
{b ∈ C | d∨(a, b) ≤ n}

(21)

is a dilation.

Proof. This follows directly from the ∨-compatibility of d∨ and from the following
property: for all A,B ⊆ C,

∨
(A ∪B) = (

∨
A) ∨ (

∨
B). �

Proposition 13. Let C be a complete concept lattice, and let d∧ be a ∧-compatible
distance on C. For any n in N, the operator expressed as:

εc : C −→ C
a 7−→

∧
{b ∈ C | d∧(a, b) ≤ n}

(22)

is an erosion.

Proof. This follows directly from the ∧-compatibility of d∧ and from the following
property: for all A,B ⊆ C,

∧
(A ∩B) = (

∧
A) ∧ (

∧
B). �

5 Conclusion

In this paper, we proposed to establish links between FCA theory and mathemat-
ical morphology. Based on preliminary observations of similar properties in both
domains, we defined several morphological operators on the power set of objects
(or attributes) on the one hand, and on the concept lattice itself on the other
hand. These definitions are based on valuations, neighborhood relations, and
distances. The proposed operators have good properties in terms of mathematical
morphology, which can now be exploited for developing reasoning services on the
concept lattice. Other possible approaches will also be developed in our future
work. For instance, mathematical morphology on graphs or hypergraphs can be
used on the graph representing the lattice, or on a bipartite graph (from which a
hypergraph can be derived) built from objects and attributes.
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