Technische Universität Dresden

Prof. Dr. Sebastian Rudolph

Formal Concept Analysis
Exercise Sheet 1, Winter Semester 2016/17

1 Set Theory

Exercise 1 (a piece of recapitulation)
Given the following hints and the universe $M:=\{1,2,3,4,5,6,7,8\}$, compute the sets A, B, C :
(a) $A \cup B=\{2,3,4,5,6,7,8\}$
(b) $B \cup C=\{1,2,4,6,8\}$
(c) $A \cup C=\{1,2,3,4,5,7,8\}$
(d) $A \cap B=\{2\}$
(e) $B \cap C=\{2,4,8\}$
(f) $A \cap C=\{2\}$

2 Logic

Exercise 2 (repetition first-order logic)
Formalize the following statements for natural numbers a, b, c, using only multiplication ("•"), equality (" $=$ ") and natural numbers (" 0 "," $1 "$, " 2 ", . . .) besides the usual logical symbols (" \neg ", " \wedge ", " \vee ", " \rightarrow ", " $\leftrightarrow ", " \forall ", " \exists$ ", variables and parentheses):
(i) a divides b.
(iv) a is the gcd of b and c.
(ii) a is odd.
(v) a is a square number.
(iii) a is common divisor of b and c
(vi) a is a prime number.

3 Derivation Operators and Formal Concepts

Exercise 3 (line diagram)

a) Recall: how is the derivation operator $(\cdot)^{\prime}$ defined?
b) Let $\mathbb{K}=(G, M, I)$ be a formal context and let $A, B \subseteq G$. Prove the following statements:

1. $A \subseteq B$ implies $B^{\prime} \subseteq A^{\prime}$
2. $A \subseteq A^{\prime \prime}$
3. $A^{\prime}=A^{\prime \prime \prime}$
4. For $C \in G$ and $D \in M$ holds: (C, D) is a formal concept if and only if there is some $E \subseteq G$ such that $C=E^{\prime \prime}$ and $D=E^{\prime}$.

4 Formal Concept Analysis

Exercise 4 (Formal Context)

Regard the following formal context \mathbb{K}, given as a cross table:

a) Specify the following sets:
(i) $\{\text { Bean }\}^{\prime}$
(ii) $\{\text { lives on land }\}^{\prime}$
(iii) \{two seed leaves\}"
(iv) $\{\text { Frog, Maize }\}^{\prime}$
(v) \{needs chlorophyll to produce food, can move around $\}^{\prime}$
(vi) $\{\text { lives in water, lives on land }\}^{\prime}$
(vii) \{needs chlorophyll to produce food, can move around\} ${ }^{\prime \prime}$
b) Extend \mathbb{K} with both an object and an attribute.

