
Großer Beleg

Position Estimation Of A Mobile Robot

Using A Single Vehicle-Mounted Camera

bearbeitet von
Tobias Pietzsch

geboren am 25. Dezember 1975 in Rodewisch

Technische Universität Dresden
Fakultät Informatik

eingereicht am 19. November 2002

Contents

1 Introduction 1

2 The Geometry of Two Views 5
2.1 Camera projection matrices 5

2.1.1 Central projection . 5
2.1.2 Transformations of image coordinates 7
2.1.3 Transformations of world coordinates 8

2.2 Epipolar geometry . 9
2.3 Cross products . 10
2.4 The fundamental matrix . 11
2.5 The essential matrix . 12

3 Extracting Cameras from the Essential Matrix 15
3.1 Factoring E using singular value decomposition 16
3.2 Choosing the correct solution from four possible 17
3.3 Factoring E using Horn’s method 19

4 Estimation of the Essential Matrix 23
4.1 The 8-point algorithm . 23
4.2 The normalized 8-point algorithm 24
4.3 The 4-point algorithm . 27
4.4 The normalized 4-point algorithm 28
4.5 Generalization of the 4-point algorithms 29
4.6 Experimental results . 30

5 Reconstructing Camera Triples 35
5.1 A third essential matrix . 35
5.2 Scale from reconstructed world points 36

5.2.1 Linear triangulation method 39
5.2.2 Obtaining scale . 42

5.3 The uncertainty of reconstruction 43
5.4 Scale from backprojected rays 45
5.5 Experimental results . 51

iii

iv CONTENTS

6 Reconstructing a Camera Path 55
6.1 Combining camera triples . 55
6.2 Experimental results . 57

7 Conclusion 61

Chapter 1

Introduction

To navigate a mobile robot, one of the basic problems that have to be
addressed is reliable position estimation. A variety of sensors is at hand
to aid in the solution of this task, such as odometry sensors, laser range
finders, cameras or global positioning systems. This paper looks into how
this problem can be solved using vision sensors. An algorithm is devised,
that reconstructs a sequence of robot poses, more specifically a sequence
of camera positions and orientations from images provided by a calibrated
vehicle-mounted camera. The methods considered here are based on image
correspondences alone, so there is no need for an environment model. There
is an overall scale ambiguity in the reconstructed path. To update the
solution to correct scale, for instance distance information from odometry
sensors can be incorporated.

Another goal was to produce a working implementation of the algorithm.
For this purpose the Gandalf Vision and Numerical Library was used, which
is available under the GNU Lesser General Public License (LGPL) from
http://gandalf-library.sourceforge.net/. Source code fragments are
given at the end of the sections, illustrating how the respective concepts
were realized. Several experiments have been performed using simulated
data. Results are presented at the end of each chapter.

The principal approach of the algorithm is to look at two images at
once, and compute an essential matrix between them. From this matrix,
the relative position and orientation of the cameras that were used to take
the images can be extracted. The camera pairs obtained in this way will be
“stitched together” then, to form a complete sequence. The main advantage
of the approach is its computational efficiency.

The reconstruction of a path of camera positions will be solved in several
steps, starting from point correspondences between two images:

• Obtain the relative position and orientation of two robot poses from
a pair of consecutive images taken by the robots camera. Eight point
correspondences between the two images are needed, to compute an

1

2 CHAPTER 1. Introduction

unique solution to this problem.

• To obtain relative position and orientation between three robot poses,
combine two consecutive position-orientation pairs. It will be seen,
that position and orientation between two cameras can only be de-
termined up to a scale factor. Therefore, it is necessary that point
correspondences between three images are known to solve this part of
the problem. Only one such correspondence is needed to complete the
task.

• Finally, these position-orientation triples are combined to a complete
path.

Since the overall scale is still undetermined, additional information must be
used, to find the correct scale of the solution. How this can be done is not
within the scope of this paper.

Some assumptions are made to constrain the complexity of the problem:

• Finding point correspondences between images. The task of
identifying image points across images, that are projections of the
same world point must be solved before the algorithms described in
this paper can be applied. It is not considered here and it should be
noted that this is by no means a trivial task. Devising a feature-tracker
that accomplishs this task is subject of further work.

• The pinhole camera model is valid. In reality, most cameras
suffer from radial distortion. It is assumed here, that radial distorion
is negligible small or has been removed in a preprocessing step. The
Gandalf Library provides modelling and removal of radial distortion.

• The world is static. The basic unit of information that is used is two
views of the same scene. Since “two views” means two images taken by
the robots camera at different instants in time here, the phrase “the
same scene” implies that there are no moving objects in the world
other than the robot itself.

• The robot navigates on a plane. More specifically: the camera
is moving in a known plane and rotating about that planes normal.
This additional restriction applies only to the algorithms described in
Sections 4.3 and 4.4 and is explicitly stated again there.

This paper is organized as follows: Chapter 2 describes the underlying
geometry of two views of the same scene. It introduces the camera model
that is used and the concept of the essential matrix. Chapter 3 shows
how relative position and orientation can be extracted once the essential
matrix is obtained. Chapter 4 describes and evaluates several linear methods
estimating the essential matrix from a pair of images. Chapter 5 explains

3

methods to combine two consecutive position-orientation pairs to a triple
of cameras, determined up to a common scale factor. Chapter 6 explains
how the camera triples are combined to form a complete path. Finally,
experimental results are presented demonstrating the complete solution.

Chapter 2

The Geometry of Two Views

This chapter deals with the geometric properties that arise when two cam-
eras are looking at a scene, or equivalently one camera looking at a static
scene from different positions at different times. The concepts presented
here are adapted from [2, 6, 1]. The notation has been taken from [2]: Sym-
bols in boldface are used to denote vectors (like x,X). Symbols in Sans Serif
denote matrices (line P,E). Many equations contain homogeneous entities
where equality is only up to scale. Nevertheless, the = sign will be used.

This chapter starts out with the foundations by describing the camera
model used and the concepts of epipolar geometry. Finally, the fundamental
and essential matrix are introduced.

2.1 Camera projection matrices

A camera is a mapping from the 3D world to a 2D image. A camera model
is a matrix with particular properties that represents this mapping:

x = PX (2.1)

where P is a homogeneous 3×4 matrix, referred to as the camera projection
matrix which maps homogeneous 4-vectors X to homogeneous 3-vectors x
(image points). The model used here is also known as the pinhole camera
model. First an explanation of the central projection is given, which is gen-
eralized by introducing changes to the world and image coordinate systems
later.

2.1.1 Central projection

As shown in Figure 2.1, the camera centre (centre of projection) is at the
origin of an Euclidean coordinate system and the direction of view is parallel
the Z-axis. An image of the world is projected onto the image plane, which
is a plane Z = f . The parameter f is referred to as focal length. The line

5

6 CHAPTER 2. The Geometry of Two Views

z

x

X

x

x

y

C

y

camera centre

principal axis

im
age p

lan
e

Figure 2.1: The pinhole camera model.

from the camera centre perpendicular to the image plane is known principal
axis, the point where it meets the image plane is referred to as the principal
point.

y

z

Y
Z

f

Z

f

Y

Figure 2.2: Perspective projection.

The image of a world point X = (X, Y, Z)> is the point (x, y)> on the
image plane, where the line joining X and the camera centre meets the image
plane. From similar triangles, illustrated in Figure 2.2, the image of a world
point is given by

x = f
X

Z
(2.2a)

y = f
Y

Z
. (2.2b)

This relation is nonlinear in Euclidean space, but using homogeneous coor-

2.1. Camera projection matrices 7

dinates it may be expressed as the linear mapping

fX
fY
Z

 =

f 0
f 0

1 0




X
Y
Z
1

 . (2.3)

This is essentially Equation (2.1), written out.
Note that up to this point, world and image coordinates are measured

in the coordinate frame of the camera. To remove this limitation, the 3× 4
projection matrix is split up into

P = K3×3 [I|0]T4×4. (2.4)

The 4 × 4 matrix T realizes a transformation from the world reference
frame into the coordinate frame of the camera. The 3×4 matrix [I|0] projects
points measured in the camera coordinate frame into the plane Z = 1.
Finally, the 3×3 matrix K is a transformation from camera coordinates into
the image coordinate frame. The remainder of this section provides details
on K and T.

2.1.2 Transformations of image coordinates

Figure 2.1 suggests that the origin of the image coordinate system is identical
with the principal point, which might not be the case in practice. Instead,
the image of (X, Y, Z)> is

x = f
X

Z
+ px (2.5a)

y = f
Y

Z
+ py (2.5b)

where (px, py)> are the (image) coordinates of the principal point. The
camera projection matrix now can be represented as

P =

f px 0
f py 0

1 0

 . (2.6)

Furthermore, the scale of the world and image coordinate systems are
not the same, in general. Image coordinates are measured in pixels. Since
the pixels need not even be square, scale factors in both axial directions
must be introduced. The camera projection matrix becomes

P =

fx x0 0
fy y0 0

1 0

 (2.7)

8 CHAPTER 2. The Geometry of Two Views

where fx and fy represent f measured in pixels in the x and y directions re-
spectively, and (x0, y0)> are the coordinates of the principal point, measured
in pixels too.

The parameters introduced above relate to the camera itself and are
independent of the position and orientation of the camera in the world co-
ordinate frame. Therefore, they are referred to as internal parameters or
internal orientation. They can be determined by camera calibration. The
matrix

K =

fx x0

fy y0

1

 (2.8)

is also known as the camera calibration matrix.

2.1.3 Transformations of world coordinates

In practice, the coordinate frames of the camera and the world are not
identical. The two systems are related by a rotation and a translation, in
general. It can be safely assumed that the scales of the systems are equal;
scaling is part of the internal orientation.

The representations of a point in world coordinates X and in camera
coordinates Xcam are related by

Xcam =
[

R −RC̃
0> 1

]
X (2.9)

where C̃ are the Euclidean coordinates of the camera centre in the world
coordinate frame, and R is the 3× 3 rotation matrix representing the orien-
tation of the camera.

Thus, the image of a point X in the world coordinate frame is

x = K
[
R| − RC̃

]
X. (2.10)

The camera matrix becomes

P = K [R|t] (2.11)

with t = −RC̃.
The parameters R and t are the external parameters or exterior ori-

entation of the camera. The methods presented in this paper aim at the
computation of these parameters, while the internal parameters are assumed
to be known a priori.

2.2. Epipolar geometry 9

2.2 Epipolar geometry

Epipolar geometry is the projective geometry between two views. It only
depends on the internal parameters of the two cameras and their relative
orientation. It is independent of the structure of the scene.

The defining relationship is the one between a point in the first image,
and the corresponding epipolar line in the second. This relationship is pro-
jective linear and thus can be expressed by a 3 × 3 fundamental matrix. It
encodes all constraints arising from two views of the same scene.

C

e

x

X

x’

e’

C’b

Figure 2.3: Two cameras looking at the same scene.

Consider two cameras looking at the same scene as shown in Figure 2.3.
Entities in the second view are marked with a prime. The camera centres
are C and C′. The line joining the camera centres is the baseline, b. The in-
tersections e and e′ of the baseline with the image planes are called epipoles.
An epipole is the projection of one camera centre into the image plane of
the other camera.

A scene point X is projected to the image points x and x′. It can be
seen in Figure 2.3, that C, C′, x, x′ and X are coplanar. The baseline lies
in the same plane, too.

Any plane containing the baseline is an epipolar plane. The intersection
of an epipolar plane with one of the image planes is called epipolar line.
Clearly, all the epipolar lines in a image intersect in the epipole.

If the position of the image point x is known, the position of the corre-
sponding point x′ is constrained as follows: The position of the world point
X, which projects to x, is constrained to the line through C and x. The
position of x′, the image of X in the second view, is obviously constrained
to the projection of this line into the second image plane (see Figure 2.4),
which is the epipolar line corresponding to x. In other words, the epipo-
lar line corresponding to x is determined by the intersection of the second
image plane and the epipolar plane through x (and both camera centres).

10 CHAPTER 2. The Geometry of Two Views

This means, that there is a mapping from image points in the first view to
epipolar lines in the second. This mapping is projective linear [2, 6], and
thus may be expressed in terms of a 3×3 matrix, known as the fundamental
matrix.

C

e e’

C’

X?

x’?

Figure 2.4: The position of x′ is constrained to lie on the epipolar line l′

corresponding to x.

2.3 Cross products

As a short interlude, this section describes the representation of the cross
product by a skew-symmetric matrix [a]×, a concept that will be needed in
the following material.

For a 3-vector a = (a1, a2, a3)>, the corresponding skew-symmetric ma-
trix is defined as

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 .

The cross product of two 3-vectors a×b is the vector (a2b3−a3b2, a3b1−
a1b3, a1b2−a2b1)>. As one easily verifies, cross products are related to skew-
symmetric matrices according to

a× b = [a]×b = (a>[b]×)>.

A particular result, required subsequently, is given without proof here:

Result 1 For any vector t and non-singular matrix M

[t]×M = M−>[M−1t]×.

For a proof, see [2, p. 555].

2.4. The fundamental matrix 11

2.4 The fundamental matrix

As already stated in Section 2.2, the fundamental matrix F is a mapping
from points x in one view to epipolar lines l′ in the other:

l′ = Fx, (2.12)

and x′, the image point corresponding to x, lies on l′, which can be expressed
as

x′>l′ = 0. (2.13)

Combining these equations yields the defining equation for the funda-
mental matrix.

Result 2 For any pair of corresponding points x ↔ x′

x′>Fx = 0. (2.14)

Epipolar geometry only depends on the internal parameters and relative
orientation of the two cameras, as it has been shown in Section 2.2. The fun-
damental matrix will be derived now in terms of the two camera projection
matrices P and P′.

Since F depends on the relative orientation of the cameras only, the world
coordinate frame may be chosen arbitrarily. So, the coordinate system of
the first camera is chosen as the reference frame, and the projection matrices
become

P = K [I|0] (2.15a)
P′ = K′ [R|t] . (2.15b)

A world point X = (X, Y, Z, 1)> is projected into both image planes, to
x = PX and x′ = P′X. From the first camera, it is obtained that

K−1x = [I|0]X =

X
Y
Z

 . (2.16)

From the second view:

x′ = K′ [R|t]X

= K′ [R|t]




X
Y
Z
0

 +


0
0
0
1




= K′R

X
Y
Z

 + K′t (2.17)

12 CHAPTER 2. The Geometry of Two Views

Substituting (2.16) in (2.17) yields

x′ = K′RK−1x + K′t. (2.18)

This equation implies that x′ lies on the line going through K′RK−1x
and K′t. The collinearity of these three points may be expressed using the
scalar triple product as

x′>
((

K′t
)
×

(
K′RK−1x

))
= 0 (2.19)

x′>[K′t]×K′RK−1x = 0. (2.20)

Using Result 1, this transforms to

x′>
(
K′−>[t]×RK−1

)
x = 0. (2.21)

Obviously, this is the form of Result 2 and an expression for the funda-
mental matrix is

F = K′−>[t]×RK−1. (2.22)

The mapping F is clearly not invertible since all x on an epipolar line
in the first view are mapped to the same corresponding epipolar line in the
second view. This implies that F is not of full rank. In general, F must
have rank 2 (rank 1 corresponds to an impossible configuration, where the
image planes are identical and the baseline lies in both [6]). F maps from
a 2-dimensional (the first image plane) into a 1-dimensional (the pencil of
epipolar lines in the second view) projective space.

It should be noted, that F is a homogeneous entity, and therefore is
defined only up to a non-zero scale factor. The fundamental matrix has
seven degrees of freedom: the eight independent ratios of the elements of F
minus one for the rank = 2 constraint. That is, F is determined by seven
corresponding pairs x ↔ x′ in general configuration.

2.5 The essential matrix

The essential matrix is a specialization of the fundamental matrix to the
case, that the camera calibration matrices (K and K′) are known. It is the
equivalent of the fundamental matrix for normalized image coordinates. If
x is the image of a world point X projected by P = K [R|t], then x̂ = K−1x
represents the image point in normalized coordinates. More specifically, x̂
is the image of X taken by the camera P̂ = [R|t], which has the identity
matrix as its calibration matrix.

Corresponding to Equation (2.14), the defining equation for the essential
matrix is

x̂′>Ex̂ = 0. (2.23)

2.5. The essential matrix 13

Substituting for x̂ and x̂′ yields

x′>K′−>EK−1x = 0, (2.24)

from which follows that the relationship between the essential and the fun-
damental matrix is

E = K′>FK. (2.25)

Chosing the first camera’s coordinate frame as the world reference frame,
according to Equation (2.22), the essential matrix has the form

E = [t]×R (2.26)

for a pair of normalized cameras P̂ = [I|0] and P̂′ = [R|t].
In contrast to the fundamental matrix, the essential matrix has only five

degrees of freedom: three for the rotation and two for the direction of the
translation (since there is an overall scale ambiguity, translation distance is
insignificant). The reduced number of degrees of freedom translates into an
additional constraint.

Result 3 A 3 × 3 matrix is an essential matrix if and only if two of its
singular values are equal and the third is zero.

For a proof, see [2, p. 239].
Historically, the essential matrix was introduced prior to the fundamental

matrix [5]. Thus, the fundamental matrix may be seen as a generalization
of the essential matrix.

Chapter 3

Extracting Cameras from the
Essential Matrix

Having introduced the concepts of epipolar geometry and the essential ma-
trix in Chapter 2, the focus is put back to the original task now.

While the robot is moving around, its camera provides different views
of the world it operates in. Given two such views, the essential matrix
between them can be computed. Of course, this requires to identify point
correspondences between the views, which is out of the scope of this paper.
Methods to compute an essential matrix from a set of point correspondences
are deferred to Chapter 4.

Having estimated an essential matrix, it is possible to recover the rel-
ative position and orientation of the cameras, or equivalently position and
orientation of the robot. Using Equation (2.26), the second camera’s po-
sition and orientation in the coordinate frame of the first camera can be
recovered. There is an overall scale ambiguity, as illustrated in Figure 3.1,
so that only the direction of the baseline can be reconstructed, but not the
exact position of the second camera.

Figure 3.1: The same images arise from two cameras standing far apart,
looking at a big object and the same cameras standing close together, looking
at a small object.

Unfortunately, this is not the only ambiguity, but there are four differ-

15

16 CHAPTER 3. Extracting Cameras from the Essential Matrix

ent solutions of baseline and orientation corresponding to a given essential
matrix. Section 3.2 shows that this ambiguity can be resolved using the
original point correspondences. Sections 3.1 and 3.3 introduce two different
methods to factor the essential matrix according to Equation (2.26).

However, once these problems are solved, by combining several consec-
utive position-orientation pairs, it should then be possible to keep track of
the robots position (relative to its initial pose). The issue of combining such
pairs to a path will be dealt with in Chapters 5 and 6.

3.1 Factoring E using singular value decomposi-
tion

Obviously, to obtain a solution, it is necessary to factor E into the product
of a skew-symmetric matrix S and a rotation matrix R. Longuet-Higgins
suggested to do this using Singular Value Decomposition [5]. This approach
has been adopted in [2, 10], for instance. It is implemented in the Gandalf
library, too [7].

The following result shows how S and R can be obtained. It is taken
from [2].

Result 4 Suppose that the SVD of E is Udiag(1, 1, 0)V>. There are (ig-
noring signs) two possible factorizations E = SR as follows:

S = UZU> R = UWV> or UW>V> (3.1)

with

Z =

 0 1 0
−1 0 0
0 0 0

 and W =

0 −1 0
1 0 0
0 0 1

 . (3.2)

That the given factorization is valid is true by inspection. For a proof
that there are no other factorizations see [2, p.240]. Note, the scale of E
can be chosen arbitrarily and in this case, is chosen such that the singular
values become (1, 1, 0).

Taking [t]× = ±S and combining this with the two solutions for R,
there are (up to scale) four distinct solutions. The situation is illustrated
in Figure 3.2. The relationship between solutions (a) and (b), respective
(c) and (d), is a reversal of the sign of the baseline. Solutions (a) and (c),
respective (b) and (d), are related by a 180◦ rotation of the second camera
about the baseline.

3.2. Choosing the correct solution from four possible 17

(c) (d)

(a) (b)

Figure 3.2: There are four possible solutions for reconstruction from E. A
reconstructed point is in front of both cameras in only one solution.

3.2 Choosing the correct solution from four pos-
sible

To determine which of the four solutions is the correct one, it is necessary to
go back beyond the essential matrix to the point correspondences. For each
solution, it is possible to reconstruct the position of an original world point
by backprojecting a corresponding pair of image points.1 As illustrated in
Figure 3.2, the reconstructed world point will lie in front of both cameras
in one of the solutions only.

Theoretically, it is sufficient to test the solutions by reconstructing a sin-
gle world point in this way. In the presence of measurement error though,
there is a good chance that the reconstruction of a some point will be dis-
torted so much that the wrong solution is chosen. Therefore, it is better to
test with all the point correspondences and choose the solution that gets
maximum support.

Implementation. The implementation of a function solutionsupport is
now examined, which determines the number of point correspondences that
support a particular solution.

int solutionsupport(Gan_Matrix34* m34P,

1Reconstruction of world points from image correspondences will be needed in Sec-
tion 5.2, too, and will be explained there in detail.

18 CHAPTER 3. Extracting Cameras from the Essential Matrix

Gan_Vector3* av3Point0, Gan_Vector3* av3Point1,
int count) {

...

It takes as parameters the second camera projection matrix m34P (The ma-
trix [I|0] is assumed to be the first camera) and a number of count normal-
ized point correspondences, where the array av3Point0 contains the points
from the first image and av3Point1 the corresponding points from the sec-
ond image.

For each correspondence, the following to steps are performed:

• Reconstruct the world point X, that projects to the given image points
in both views.

• Determine, if this point is in front of both cameras. If so, increment
supportcount.

To reconstruct X, the function reconstructWorldPoint() is used which
will be defined in Section 5.2.

Gan_Vector4 v4X;
if(!reconstructWorldPoint(m34P, &av3Point0[i],

&av3Point1[i], &v4X))
{

... //reconstruction failed, process next correspondence
}

To determine wether a point is in front af a camera it is first transformed
into the coordinate frame of this camera. Then it is checked whether its
Euclidean z-coordinate is positive.

If X is scaled such that its last component is positive, it is straightfor-
ward to determine wether it is in front of a camera: This is the case if the
last component of x = PX is positive. For the first camera [I|0], the last
component of x = [I|0]X is simply the third component of X.

if(v4X.w < 0) {
(void)gan_vec4_negate_i(&v4X);

}
Gan_Vector3 v3x;
(void)gan_mat34_multv4_q(m34P, &v4X, &v3x);

if((v3x.z > 0) && (v4X.z < 0)) {
supportcount++; // count this correspondence
...

The steps above are repeated for every point correspondence, and the re-
sulting supportcount is returned. The function can be called for each of
the four possible P′ solutions, and the correct (most likely, still subject to a
measurement error) solution is the one which gets the maximum result.

3.3. Factoring E using Horn’s method 19

3.3 Factoring E using Horn’s method

An alternate method for recovering baseline and orientation from E is given
by Horn in [3]. For details, the reader is referred to the original paper. The
two possible solutions for the baseline t are computed as

t = ± ei × ej

‖ei × ej‖

√
1
2

trace (EE>), (3.3)

where (ei×ej) is the largest of the three possible cross products of any two of
the columns of E. Having obtained the solutions t+ and t− for the baseline,
the corresponding solutions for orientation R+ and R− can be computed
from

‖t‖2R = cofactors (E)> − [t]×E. (3.4)

In the case that the essential matrix estimate does not obey the constraints
of Result 3, the solutions for R will not be real rotation matrices and should
be corrected to be orthogonal.

Combining the possible baselines and orientations yields the four solu-
tions for the second camera projection matrix.2

Implementation. The following function is a straightforward implemen-
tation of Horn’s method. It computes the four solutions for the second
camera from an essential matrix m33E and stores them in the array m34P.

void getRtSolutions(Gan_Matrix33* m33E, Gan_Matrix34* m34P) {
static Gan_Matrix33 m33Orientation[2];
static Gan_Vector3 v3Baseline[2];
static Gan_Vector3 v3BaselineUnitNorm[2];

As pointed out in [3] trace(EE>) simply is the sum of the squares of the
elements of E.

double TraceEET = m33E->xx * m33E->xx
+ m33E->xy * m33E->xy + m33E->xz * m33E->xz
+ m33E->yx * m33E->yx + m33E->yy * m33E->yy
+ m33E->yz * m33E->yz + m33E->zx * m33E->zx
+ m33E->zy * m33E->zy + m33E->zz * m33E->zz;

Now the two solutions for the baseline can be obtained using the largest
cross product (ei × ej).

Gan_Vector3 ecol[3];
(void)gan_mat33_get_cols_q(m33E,

&ecol[0], &ecol[1], &ecol[2]);

2The combinations [R−|t+] and [R−|t+] correspond to the reversal of the sign of E.

20 CHAPTER 3. Extracting Cameras from the Essential Matrix

Gan_Vector3 blsol[3];
(void)gan_vec3_cross_q(&ecol[0], &ecol[1], &blsol[0]);
(void)gan_vec3_cross_q(&ecol[1], &ecol[2], &blsol[1]);
(void)gan_vec3_cross_q(&ecol[2], &ecol[0], &blsol[2]);

double sqrlen[3];
sqrlen[0] = gan_vec3_sqrlen_q(&blsol[0]);
sqrlen[1] = gan_vec3_sqrlen_q(&blsol[1]);
sqrlen[2] = gan_vec3_sqrlen_q(&blsol[2]);
if(sqrlen[0] > sqrlen[1] && sqrlen[0] > sqrlen[2]) {

v3Baseline[0] = blsol[0];
} else if(sqrlen[1] > sqrlen[2]) {

v3Baseline[0] = blsol[1];
} else {

v3Baseline[0] = blsol[2];
}

(void)gan_vec3_unit_q(&v3Baseline[0],
&v3BaselineUnitNorm[0]);

(void)gan_vec3_scale_q(&v3BaselineUnitNorm[0],
sqrt(TraceEET / 2.0),
&v3Baseline[0]);

(void)gan_vec3_negate_q(&v3BaselineUnitNorm[0],
&v3BaselineUnitNorm[1]);

(void)gan_vec3_negate_q(&v3Baseline[0], &v3Baseline[1]);

The two values for rotation, that correspond to the baseline solution can
be obtained now. The matrix of cofactors of E is just cofactors (E) =
(e2 × e3, e3 × e1, e1 × e2).

Gan_Matrix33 CofactorsT;
(void)gan_mat33_set_cols_q(&CofactorsT,

&blsol[1], &blsol[2], &blsol[0]);

Gan_Matrix33 m33B;
Gan_Matrix33 m33BE;

//for first baseline
(void)gan_mat33_cross_q(&v3Baseline[0], &m33B);
(void)gan_mat33_rmultm33_q(&m33B, m33E, &m33BE);
(void)gan_mat33_sub_q(&CofactorsT, &m33BE,

&m33Orientation[0]);
(void)gan_mat33_divide_i(&m33Orientation[0], TraceEET/2);
(void)gan_rot3D_matrix_adjust(&m33Orientation[0]);

3.3. Factoring E using Horn’s method 21

//for second baseline
...

Finally, rotations and baselines are combined to the four solutions

(void)gan_mat34_set_parts_q(&m34P[0], &m33Orientation[0],
&v3BaselineUnitNorm[0]);

(void)gan_mat34_set_parts_q(&m34P[1], &m33Orientation[0],
&v3BaselineUnitNorm[1]);

(void)gan_mat34_set_parts_q(&m34P[2], &m33Orientation[1],
&v3BaselineUnitNorm[0]);

(void)gan_mat34_set_parts_q(&m34P[3], &m33Orientation[1],
&v3BaselineUnitNorm[1]);

}

Which of these solutions is the correct one, can be determined using the
function solutionsupport() described in the Section 3.2.

Chapter 4

Estimation of the Essential
Matrix

This chapter deals with the computation of the essential matrix from point
correspondences. Efficient linear methods are presented, all based on the
concept of total least-squares (TLS). It should be noted, that the algorithms
can be employed to compute the fundamental matrix, too. To compute the
fundamental matrix, one uses the plain point correspondences, whereas to
compute the essential matrix, the point correspondences are transformed to
normalized coordinates beforehand.

Finally, the performance of the algorithms will be evaluated. It will be
seen, that really good results can be obtained, if proper normalization is
carried out.

In [2] several nonlinear iterative algorithms are presented, which may
yield even better result. These are not discussed here though.

4.1 The 8-point algorithm

From Section 2.5 it is known, that the essential matrix must fulfill

x̂′>Ex̂ = 0. (4.1)

for any pair of matching points x ↔ x′ in two views. Writing x̂ = (x, y, 1)
and x̂′ = (x′, y′, 1), a corresponding pair gives rise to one linear equation in
the elements of E. Writing out Equation (4.1) yields

x′xe11 +x′ye12 +x′e13 +y′xe21 +y′ye22 +y′e23 +xe31 +ye32 +e33 = 0, (4.2)

where eij denotes the element of E in the i-th row and j-th column. Ex-
pressing the eij as a 9-vector e = (e11, e12, e13, e21, e22, e23, e31, e32, e33)>

Equation (4.2) can be written as the inner product

(x′x, x′y, x′, y′x, y′y, y′, x, y, 1)e = 0. (4.3)

23

24 CHAPTER 4. Estimation of the Essential Matrix

The coefficient vectors obtained from a set of n pairs xn ↔ x′n can be
stacked to form a system of linear equations

Ae =

x′1x1 x′1y1 x′1 y′1x1 y′1y y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′ny y′n xn yn 1

 e = 0 (4.4)

Obviously, from 8 point correspondences in general configuration1 the
solution vector e can be determined uniquely (up to scale).

If more than 8 correspondences are given and the data is not exact
(because of measurement error), the rank of A may be 9 and consequently,
there will be no solution apart from the trivial one e = 0.

In this case a least-squares solution can be found that minimizes ‖Ae‖
subject to ‖e‖ = 1. Since e is only determined up to scale, it’s norm may be
chosen arbitrarily. This solution is the singular vector of A corresponding
to the smallest singular value, or equivalently the eigenvector of A>A with
the least eigenvalue.

The 8-point algorithm was introduced by Longuet-Higgins in [5].

Implementation. The Gandalf Library implements the 8-point algorithm
in the functions

Gan_Bool gan_fundamental_matrix_fit(...)
Gan_Bool gan_essential_matrix_fit(...)

which, as their names suggest, compute the fundamental respective essential
matrix from point correspondences.

The function gan fundamental matrix fit() just implements the algo-
rithm explained above. The function gan essential matrix fit() addi-
tionally performs transformation of the point correspondences to normalized
coordinates. It also reconstructs the second camera from the computed es-
sential matrix, but it does so using SVD, so it is not recommended to use
this result.

A detailed description of the methods is given in the documentation for
the Gandalf Library [7, Tutorial, Section 5.2].

4.2 The normalized 8-point algorithm

The performance of the 8-point algorithm can be vastly improved by nor-
malization. Normalization, in this context, means to apply a transformation
to the input data and later remove it’s effect from the computed essential
respective fundamental matrix estimate. It should not be confused with nor-
malized image coordinates, where the desired effect is to remove the influence

1The rows of A must be linearly independent for a unique solution to exist.

4.2. The normalized 8-point algorithm 25

of the camera calibration matrix from the input data. In the following, the
former kind of normalization is meant if the contrary is not explicitly stated.

This section proceeds with a discussion of the problems that arise from
the (unnormalized) 8-point algorithm and adds a normalization step that
improves the algorithm. A comparison of the results of both algorithms will
be given in Section 4.6.

The 8-Point algorithm minimizes the norm ‖Ae‖. More explicitly, the
norm of the residual vector ε = Ae is minimized. Each correspondence
xi ↔ x′i contributes one element εi of the residual vector. That quantity is
known as algebraic distance, which is defined as

dalg(x1,x2)2 = x1 × x2. (4.5)

For a set of correspondences, the residual vector ε is the algebraic error
vector for the whole set. One can see, that∑

i

dalg(x̂′i,Ex̂i)2 =
∑

i

‖εi‖2 = ‖ε‖2 (4.6)

The disadvantage of the concept of algebraic distance is that the quantity
that is minimized is not geometrically or statistically meaningful [2]. As
a consequence, the 8-point algorithm is not invariant under a projective
transformation of the input data.

Suppose, the algorithm yields E as a solution of the problem

x̂′>i Ex̂i = 0. (4.7)

For some (invertible) projective transformations T and T′, let x̃i = Tx̂i and
x̃′i = T′x̂′i. Since

x̂′>i T′>T′−>ET−1Tx̂i = x̂′>i Ex̂i = 0 (4.8)

one would expect that the solution Ẽ of the problem

x̃′>i Ẽx̃i = 0 (4.9)

is related to E by E = T′>ẼT. However, for the 8-point algorithm this
is unfortunately not true. Hartley and Zisserman [2, p. 89] explain this
behaviour for the analogue problem (and algorithm) of estimating a 2D
homography from point correspondences.

Since the property E = T′>ẼT does not hold, it is obvious that there are
“good” and “bad” transformations T, T′ with respect to the optimal solu-
tion. The concept of the normalized 8-point algorithm can be summarized
as follows:

26 CHAPTER 4. Estimation of the Essential Matrix

1. Apply “good” transformations to the input data to obtain x̃i =
Tx̂i and x̃′i = T′x̂′i.

2. Compute Ẽ as the least-squares solution to x̃′>i Ẽx̃i = 0

3. Obtain the essential matrix as E = T′>ẼT

Hartley and Zisserman [2] suggest to choose the normalization transforma-
tions as “a translation and isotropic scaling of each image so that the centroid
of the reference points is at the origin of the coordinates and the RMS dis-
tance of the points from the origin is equal to

√
2 ”. This approach has been

implemented and tested here.
Muehlich and Mester [8] derived an optimal normalization transforma-

tion and applied TLS with fixed columns to exploit contraints in the error
structure of the resulting coefficient matrix. The normalization they sug-
gested was implemented, too, but applying plain TLS it did not show sig-
nificant differences to the “Hartley”-normalization. It is therefore omitted
from the experimental results section.

Implementation. A function that computes the normalization transfor-
mation suggested by Hartley and Zisserman is now examined:

void getHartleyNormT(Gan_SquMatrix33* ltm33T,
Gan_Vector3* av3Point, int count) {

It takes three parameters: the matrix ltm33T to receive the normalization
transformation, an array of points av3Point, and the number of points in
the array count. The transformation computed will be the upper-triangular
matrix

T =

s tx
s ty

1

 , (4.10)

with s being the isotropic scaling factor and (tx, ty) the translation vec-
tor. Since the Gandalf Library only supports lower-triangular matrices, the
transpose of T will be returned. Gandalf provides implicit transposition for
matrix multiplication, this must be applied when using ltm33T.

The translation vector (tx, ty) shall move the centroid of the points to
the origin. We first compute the vector (tx0, ty0) which moves the centroid

4.3. The 4-point algorithm 27

of the original (unscaled) pointset to the origin

tx0 = stx = −
∑n

i=0 xi

n

ty0 = sty = −
∑n

i=0 yi

n

where xi and yi are the Euclidean coordinates of the i-th point.
The factor s shall scale the points such that RMS distance of the points

from the origin is equal to
√

2. This is computed as

s =
n
√

2∑n
i=0

√
(xi + tx0)2 + (yi + ty0)2

where xi and yi are the Euclidean coordinates of the i-th point.

double sum_xi = 0, sum_yi = 0;
double sum_squ = 0;
double n = (double)count;
for(int i=0; i<count; i++) {

double xi = av3Point[i].x / av3Point[i].z;
double yi = av3Point[i].y / av3Point[i].z;
sum_xi += xi; sum_yi += yi;

}
double tx0 = - sum_xi / n;
double ty0 = - sum_yi / n;
for(int i=0; i<count; i++) {

double xi = av3Point[i].x / av3Point[i].z + tx0;
double yi = av3Point[i].y / av3Point[i].z + ty0;
sum_squ += sqrt(xi*xi + yi*yi);

}

double s = sqrt(2) * n / sum_squ;
double tx = s * tx0;
double ty = s * ty0;
(void)gan_ltmat33_fill_q(ltm33T, s,

0, s,
tx, ty, 1);

Note, normalization transformations should be computed from and applied
to coordinates already (camera) normalized.

4.3 The 4-point algorithm

For a robot navigating in a typical office environment, some additional con-
straints arise: The robot is moving on a plane and rotation occurs about

28 CHAPTER 4. Estimation of the Essential Matrix

the normal of this plane only. In the simplest situation the principal axis of
the camera lies in a plane parallel to the x-y-plane and movement is paral-
lel to this plane. In this case, the components of camera displacement are
restricted as follows: The component y of the translation is zero,

t =

x
0
z

 . (4.11)

And the camera rotates by θ about the y-axis,

R =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 . (4.12)

Building the resulting essential matrix, one can see that five of its elements
are equal to zero.

E = [t]×R =

 0 −z 0
cos(θ)z + sin(θ)x 0 sin(θ)z − cos(θ)x

0 x 0

 (4.13)

Obviously, this is very convenient since the coefficients of the zero elements
drop out of Equation (4.2).

x′ye12 + y′xe21 + y′e23 + ye32 = 0, (4.14)

Thus, the coefficient matrix A only has 4 columns and the solution vector
e = (e12, e21, e23, e32)> only has 4 elements. Consequently, instead of eight,
only four point correspondences are needed to uniquely determine E. Note,
the rank=2 constraint is automatically fulfilled because of the structure of
E.

For the extraction of R and t, the number of possible solutions drops
to two. Since rotation about the baseline is impossible, R is determined
uniquely.

4.4 The normalized 4-point algorithm

Despite the improvements over the 8-point algorithm, the 4-point algorithm
is still associated with the same problems. To overcome these, again input
data normalization is employed.

The normalization, as done in Section 4.2 (translation and isotropic scal-
ing) results in normalization matrices of the form

T =

s tx
s ty

1

 , (4.15)

4.5. Generalization of the 4-point algorithms 29

with s being the isotropic scaling factor and (tx, ty) the translation vector.
From the relation E = T′>ẼT, it is obvious that non-zero values of ty

respective t′y result in a “destruction” of three of the zero elements in Ẽ.
This is not desirable, and therefore ty and t′y should be set to zero.

The following normalization is suggested: isotropic scaling so that the
RMS distance of the points from the origin is equal to

√
2; translation in

x-direction so that the average point has x = 0.
This results in normalization matrices of the form

T =

s tx
s

1

 , (4.16)

In Section 4.6 the results of the 4-point algorithms are compared with
the corrseponding results of the 8-point algorithms. The question of how
much the performance of the 4-point algorithm degrades if the constraints
are not perfectly met, is looked into there, too.

4.5 Generalization of the 4-point algorithms

In Section 4.3, the additional assumption was made that the principal axis
is parallel to the x-z-plane. This is not necessary, though. Since two views
taken from a fixed point are related by a 2D homography, it is sufficient that
rotations of the camera about the x-axis and z-axis are known.

z

y
X

β

α

x̃x

Figure 4.1: Ideal and real image points are related by a 2D homography.

In the situation illustrated in Figure 4.1, image points in the real image
x (taken by the actual camera) and the ideal image x̃ (taken by the ideal
camera, aligned with the x-z-plane) are related by

x̃ = Hx = Rz(β)Rx(α)x. (4.17)

30 CHAPTER 4. Estimation of the Essential Matrix

This is incorporated into the algorithm in the same way as image normal-
ization:

1. Compute ideal image coordinates x̃ = Hx and x̃′ = H′x′.

2. Use one of the 4-point algorithms to compute an estimate for
Ẽ.

3. Obtain the essential matrix as E = H′>ẼH

Note, the relative orientation of the ideal cameras can be computed from
Ẽ, if desired. In robot navigation this corresponds to the orientation of the
robot instead of the camera.

Of course, the need to know α and β results in an additional calibration
effort. The same is true for aligning the camera parallel to the x-z-plane.

4.6 Experimental results

The algorithms discussed in the previous chapters have been implemented
and a number of simulations have been performed for different settings of
camera motion and measurement error.

The following setup was used which is similar to the setup used in [8]:
An “object” is created by choosing 25 random points inside of a cube given
by world coordinates x, y, z ∈ [−0.5, 0.5]. The object is projected onto the
image plane of a camera located at (0, 0,−2) and looking towards the origin.
The camera parameters were:

resolution 800× 600 pixel
focal length 0, 6 units = 1000 pixel
principal point x = 400, y = 300 pixel

The camera was then moved to obtain a second image. The essential
matrix was computed from the generated point correspondences. The po-
sition of the second camera then was reconstructed using Horn’s method.
Since reconstruction is only up to scale, the angular difference between the
vector to the reconstructed camera and the real motion vector was taken as
a measure of error.

Simulated measurement error has been introduced to the image points
of the second image by adding noise vectors (x, y) drawn from a uniform
distribution x, y ∈ [−ε/2, ε/2] with ε variying between 0 and 10 pixel. The
measurements in the first image remained untouched.

For a camera movement of one unit in z respective x direction, for each
value of ε, 500 experiments were performed and the mean angular error was
computed. Figures 4.2 and 4.3 compare the performance of the algorithms.

4.6. Experimental results 31

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

an
gu

la
r e

rr
or

 [d
eg

]

measurement error [pixel]

 4-point

 normalized 4-point

 8-Point

 normalized 8-point

Figure 4.2: Mean angular difference between estimated and true motion di-
rection for motion in z direction for varying measurement error. The error-
bars show the standard deviation scaled by 0.1.

Several observations are made:

• In accordance with the results of [8], a strong bias of the standard
8-point algorithm towards the viewing direction (z) is observed. The
same is true for the standard 4-point algorithm, and to some extend
for the normalized versions. For the robot navigation task, this is
not really a problem since movement perpendicular to the viewing
direction will most likely not occur.

• The normalized versions are by far superior when movement is perpen-
dicular to the viewing direction, where the unnormalized algorithms
become intolerably inaccurate as more measurement error is intro-
duced.

• In the case of motion in the viewing direction, the normalized algo-
rithms slightly fall behind the unnormalized versions. It can be con-
cluded that normalization somewhat alleviates the bias towards the
viewing direction.

• The 4-point algorithms outperform their 8-point counterparts, which
comes as no surprise, since more a priori knowledge is provided.

32 CHAPTER 4. Estimation of the Essential Matrix

0

10

20

30

40

50

60

0 2 4 6 8 10

an
gu

la
r e

rr
or

 [d
eg

]

measurement error [pixel]

 4-point

 normalized 4-point

 8-Point

 normalized 8-point

Figure 4.3: Mean angular difference between estimated and true motion di-
rection for motion in x direction for varying measurement error. The error-
bars show the standard deviation scaled by 0.1.

Additional experiments were performed, to determine the tolerance of
the 4-point algorithms to deviation of the actual setup from the prerequisites
(movement only in the x-z-plane, rotation only about the y-axis). The basic
setup was left untouched, but instead of introducing error in the image
measurements, the second camera was turned about the x-axis by 0 to 5
degrees (denoted as angular error in Figures 4.4, 4.5, 4.6). This setup is
supposed to simulate a robot navigating on slightly uneven ground. For each
setting 200 experiments were performed and the mean angular difference
between estimated and true motion direction calculated.

The results as shown in Figures 4.4, 4.5, 4.6 are discouraging:

• For movement perpendicular to the viewing direction (Figure 4.6) the
algorithm is rendered useless even by the slightest angular error.

• Even for movement towards the viewing direction, which yields the
best results, the performance degradation resulting from angular error
will make the 4-point algorithms lack behind the 8-point versions,
unless the additional prerequisites are perfectly met.

It is probably best to use the normalized 8-point algorithm in practice.
It may be considered, to fall back to one of the 4 point algorithms, in the
case that there are less than eight point correspondences known.

0

1

2

3

4

5

6

7

0 1 2 3 4 5

an
gu

la
r e

rr
or

 [d
eg

]

rotational error [deg]

 4-point

 normalized 4-point

Figure 4.4: Mean angular difference between estimated and true motion di-
rection for motion in z direction for varying rotational error. The errorbars
show the standard deviation scaled by 0.1.

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5

an
gu

la
r e

rr
or

 [d
eg

]

rotational error [deg]

 4-point

 normalized 4-point

Figure 4.5: Mean angular difference between estimated and true motion di-
rection for motion in direction (1, 0, 1) for varying rotational error. The
errorbars show the standard deviation scaled by 0.1.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5

an
gu

la
r e

rr
or

 [d
eg

]

rotational error [deg]

 4-point

 normalized 4-point

Figure 4.6: Mean angular difference between estimated and true motion di-
rection for motion in x direction for varying rotational error. The errorbars
show the standard deviation scaled by 0.1.

Chapter 5

Reconstructing Camera
Triples

Up to this point, attention was directed to the reconstruction of camera
pairs. But the final result that shall be obtained is a path i.e., a sequence
of positions. This chapter describes methods to combine two consecutive
position-orientation pairs to obtain relative position and orientation between
three cameras. Because of the scale ambiguity of the reconstructed pairs,
this is not a trivial problem. However, once the triples have been obtained, it
is simple to combine them to a complete path, since two consecutive triples
share one camera pair and thus the scale factor between them is obvious.

It will be seen that at least one point correspondence across all three
images is needed to reconstruct a triple. At first, the problem should be
solved without using such information, but it will fail for certain setups.
Subsequently, an algorithm is given, that uses corresponding triples to re-
constructs world points first and then calculate scale from these. Another
algorithm is introduced, that does not take this detour but computes scale
directly from the correspondences. Finally the performance of the latter two
algorithms is compared.

The goal of all the algorithms is to compute the scale factor k, which is
the ratio of the Euclidean distances between the camera centres in the first
camera pair (P,P′) and in the second camera pair (P′,P′′).

5.1 A third essential matrix

The solution to the triple reconstruction problem presented in this section
is more straightforward than the other two. Unfortunately, it will not work
for certain configurations. It was neither implemented nor tested.

Suppose, for three cameras P, P′, P′′ from the essential matrices between

35

36 CHAPTER 5. Reconstructing Camera Triples

P and P′ respective P′ and P′′ the first pair was reconstructed as

P = [I|0] (5.1)
P′ = [R|t] (5.2)

and the second pair as

P′ = [I|0] (5.3)
P′′ =

[
R′|kt′

]
. (5.4)

Since reconstruction is only up to scale and the scale may differ between
the pairs, a unknown factor k has been introduced to P′′. The goal of triple
reconstruction is to obtain this factor k, that is the relative scale between
the camera pairs.

Using the first cameras coordinate frame as the reference frame, the
cameras become

P = [I|0] (5.5)
P′ = [R|t] (5.6)
P′′ =

[
R′R|R′t + kt′

]
. (5.7)

Using Equation (2.26), the essential matrix between the first and the third
view is

E(k) = [R′t + kt′]×R′R. (5.8)

Given a correspondence between the first and third view x ↔ x′′ the factor
k can be computed from

x̂′′>E(k)x̂ = 0. (5.9)

Note, that this does not require the existence of a corresponding point x′ in
the second view.

Since E(k) is a homogeneous entity and thus only defined up to scale,
k obviously cannot be determined if R′t = t′. This happens if the three
camera centres are collinear.

Figure 5.1 illustrates the equivalent case when the relative position and
orientation is known for the three combinations (P,P′), (P′,P′′) and (P,P′′).
If the camera centres are collinear, it is impossible to determine relative
scale for this case, too.

It is therefore not sufficient to know E(k) in order to obtain a solution
for relative scale. The next sections will show how k can be computed if
correspondences across all three views are available.

5.2 Scale from reconstructed world points

Given a correspondence x ↔ x′ ↔ x′′ and the reconstructed camera pairs,
the world point X can be reconstructed from x ↔ x′ and the first camera

5.2. Scale from reconstructed world points 37

C′

C′′

?

C

C′′

C′

C

Figure 5.1: Relative scale cannot be computed if the camera centres are
collinear.

pair or from x′ ↔ x′′ and the second camera pair. All the image measure-
ments resulted from the same world point, so the reconstructed point should
be the same in both cases. However, because of the undetermined scale, the
reconstructed points may be different, and the scale factor k between the
camera pairs can be obtained from this difference. This basic idea is illus-
trated in Figure 5.2 This section introduces an algorithm based on this idea.
It can be summarized as follows:

38 CHAPTER 5. Reconstructing Camera Triples

X

P
P′ P′

P′′

X′

P
P′

P′′

X = X′

Figure 5.2: Obtaining relative scale of a camera triple from a reconstructed
world point.

1. For each of the reconstructed pairs of cameras (P,P′), (P′,P′′)
choose the scale such that the distance between the camera
centres equals 1.

2. Reconstruct world points X and X′ by backprojecting image
measurements x ↔ x′ and x′ ↔ x′′ using the second camera
frame as the reference frame.

3. Since X and X′ should represent the same world point, the
scale may be computed as

k =

∥∥∥C̃′′ − C̃′
∥∥∥∥∥∥C̃′ − C̃
∥∥∥ =

∥∥∥X̃′
∥∥∥∥∥∥X̃∥∥∥ (5.10)

where the tilde superscript indicates the use of Euclidean co-
ordinates.

This computation process can be repeated for each corresponding triple
xi ↔ x′i ↔ x′′i , and the scaling factor can be obtained as the mean value of
the ki.

This section proceeds with the introduction of a simple linear triangula-
tion method for reconstructing a world point from image measurements. It
then looks into the uncertainty of reconstruction, which will be incorporated
into the algorithm as weighting factors for the ki. Finally, an implementa-
tion of the method is given, computing scale as a weighted average of the
ki.

5.2. Scale from reconstructed world points 39

5.2.1 Linear triangulation method

Theoretically, the world point X, which is projected to x and x′ by two cam-
eras P and P′ can be computed as the intersection of the backprojected rays
through C and x respective C′ and x′. But in the presence of measurement
error in x and x′, these rays will be skew in general, and consequently there
will be no point X that satisfies x = PX and x′ = P′X.

However, an estimate for X can be computed. The method used here is
similar to the 8-point algorithm. One obtains a least-squares solution to a
set of equations AX = 0, subject to ‖X‖ = 1. The following explanation of
how A is formed is taken from [2].

In each image, we have a measurement x = PX, x′ = P′X, and these
equations can be combined into a form AX = 0, which is an equation linear
in X. First, the homogeneous scale factor is eliminated by a cross product
to obtain three equations for each image point, of which two are linearly
independent. For example, for the first image, x × (PX) = 0 and writing
this out gives

x
(
p3>X

)
−

(
p1>X

)
= 0

y
(
p3>X

)
−

(
p2>X

)
= 0

x
(
p2>X

)
− y

(
p1>X

)
= 0

where pi> are the rows of P. These equations are linear in the components
of X.

An equation of the form AX = 0 can be composed with

A =


xp3> − p1>

yp3> − p2>

x′p′3> − p′1>

y′p′3> − p′2>


where two equations have been included from each image, giving a total of
four equations in four unknowns. This is a redundant set of equations, since
the solution is determined only up to scale.

The solution can be obtained as the singular vector of A corresponding
to the smallest singular value.

The method presented here has two drawbacks. First, equivalently to
what was described in Section 4.2, the quantity that is minimized is not
geometrically or statistially meaningful. Second, for certain configurations,
A might not be of full rank. In this case, AX = 0 has no unique solution. For
instance, consider the case of pure translation in z-direction. The camera

40 CHAPTER 5. Reconstructing Camera Triples

matrices will be

P = [I|0] P′ =

1 0 0 0
0 1 0 0
0 0 1 1

 .

For a world point lying on the x-z-plane, y = y′ = 0. Since p2> = p′2>, the
second and fourth row of A are linearily dependent and A is not of full rank.

The following implementation takes the latter problem into account by
considering results invalid, that were obtained from a configuration, where
A is numerically very close to having rank < 4. If the difference between the
two smallest singular values is below a certain border, the reconstruction is
considered invalid.

Implementation. The implementation of a function is now examined,
which estimates the position of a world point.

bool reconstructWorldPoint(Gan_Matrix34* m34P,
Gan_Vector3* v3Point0, Gan_Vector3* v3Point1,
Gan_Vector4* v4X) {

...

It takes as parameters the second camera projection matrix m34P (the ma-
trix [I|0] is assumed to be the first camera) and a point correspondence,
where v3Point0 contains a point from the first image and v3Point1 the
corresponding point from the second image, both in normalized coordinates.
The return value indicates whether the reconstruction was successful. As
indicated above, cases where the difference between the two smallest singu-
lar values is below a certain border are considered invalid. The border was
chosen as 0.01. The reconstructed world point is stored in v4X.

First the pi> and p′i> vectors are initialized from the camera projection
matrices.

//rows of [I|0]
Gan_Vector4 p1_0, p2_0, p3_0;
Gan_Matrix34 m34I0;
(void)gan_mat34_fill_q(&m34I0,

1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0);

gan_mat34_get_rows_q(&m34I0, &p1_0, &p2_0, &p3_0);

//rows of m34P
Gan_Vector4 p1_1, p2_1, p3_1;
gan_mat34_get_rows_q(m34P, &p1_1, &p2_1, &p3_1);

Then the matrix A is built:

5.2. Scale from reconstructed world points 41

Gan_Matrix44 m44A;
Gan_Vector4 v4temp;
(void)gan_vec4_scale_q(&p3_0, v3Point0->x, &v4temp);
(void)gan_vec4_sub_i1(&v4temp, &p1_0);
m44A.xx = v4temp.x;
m44A.xy = v4temp.y;
m44A.xz = v4temp.z;
m44A.xw = v4temp.w;

(void)gan_vec4_scale_q(&p3_0, v3Point0->y, &v4temp);
(void)gan_vec4_sub_i1(&v4temp, &p2_0);
m44A.yx = v4temp.x;
m44A.yy = v4temp.y;
m44A.yz = v4temp.z;
m44A.yw = v4temp.w;

(void)gan_vec4_scale_q(&p3_1, v3Point1->x, &v4temp);
(void)gan_vec4_sub_i1(&v4temp, &p1_1);
m44A.zx = v4temp.x;
m44A.zy = v4temp.y;
m44A.zz = v4temp.z;
m44A.zw = v4temp.w;

(void)gan_vec4_scale_q(&p3_1, v3Point1->y, &v4temp);
(void)gan_vec4_sub_i1(&v4temp, &p2_1);
m44A.wx = v4temp.x;
m44A.wy = v4temp.y;
m44A.wz = v4temp.z;
m44A.ww = v4temp.w;

and the solution X is obtained as the last column of V from the singular
value decomposition svd(A) = UWV>.

Gan_Matrix44 m44U;
Gan_Vector4 v4W;
Gan_Matrix44 m44VT;
(void)gan_mat44_svd(&m44A, &m44U, &v4W, &m44VT);

//solution is the last column of V (last row of VT)
(void)gan_vec4_fill_q(v4X,

m44VT.wx, m44VT.wy, m44VT.wz, m44VT.ww);

Now, the difference between the two smallest singular values is checked. If
it is below 0.01, the reconstruction is considered invalid, and the function
returns false.

42 CHAPTER 5. Reconstructing Camera Triples

return !(v4W.z - v4W.w < 0.01);
}

Having solved the problem of reconstructing a world point from image
measurements, the remaining parts of the algorithm to compute the scale of
a camera triple should be implemented now.

5.2.2 Obtaining scale

Using the function reconstructWorldPoint, thge scale reconstruction can
be implemented in a straightforward way. The following source code shows
how to obtain the scale factor ki from a given corresponding triple x ↔ x′ ↔
x′′ and the cameras P = [I|0], P′ = [R|t], measured in the first cameras coor-
dinate frame, and P′′ = [R′|t′], measured in the second cameras coordinate
frame.

Implementation. The cameras P′ and P′′ are given by

Gan_Matrix34* m34P1;
Gan_Matrix34* m34P2;

The cameras must be normalized such that ‖C̃′‖ = ‖C̃′′‖ = 1. The function
getRtSolutions for extracting cameras from the essential matrix (described
in Section 3.3 on pages 19 ff.) yields projection matrices that are normalized
in this way.

The points xi, x′i, x′′i that constitute the correspondences are stored (in
normalized coordinates) in the arrays

Gan_Vector3* av3Point0;
Gan_Vector3* av3Point1;
Gan_Vector3* av3Point2;

For the ith correspondencing triple, the scale factor ki is obtained as
follows. First, the world point Xi is reconstructed for each of the camera
pairs. If the reconstruction is invalid or one of the reconstructed points is
at infinity, nothing can be said about ki for this point correspondence.

Gan_Vector4 v4X1temp;
Gan_Vector4 v4X2;
if(!reconstructWorldPoint(m34P1, &av3Point0[i],

&av3Point1[i], &v4X1temp) ||
!reconstructWorldPoint(m34P2, &av3Point1[i],

&av3Point2[i], &v4X2) ||
(v4X1temp.w == 0) ||
(v4X2.w == 0))

{
... //skip this point correspondence

}

5.3. The uncertainty of reconstruction 43

Since the reconstructed point v4X1temp is in the first cameras coordinates
frame, it has to be transformed to the second cameras coordinate frame,
which is used as the reference frame. The transformation matrix is obtained
by augmenting the second camera projection matrix m34P1 by a fourth row
(0, 0, 0, 1).

Gan_Matrix44 m44Cam1;
Gan_Matrix33 m33R;
Gan_Vector3 v3t;
Gan_Vector3 v3zero;
(void)gan_mat34_get_m33l_q(m34P1, &m33R);
(void)gan_mat34_get_v3r_q(m34P1, &v3t);
(void)gan_vec3_zero_q(&v3zero);
(void)gan_mat44_set_parts_q(&m44Cam1, &m33R, &v3t, &v3zero, 1);

Gan_Vector4 v4X1;
(void)gan_mat44_multv4_q(&m44Cam1, &v4X1temp, &v4X1);

Finally, the scale factor is obtained as the quotient of the euclidean norms
of the reconstructed world points.

double len1 = sqrt((v4X1.x/v4X1.w)*(v4X1.x/v4X1.w) +
(v4X1.y/v4X1.w)*(v4X1.y/v4X1.w) +
(v4X1.z/v4X1.w)*(v4X1.z/v4X1.w));

double len2 = sqrt((v4X2.x/v4X2.w)*(v4X2.x/v4X2.w) +
(v4X2.y/v4X2.w)*(v4X2.y/v4X2.w) +
(v4X2.z/v4X2.w)*(v4X2.z/v4X2.w));

double scale = len1 / len2;

The final solution for the scale factor k is obtained as the mean of ki. Sec-
tion 5.5 will show that the algorithm is reasonable accurate if measurement
error is small. The next section describes how the algorithm can be en-
hanced by considering the uncertainty in the reconstruction of world points
to determine the significance of the respective ki.

5.3 The uncertainty of reconstruction

This section looks into the question of how measurement error in the point
correspondences translates to uncertainty in the reconstruction of world
points. Of course, as measurement error increases, the error in the re-
construction will also increase. Additionally, as illustrated in Figure 5.3,
reconstructed world points are less precisely localized as the backprojected
rays become more parallel.

While the measurement error for individual point correspondences is not
known, the angle between the backprojected rays can be computed easily.

44 CHAPTER 5. Reconstructing Camera Triples

Figure 5.3: Reconstruction uncertainty increases as backprojected rays be-
come more parallel.

This observation should be incorporated into the scale-reconstruction algo-
rithm. Scale factors ki should be considered less significant if the angles αi

respective α′i between the backprojected rays through xi and x′i respective
x′i and x′′i are small.

Weighting factors wi(αi, α
′
i) are introduced, which depend on the values

of αi and α′i. The solution k is obtained as the weighted average of the ki

k =
∑

i wiki∑
i ki

. (5.11)

The following weighting function is suggested:

wi = tan
α

2
· tan

α′

2
with 0 ≤ α, α′ ≤ π

2
. (5.12)

It is defined intuitively and no attempt is made to determine whether it is
optimal.

Implementation. The following code is an implementation of the wi com-
putation. The cameras P′ and P′′ are given by

Gan_Matrix34* m34P1;
Gan_Matrix34* m34P2;

The cameras must be normalized such that ‖C̃′‖ = ‖C̃′′‖ = 1. The points
xi, x′i, x′′i that constitute the correspondences are stored (in normalized
coordinates) in the arrays

Gan_Vector3* av3Point0;
Gan_Vector3* av3Point1;
Gan_Vector3* av3Point2;

For the ith correspondencing triple, the weight wi is obtained as follows.
Before the angles between the backprojection rays can be computed, the

5.4. Scale from backprojected rays 45

rays have to be transformed into a common coordinate system. For the first
pair of cameras, x is transformed into the coordinate system of the second
camera.

Gan_Vector3 rayrot;
Gan_Matrix33 m33R;
(void)gan_mat34_get_m33l_q(m34P1, &m33R);
(void)gan_mat33_multv3_q(&m33R, &av3Point0[i], &rayrot);
double n_x = sqrt(gan_vec3_sqrlen_q(&rayrot));
double n_y = sqrt(gan_vec3_sqrlen_q(&av3Point1[i]));

Now the angle between the rays is computed in the interval [0, π/2].

double rayangle1 = acos(gan_vec3_dot_q(&rayrot,&av3Point1[i])
/ (n_x * n_y));

Similarly, for the second pair of cameras

(void)gan_mat34_get_m33l_q(m34P2, &m33R);
(void)gan_mat33_multv3_q(&m33R, &av3Point1[i], &rayrot);
n_x = sqrt(gan_vec3_sqrlen_q(&rayrot));
n_y = sqrt(gan_vec3_sqrlen_q(&av3Point2[i]));
double rayangle2 = acos(gan_vec3_dot_q(&rayrot,&av3Point2[i])

/ (n_x * n_y));

And finally

double weight = tan(rayangle1/2.0) * tan(rayangle2/2.0);

The Experimental results in Section 5.5 show that the use of this weight
function significantly improves the results of the scale-reconstruction algo-
rithms. The same weighting function can also be used with the alternative
approach to scale reconstruction which is introduced in the next section.

5.4 Scale from backprojected rays

This chapter proposes another algorithm to reconstruct the scale between
two camera pairs. Again, corresponding triples and backprojected rays from
camera centres through image measurements will be used. Contrary to
the previous algorithm the world points will not be reconstructed and no
minimization problem has to be solved. Instead, scale will be computed from
the backprojected rays directly. The “scale from reconstructed world points”
algorithm will therefore also be called indirect algorithm. The algorithm
described in this section will also be called direct algorithm.

Again, the second cameras coordinate frame is used as the reference
frame and the camera projection matrices P and P′ are normalized such
that ‖C̃′‖ = ‖C̃′′‖ = 1.

46 CHAPTER 5. Reconstructing Camera Triples

X′

X

x′′

P P′ P′′

0

x

x′

Figure 5.4: Scale of two camera pairs, chosen such that the baseline lengths
are one unit.

Figure 5.4 shows the resulting configuration. x, x′ and x′′ are the back-
projected rays through the respective image measurements. X and X′ are
the reconstructions of the world point at the intersections of x′ with x and
x′′. Since scale is arbitrarily fixed for each of the camera pairs, X and X′

will be at different positions in general.
Now, scale is chosen differently, such that X and X′ are located at the

same point and ‖X̃‖ = 1 in Euclidean space. Let P̂ and P̂′′ be the cameras
P and P′′ with the baselines scaled such that these conditions are satisfied.
This is illustrated in Figure 5.5. Obviously, the relative scale is between the
cameras is chosen correctly in this cas:

k =

∥∥∥Ĉ′′
∥∥∥∥∥∥Ĉ∥∥∥ . (5.13)

The tilde superscript denoting Euclidean representation has been left from Ĉ
and Ĉ′′, which nevertheless denote the Euclidean coordinates of the camera
centres of P̂ and P̂′′.

Of course, up to this point this is essentially the same thing that was
done in the indirect algorithm. Finding P̂ or P̂′′ means estimating the “in-
tersection” of two most likely skew lines. But as indicated above, the real
positions of neither P̂ and P̂′′ nor X shall be computed, but only k.

As illustrated in Figure 5.6, a plane Π is defined, which contains the ori-
gin (the second cameras centre) and has x as its normal. The backprojected
rays from the camera centres C̃ and Ĉ intersect the plane at the points p
and q. Since C̃, Ĉ lie on the baseline and p, q lie on parallel lines which

5.4. Scale from backprojected rays 47

X

Ĉ C̃′′C̃ Ĉ′′

Figure 5.5: Scale of two camera pairs, chosen such that both reconstructions
of a world point are the same.

intersect the baseline, obviously these four points are coplanar. Thus, from
similar triangles, it is obtained:

∥∥∥C̃∥∥∥∥∥∥Ĉ∥∥∥ =
‖p̃‖
‖q̃‖

. (5.14)

The point q can equivalently be determined by perpendicularly projecting
X onto Π.

A plane Π′ is defined similarly with x′′ as its normal. The points p′ and
q′ are the intersection points of Π′ and the backprojected rays from C̃′′ and
Ĉ′′.

Using Equations (5.13) and (5.14), the scale factor k is determined as

k =

∥∥∥Ĉ′′
∥∥∥∥∥∥Ĉ∥∥∥ =

∥∥∥C̃∥∥∥ ‖p̃′‖ ‖q̃‖∥∥∥C̃′′
∥∥∥ ‖p̃‖ ‖q̃′‖ =

‖p̃′‖ ‖q̃‖
‖p̃‖ ‖q̃′‖

(5.15)

The resulting algorithm (for one corresponding triple xi ↔ x′i ↔ x′′i) is
now briefly summarized:

48 CHAPTER 5. Reconstructing Camera Triples

ĈC̃

q

p

Π

Figure 5.6: Similar triangles using the plane Π.

1. Transform P, P′′, xi and x′′i into the coordinate system of P′

and choose scale such that ‖C̃‖ = ‖C̃′′‖ = 1.

2. Obtain the planes Π and Π′, which both contain the origin
and have the normal vectors xi respective x′′i .

3. Obtain X as a point lying on x′ and satisfying ‖X̃‖ = 1.

4. Obtain the perpendicular projections p and q of C and X onto
Π. Obtain the perpendicular projections p′ and q′ of C′′ and
X onto Π′.

5. Compute the scale factor as

ki =
‖p̃′‖ ‖q̃‖
‖p̃‖ ‖q̃′‖

. (5.16)

The algorithm will fail for world points at infinity, where the rays backpro-
jected through the image measurements are parallel. In this case, ‖q̃‖ =
‖q̃′‖ = 0 and ki is undefined. The following implementation simply omits
such cases.

Implementation. The auxiliary function pointOnPlane is needed:

void pointOnPlane(Gan_Vector3* p,
Gan_Vector3* n,

5.4. Scale from backprojected rays 49

Gan_Vector3* result) {
Gan_Vector3 t;
(void)gan_vec3_scale_q(n,-gan_vec3_dot_q(n,p),&t);
(void)gan_vec3_add_q(p,&t,result);

}

This function computes the closest point to p on the plane containing the
origin and having the normal vector n. The result is stored in the third
parameter result. All parameters are Euclidean 3-vectors, p and n must
have unit norm.

The implementation of the algorithm exactly follows the five steps given
above. The input consists of a corresponding triple x ↔ x′ ↔ x′′ and the
cameras P = [I|0], P′ = [R|t], measured in the first cameras coordinate
frame, and P′′ = [R′|t′], measured in the second cameras coordinate frame.

The cameras P′ and P′′ are given by

Gan_Matrix34* m34P1;
Gan_Matrix34* m34P2;

and must be normalized such that ‖C̃′‖ = ‖C̃′′‖ = 1. The function getRt-
Solutions for extracting cameras from the essential matrix (described in
Section 3.3 on page 19 ff.) computes projection matrices that are normalized
in this way.

The points xi, x′i, x′′i constituting the correspondences are stored (in
normalized coordinates) in the arrays

Gan_Vector3* av3Point0;
Gan_Vector3* av3Point1;
Gan_Vector3* av3Point2;

For the ith correspondencing triple, the scale factor ki is obtained as fol-
lows. First, all necessary values are transformed into the coordinate system
of the second camera. The second camera centre is at the origin of course.
Measured in the coordinate system of the first camera, the second camera
is P′ = [R|t], with t = −RC̃′. The first camera centre transformed into the
second view is C̃ = −RC̃′, too. So C̃ is simply the last column of m34P1.

Gan_Vector3 c0;
(void)gan_mat34_get_v3r_q(m34P1, &c0);

Measured in the coordinate system of the second camera, the third camera
is P′′ = [R′|t′], with t′ = −R′C̃′′. So, the third camera centre is obtained as
C̃′′ = −R′>t′.

Gan_Vector3 c2;
Gan_Vector3 t2;
Gan_Matrix33 m33R2;

50 CHAPTER 5. Reconstructing Camera Triples

(void)gan_mat34_get_v3r_q(m34P2, &t2);
(void)gan_mat34_get_m33l_q(m34P2, &m33R2);
(void)gan_mat33T_multv3_q(&m33R2, &t2, &c2);
(void)gan_vec3_negate_i(&c2);

The directions xi, x′i and x′′i are needed in the reference frame, too. For
convenience, they are scaled to unit norm.

//direction x in second frame (unit norm)
Gan_Vector3 x0n;
Gan_Matrix33 m33R1;
(void)gan_mat34_get_m33l_q(m34P1, &m33R1);
(void)gan_mat33_multv3_q(&m33R1, &av3Point0[i], &x0n);
(void)gan_vec3_unit_i(&x0n);

//direction x’ in second frame (unit norm)
Gan_Vector3 x1n = av3Point1[i];
(void)gan_vec3_unit_i(&x1n);

//direction x’’ in second frame (unit norm)
Gan_Vector3 x2n;
(void)gan_mat33T_multv3_q(&m33R2, &av3Point2[i], &x2n);
(void)gan_vec3_unit_i(&x2n);

The planes Π and Π′ are implicitly given by their normals x0n and x2n. The
Euclidean coordinates of the point X (lying on x′ and satisfying ‖X̃‖ = 1)
are x1n.

So, p̃, q̃, p̃′ and q̃′ can be computed using the function pointOnPlane
that was defined above.

Gan_Vector3 p0, p2, q0, q2;
pointOnPlane(&c0, &x0n, &p0);
pointOnPlane(&c2, &x2n, &p2);
pointOnPlane(&x1n, &x0n, &q0);
pointOnPlane(&x1n, &x2n, &q2);

Next, it is checked whether the situation is close to the case ‖q̃‖ = ‖q̃′‖ = 0,
where ki is undefined.

if(p0_sqrlen < 0.001 || p2_sqrlen < 0.001) {
... //skip this point correspondence

}

Finally, from the norms of p̃, q̃, p̃′ and q̃′, the scale factor ki can be obtained.

double scale = sqrt((q2_sqrlen * p0_sqrlen)
/ (q0_sqrlen * p2_sqrlen));

5.5. Experimental results 51

The final solution for the scale factor k can be obtained as the mean
of ki. Of course, what has been said about reconstruction uncertainty in
Section 5.3 applies to the direct algorithm, too. The weighting function
suggested there can be applied successfully here, too, as the experimental
results in the next section will show.

5.5 Experimental results

This section will compare the results of the algorithms introduced in this
chapter. For the sake of brevity, the “scale from reconstructed world points”
algorithm will be called indirect algorithm, and the “scale from backpro-
jected rays” algorithm will be called direct algorithm. Both algorithms have
been implemented with and without making use of the weighting factors.

A number of simulations have been performed using the same basic setup
as in Section 4.6. A camera located at (0, 0,−2) is looking at an “object”
of 25 random points located at the origin. Camera position is changed to
obtain a second and a third image.

Simulated measurement error has been introduced to the image points
of the first and third image by adding noise vectors (x, y) drawn from a
uniform distribution x, y ∈ [−ε/2, ε/2] with ε variying between 0 and 10
pixel. The measurements in the second image remained untouched.

The camera projection matrices for all three cameras were exactly known
(up to scale). They had not to be reconstructed beforehand.

The scale factor k was computed from the generated point correspon-
dences and compared to the real scale factor. Error was computed as

E =
∣∣∣∣kcomputed

kreal
− 1

∣∣∣∣
Two series of experiments have been performed. For the first, the camera

was moved by 0.5 units in x-direction two times. For the second, the camera
was moved by 0.5 units in z-direction two times. Both times, for each value
of ε 500 experiments were performed. The results are shown in Figures 5.7,
5.8 and 5.9

There are several observations:

• All algorithms perform equally well for motion perpendicular to the
viewing direction (Figure 5.7). This is because the displacement be-
tween image measurements, and equivalently the angles between the
backprojected rays, is bigger in this case than for motion in the viewing
direction.

• For motion in the viewing direction (Figures 5.8 and 5.9) the situation
is different. The unweighted indirect algorithm lacks behind the oth-
ers. This is caused by single “outlier” correspondences, where for one

52 CHAPTER 5. Reconstructing Camera Triples

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 2 4 6 8 10

re
la

tiv
e

er
ro

r
in

 c
om

pu
te

d
sc

al
e

fa
ct

or

measurement error [pixel]

 indirect

 direct

 indirect weighted

 direct weighted

Figure 5.7: Error in reconstructed scale for motion in x direction and varying
measurement error. The errorbars show the standard deviation scaled by 0.1.

of the camera pairs the reconstructed points very far from the camera.
To some extend the same is true for the unweighted direct algorithm.

• The direct algorithms perform better than the indirect ones. A likely
explanation for this is the Euclidean nature of the direct approach,
which is since geometrically more meaningful.

• For motion in the viewing direction, the stabilizing effect of the weight-
ing function is clearly visible. The weighted versions of both, the direct
and the indirect algorithm perform considerably better.

• Ultimately, the weighted direct algorithm yields the best results.

As a conclusion from the experiments, it is suggested that the weighted
direct algorithm is used in practice.

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10

re
la

tiv
e

er
ro

r
in

 c
om

pu
te

d
sc

al
e

fa
ct

or

measurement error [pixel]

 indirect

Figure 5.8: Error in reconstructed scale for motion in z direction and varying
measurement error. The errorbars show the standard deviation scaled by 0.1.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10

re
la

tiv
e

er
ro

r
in

 c
om

pu
te

d
sc

al
e

fa
ct

or

measurement error [pixel]

 direct

 indirect weighted

 direct weighted

Figure 5.9: Error in reconstructed scale for motion in z direction and varying
measurement error. The errorbars show the standard deviation scaled by 0.1.

Chapter 6

Reconstructing a Camera
Path

Having obtained the relative scale of the triples of consecutive cameras, the
remaining task is to put these together to a sequence of camera positions
and orientations. In fact, this is rather sraightforward. Some experiments
will be performed to see from an exemplary setup what overall results can
be achieved from the resulting algorithm.

6.1 Combining camera triples

A slightly different notation will be used in this section. Instead of marking
different cameras with primes, cameras will be denoted as Pn, where P0 is
the first camera, P1 the second and so on. Every Pn is measured in the
coordinate frame of the camera Pn−1 (except for P0 which is chosen as [I|0]
per definition). The camera Pn transformed to the coordinate frame of the
first camera is labeled P0

n.
What can be obtained by the algorithms mentioned before is a series of

cameras P0 . . .Pn and the scale factors kn for the triples (Pn−2,Pn−1,Pn).
The cameras Pn = [Rn|tn] are normalized such that ‖tn‖ = 1.

The reconstructed cameras consist of a perspective projection matrix
and a 4× 4 transformation matrix

Pn = [I|0]
[
Rn tn

0> 1

]
(6.1)

where the latter matrix realizes an Euclidean transformation of world points
from the (reference) coordinate frame of Pn−1 into the coordinate frame of
Pn.

To transform a world point X from the coordinate frame of the first
camera into the frame of Pn, it has to be transformed into the second camera

55

56 CHAPTER 6. Reconstructing a Camera Path

frame, then into the third and so on, up to Pn:

Xcamn =
[
Rn k0

ntn

0> 1

] [
Rn−1 k0

n−1tn−1

0> 1

]
. . .

[
R1 k0

1t1

0> 1

]
X. (6.2)

The values k0
n that are used here, denote the relative scale of the camera

pairs (Pn−1,Pn) and (P0,P1), that is the ratio of the euclidean distances
between the camera centres ‖C̃1 − C̃0‖ and ‖C̃n − C̃n−1‖.

They can be computed from the kn as

k0
1 = 1 (6.3)

k0
n = knk0

n−1 for n ≥ 2. (6.4)

By writing out Equation (6.2) and left-multiplying by the perspective
projection matrix [I|0], the cameras P0

n =
[
R0

n|t0
n

]
are obtained, having

R0
1 = R1 (6.5)

t0
1 = t1 (6.6)

R0
n = RnR0

n−1 for n ≥ 2 (6.7)

t0
n = Rnt0

n−1 + k0
ntn for n ≥ 2 (6.8)

Since the P0
n are all in one reference frame (the first cameras coordinate

system), the camera centres can be obtained as1

C̃n = −R0>
n t0

n. (6.9)

The orientation of the cameras is implicitly given by R0
n.

Implementation. The values for R0
n and t0

n are stored in m33R0 and v3t0.
These are initialized with I and 0, and will be updated in each subsequent
step.

Gan_Matrix33 m33R0;
(void)gan_mat33_ident_q(&m33R0);
Gan_Vector3 v3t0;
(void)gan_vec3_zero_q(&v3t0);

In the same way, k0
n is represented by k0.

double k0 = 1.0;

Each time a new camera projection matrix Gan Matrix34* m34P has been
reconstructed, these variables are updated. The scale factor k computed for
m34P and the previous two cameras is needed, too. It is supplied in double
ki. Of course, for the second camera (the first one reconstructed), k0 must
be set to 1.

First, the R and t parts are extracted from m34P.
1using t = −RC̃.

6.2. Experimental results 57

Gan_Matrix33 m33Ri;
Gan_Vector3 v3ti;
(void)gan_mat34_get_m33l_q(m34P, &m33Ri);
(void)gan_mat34_get_v3r_q(m34P, &v3ti);

Then m33R0, v3t0 and k0 are updated using Equations (6.7), (6.8) and (6.4).

k0 = k0 * ki;
Gan_Matrix33 m33R0temp;
(void)gan_mat33_rmultm33_q(&m33Ri, &m33R0, &m33R0temp);
m33R0 = m33R0temp;
Gan_Vector3 v3t0temp;
(void)gan_mat33_multv3_q(&m33Ri, &v3t0, &v3t0temp);
(void)gan_vec3_scale_q(&v3ti, k0, &v3t0);
(void)gan_vec3_add_i2(&v3t0temp, &v3t0);

After each step, the coordinates of the centre of the (currently) last
camera can be computed.

Gan_Vector3 v3C;
(void)gan_mat33T_multv3_q(&m33R0, &v3t0, &v3C);
(void)gan_vec3_negate_i(&v3C);

Of course there is still an overall scale ambiguity in the reconstructed
path. This can not be resolved without using additional information. Such
information might be odometry data or knowledge of the true distance of
certain points in the world.

6.2 Experimental results

This section is somewhat different from the other experimental results sec-
tions in this paper. It does not evaluate different algorithms against each
other. It does not try to arrive at a “final truth” but merely shows for “some
configuration” what can be achieved when the different steps discussed be-
fore are put together.

The following setup is used. A robot moves on the floor of a rectangular
room. The room’s size is 1000×500×300 units. The walls, floor and ceiling
are covered by a grid that has a width of 25 units. The grid points are used
for generating image measurements (and correspondences).

The robot is driving a semicircle, as shown in Figure 6.1. The same
camera is used as in Sections 4.6 and 5.5. It is mounted on top of the
robot, 20 units above the ground. The viewing direction is the motion
direction. A new image is available everytime the robot has moved by 10
units, resulting in a total of 42 images. Simulated measurement error is

58 CHAPTER 6. Reconstructing a Camera Path

1000

50
0

300

z

x

y

Figure 6.1: Setup for the experiments.

introduced to the image points by adding noise vectors (x, y) drawn from a
uniform distribution x, y ∈ [−ε/2, ε/2].

The following algorithms are used to reconstruct the camera path:

• The essential matrices between consecutive images are estimated from
point correspondences using the normalized 4-point algorithm. (Sec-
tion 4.4)

• Cameras are reconstructed from the essential matrices using Horn’s
method. (Section 3.3)

• Relative scale between consecutive camera pairs is obtained from the
reconstructed cameras and point correspondences using the weighted
direct (scale from backprojected rays) algorithm. (Section 5.4)

• From the reconstructed cameras and the relative scale factors, a com-
plete sequence of camera positions is computed. (Section 6.1)

Figures 6.2, 6.3 and 6.4 show the real path and the reconstructed paths
for simulated measurement error varying between 1 and 3 pixels. The recon-
structed paths have been isometrically scaled, such that the distance between
the first reconstructed camera pair equals the real distance between the first
camera pair. The reconstructed paths have also been translated, such that
the starting positions match.

Although the setup is not really comparable to a realworld situation, two
observation are made.

• The errors in the computed relative scale between camera pairs add up
fast, even for small errors in the image measurements. The computed

6.2. Experimental results 59

200

250

300

350

400

450

500

650 700 750 800 850 900 950

x

z

 real
 computed

Figure 6.2: Real and reconstructed path for simulated measurement error
ε = 1 pixel.

final positions quickly diverges from the real one as measurement error
increases.

• In contrast to that, the relative position and orientation of the cameras
seems to be quite stable.

The first observation suggests, that it will not be sufficient to use additional
information to determine overall scale. Instead, such information should
also be used to correct scale for indiviual segments of the computed path,
to prevent the propagation of scale errors. How to perform this exactly, is
a subject that still has to be looked into.

200

250

300

350

400

450

500

650 700 750 800 850 900 950

x

z

 real
 computed

Figure 6.3: Real and reconstructed path for simulated measurement error
ε = 2 pixel.

200

250

300

350

400

450

500

650 700 750 800 850 900 950

x

z

 real
 computed

Figure 6.4: Real and reconstructed path for simulated measurement error
ε = 3 pixel.

Chapter 7

Conclusion

An algorithm has been devised and implemented which reconstructs a se-
quence of camera positions and orientations, unique up to an overall scale
factor. The techniques that have been used are not the most sophisticated
available, but they are simple and fast. The most expensive step of the algo-
rithm is the estimation of a solution for the essential matrix, where singular
value decomposition is used. The computational complexity of computing
the SVD of an m × n matrix is O(mn2). The number of columns is fixed
in the given context, so the complexity of the algorithm described here is
O(n2) for every step, given n point correspondences. Several experiments
have been conducted using simulated data, to evaluate the quality of the
algorithm and its various steps.

For the 8-point variations of the algorithm one big advantage over the
information that can be obtained from odometry sensor or laser range finders
is gained: Full spatial orientation is computed. This means, the information
that can be gained is not restricted to position on a ground plane. This is
especially advantageously for uneven terrain, where up- or down- movement
may occur.

The question whether and where the approach fits into the context of
position tracking of a mobile robot is left unanswered for now, since there
are still many issues that have to be investigated. First and foremost, the
gap between raw images and point correspondences has to be bridged. The
algorithm may be evaluated in a real world setup then.

The results obtained in Section 6.2 suggest that in order to be applicable
in practice the approach has to be integrated with other sensory information,
e.g., odometry sensors and laser range finders. How exactly this can be done
is subject of further work.

Finally, more advanced methods may be implemented to achieve higher-
quality results. One drawback of the current approach is, that only two
images are used at a time. There are methods for estimating cameras and
scene structure from more than two images, like bundle adjustment [2]. It

61

62 CHAPTER 7. Conclusion

is inconvenient, too, that the approach requires the camera to be calibrated.
There are auto-calibration methods to calibrate the camera “on the fly”
[2, 1].

However, the next step will be to implement a feature-tracker and the
more advanced issues should be deferred, until “real” experimental results
have been obtained.

Bibliography

[1] Andrea Fusiello. Uncalibrated euclidean reconstruction: A review. Im-
age and Vision Computing, 18:555–563, May 2000.

[2] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge Univerity Press, 2000.

[3] Berthold K. P. Horn. Recovering baseline and orientation from essential
matrix, 1990. http://www.ai.mit.edu/people/bkph/publications.html.

[4] Berthold K. P. Horn. Projective geometry considered harmful, 1999.
http://www.ai.mit.edu/people/bkph/publications.html.

[5] H. C. Longuet-Higgins. A computer algorithm for reconstructing a
scene from two projections. Nature, pages 133–135, September 1981.

[6] Q.-T. Luong and O. D. Faugeras. The fundamental matrix: Theory,
algorithms, and stability analysis. International Journal of Computer
Vision, 17:43–76, 1996.

[7] Philip McLauchlan et al. Gandalf: The fast computer vision and nu-
merical library. http://gandalf-library.sourceforge.net/.

[8] Matthias Muehlich and Rudolf Mester. The role of total least squares
in motion analysis. In Proceedings of the European Conference on Com-
puter Vision 1998, pages 305–321. Springer, 1998.

[9] William H. Press et al. Numerical Recipes in C, second edition. Cam-
bridge Univerity Press, 1992.

[10] Miroslav Trajkovic. Rigid motion estimation from point correspon-
dences. http://www.dai.ed.ac.uk/CVonline/.

63

