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Abstract

Recently, it has been shown that the small descrip-
tion logic (DL) ££, which allows for conjunction
and existential restrictionshas better algorithmic
properties than its counterpaftL,, which allows
for conjunction andialue restrictionsWhereas the
subsumption problem iff £, becomes already in-
tractable in the presence of acyclic TBoxes, it re-
mains tractable irf £ even with general concept
inclusion axioms (GCIs). On the one hand, we ex-
tend the positive result faf £ by identifying a set
of expressive means that can be addeé £owith-

out sacrificing tractability. On the other hand, we
show that basically all other additions of typical
DL constructors t&€ £ with GCls make subsump-
tion intractable, and in most cases evexPEIME-
complete. In addition, we show that subsumption
in 7Ly with GCls is EXPTIME-complete.

Introduction

For these reasons, and also because of the need for expres-
sive DLs supporting GCls in applications, from the mid 1990s
on the DL community has mainly given up on the quest of
finding tractable DLs. Instead, it investigated more and more
expressive DLs, for which reasoning is worst-case intractable.
The goal was then to find practical subsumption algorithms,
i.e., algorithms that are easy to implement and optimize,
and which—though worst-case exponential or even worse—
behave well in practice (see, e.gHorrockset al, 200Q).

This line of research has resulted in the availability of highly
optimized DL systems for expressive D[idorrocks, 1998;
Haarslev and Mller, 2001, and successful applications:
most notably the recommendation by the W3C of the DL-
based language OWIHorrockset al, 2003 as the ontology
language for the Semantic Web.

Recently, the choice of value restrictions as a sine qua non
of DLs has been reconsidered. On the one hand, it was shown
that the DLE L, which allows for conjunction and existential
restrictions, has better algorithmic properties ttfafy. Sub-
sumption in€L stays tractable w.r.t. both acyclic and cyclic
TBoxes[Baader, 2003k and even in the presence of GCls
[Brandt, 2004 On the other hand, there are applications

The quest for tractable (i.e., polynomial-time decidable) deWhere value restrictions are not needed, and where the ex-
scription logics (DLs), which started in the 1980s after thePressive power of L or small extensions thereof appear to
first intractability results for DLs were shoviBrachman and  be sufficient. In fact, SNOMED, the Systematized Nomen-
Levesque, 1984; Nebel, 1988vas until recently restricted ~clature of Medicine, employ& £ [Spackman, 20q0with an

to DLs extending the basic language’,, which allows for
conjunction (1) and value restrictions/¢.C'). The main rea-

acyclic TBox. Large parts of the Galen medical knowledge
base can also be expressedid with GCls and transitive

son was that, when clarifying the logical status of propertyroles[Rector and Horrocks, 1997Finally, the Gene Ontol-
arcs in semantic networks and slots in frames, the decisiofgy [Consortium, 200Dcan be seen as an acyci€ TBox
was taken that arcs/slots should be read as value restrictio®4th one transitive role.

rather than existential restrictionsi{C).

Motivated by the positive complexity results cited above

For subsumption between concept descriptions, the tracnd the use of extensions &£ in applications, we start with

tability barrier was investigated in detail in the early 1990sthe DL £L with GCls, and investigate the effect on the com-
[Donini et al, 1991. However, as soon as terminologies plexity of the subsumption problem that is caused by the ad-
(TBoxes) were taken into consideration, tractability turneddition of standard DL constructors available in ontology lan-
out to be unattainable: even with the simplest form of acyclicguages like OWL. We prove that the subsumption problem
TBoxes, subsumption itF £, (and thus in all languages ex- remains tractable when adding the bottom concept (and thus
tending it) is coNP-harfNebel, 1990. Subsumption iF L

is PSPACE-complete w.r.t. cyclic TBoxe§Baader, 1996;

disjointness statements), nominals (i.e., singleton concepts), a
restricted form of concrete domains (e.g., references to num-

Kazakov and de Nivelle, 2003and we show in this pa- bers and strings), and a restricted forof role-value maps

per that it becomes evernxBTIME-complete in the presence
of general concept inclusion axioms (GCls), which are sup-

ported by all modern DL systems.

1Adding arbitrary role-value maps ¢ is known to cause un-
decidability[Baader, 2003a



[Name | Syntax | Semantics |
top T AT

bottom 1 0

nominal {a} {a®}

conjunctior CcnbD ctnp*

existential 30 {zx cAT |Fyec AT

restriction (z,y) erf Ay e CT)
concrete | p(fi,.-s fi) |1 G?;(‘L)H?il;fgryf S z’A:jk:/\
domain forp € PPi (Wi, u0) € P71}

GCl CCD c*t Cc D*

RI rio-orpCrlrfo---orf Crt

Table 1: Syntax and semantics&f .

(which can express transitivity and the right-identity rule re-
quired in medical applicationsSpackman, 204). We then
prove that, basically, all other additions of standard DL con
structors lead to intractability of the subsumption problem
and in most cases even toxETIME-hardness. Proofs and
further technical details can by found in the accompanyin
technical reporiBaaderet al,, 2003.

2 The Description LogicELt

In DLs, concept descriptionare inductively defined with the
help of a set otonstructorsstarting with a sellc of concept
names a setNg of role hames and (possibly) a sell, of

syntax can be found in the lower part of Table 1. Note that a
finite set of GCls would commonly be calledjaneral TBox

We use the term CBox due to the presence of RIs. An inter-
pretationZ is amodelof a CBoxC if, for each GCI and RI

in C, the conditions given in the third column of Table 1 are
satisfied. In the definition of the semantics of RIs, the symbol
“o" denotes composition of binary relations.

The main inference problem considered in this paper is
subsumption. Given tw& L™ " -concept description€’, D
we say thatC is subsumed by w.r.t. the CBoxC (C C¢ D)
ifft C C D? for all modelsZ of C.

Some remarks regarding the expressivityedf** are in
order. First, though we restrict the attention to subsump-
tion, £L£T is expressive enough to reduce all other standard
reasoning tasks (concept satisfiability, ABox consistency, in-
stance problem) to the subsumption problem and vice versa
[Baaderet al, 2005. Second, our RIs generalize three means
of expressivity important in ontology applicatiormsie hier-
archiesr C s; transitive roles which can be expressed by

'writing r o » C r; and so-calledight-identity rulesr o s C

s, which are important in medical applicatiofSpackman,

$000; Horrocks and Sattler, 2003 hird, the bottom concept

in combination with GCls can be used to expréisgointness
of complex concept description€§: 1 D C | says that”, D
are disjoint. Finally, theiniqgue name assumptidor individ-
ual names can be enforced by writi@} N {b} C L for all
relevant individual names andb.

individual namesiIn this section, we introduce the extension 3 Tractability of ££7
ELTT of ££, whose concept descriptions are formed using

the constructors shown in the upper part of Table 1. Ther Before we can describe a polynomial-time subsumption al-

%orithm forL™ ", we must introduce an appropriate normal

and in general, we use andb to denote individual names,
r and s to denote role names, ard D to denote concept
descriptions.

The concrete domain constructor provides an interface t
so-called concrete domains, which permits reference to, e.
strings and integers. Formallycancrete domairD is a pair
(AP, PP) with AP a set andP? a set ofpredicate names
Eachp € P is associated with an arity > 0 and an exten-
sionp? C (AP)". To provide a link between the DL and
the concrete domain, we introduce a setaature nameslg.

%criptions of the form{a} or p(f1,...
g1‘hen,C is in normal formif

form for CBoxes. Given a CBoK, we useBC. to denote

the smallest set of concept descriptions that contains the top
conceptT, all concept names used (h and all concept de-

, fx) appearing irC.

1. all GCIs have one of the following forms, where
C1,C5 € BCc andD € BCe U {J_}

Cl E D7 Cl
Cl 1 Cg E D, 37".01

E EIT.C27
cE D.

In Table 1,p denotes a predicate of some concrete domain

D and f1,..., fi are feature names. The DLLTT may
be equipped with a number of concrete domdns. .., D,
such thatA?: N APi = (for1 < i < j < n. If we want to
stress the use of particular concrete domadnms. . ., D,,, we
write ELTT(Dy, ..., D,,) instead of£ L.

The semantics oL (Dy,...,D,)-concept descrip-
tions is defined in terms of ainterpretationZ = (AZ,.%).
ThedomainAZ is a non-empty set of individuals and time
terpretation function? maps each concept namec Nc to
a subsetd? of AT, each role name € Ng to a binary rela-
tion r* on AZ, each individual name € N, to an individual
a’ € AT, and each feature nanfec N to a partial function
fEfrom A% toJ, ,,, AP:. The extension of to arbitrary
concept descriptions is inductively defined as shown in th
third column of Table 1.

An £L£1T constraint box (CBoxjs a finite set ofgeneral
concept inclusions (GClggndrole inclusions (RIs)whose

2. all role inclusions are of the formC sorry ory C s.

By introducing new concept and role names, any CB@an

be turned into a normalized CBdX that is aconservative
extensiorof C, i.e., every model of’ is also a model of,
and every model of can be extended to a model &f by
appropriately choosing the interpretations of the additional
concept and role names. [Baaderet al, 2009 it shown
that this transformation can actually be done in linear time,
yielding a normalized CBoxX’ whose size idinear in the
size ofC.

Lemma 1 Subsumption w.r.t. CBoxes ®iLT" can be re-
duced in linear time to subsumption w.r.t. normalized CBoxes

dn ELTT.

In the following, all CBoxes are assumed to be normalized.
When developing the subsumption algorithm for normalized
ELTT CBoxes, we can restrict our attention to subsumption



CrR1 If C" € S(C),C"C D e C,andD ¢ S(C) BCc, which is defined as follows:C' ~~p D iff there are

thenS(C) == S(C) U {D} Cy,...,Cx € BCc such that
cr2 If C1,C2 € S(C),C1NC2 C D € C,andD ¢ S(C) e C; = CorC, = {b} for some individual nama,

thenS(C) := S(C)uU{D} .

e (Cj,Cj11) € R(r;) forsomer; € Re (1 < j < k),

cr3 If C" € S(C),C' T 3Ir.D € C,and(C, D) ¢ R(r) e (Ch=D

thenR(r) := R(r) U {(c D)} k

, Second, rulesr7 andcrs use the notiomron; (S;(C)), and

cra If (C, D) € R(r), D" € S(D),3r.D'C E €C, satisfiability and implication in a concrete domain.plfs a

th:rr:gf %é Sf(C)w) (B predicate of the concrete domdi), then theS £ -concept

- descriptionp(f1,..., f») can be viewed as an atomic first-

crs If (C,D) € R(r), L € S(D),andL ¢ S(C), order formula with variableg, , . .., f,,. Thus, it makes sense

thenS(C) := S(C) u{L} to consider Boolean combinations of such atomic formulae,

and to talk about whether such a formula is satisfiable in (the
CRe Hw {a} € S(C) N 5(D), C ~r D, andS(D) £ S(C) first-order interpretationp;, or whether inD; one such for-
ens(C) := S(C) U S(D) R J oty
mula implies another one. Fora $eof ELT (D, ..., D,)-

CR7 If con;(S(C)) is unsatisfiable irD; and L ¢ S(C), concept descriptions and< j < n, we define

thenS(C) := S(C)uU{L}
cr8 If con;(S(C)) impliesp(fi,..., fr) € BCc in D, con;(I') = /\ plfrs-- Ji)-

andp(f1,..., fx) ¢ S(0), P(f1,-,fx) €T with pe PP

then$(C) := SO Up(fr,.-. i)} For the rulescr7 and crs to be executable in polynomial

cr9 I p(fi,.. s f), D' (fi,-.., fir) € S(C),p € PP, time, satisfiability and implication in the concrete domains
p € PPe,j #14, fs = fl for somes, t, andL ¢ S(C), Ds,...,D, must be decidable in polynominal time. How-
thenS(C) := S(C)uU {L} ever, for our algorithm to be complete, we must impose an

additional condition on the concrete domains. The concrete
domainD is p-admissibleff

1. satisfiability and implication if® are decidable in poly-

cruolf (C, D) (r),rCsecC,and(C, D) ¢ R(s)
thenR(s ) R(s)U{(C,D)}

CRll|f(C,D)ER( ),(DE € R(rs T10T2ET3€C, H H .
and(C, B ¢ R(r ) ) (72), nominal time;
thenR(r3) := Ri(r3) U{(C, E)} 2. D is convex if a conjunction of atoms of the form
p(f1,-.., fxr) implies a disjunction of such atoms, then
Table 2: Completion Rules it also implies one of its disjuncts.

between conceptames In fact,C' T Diff A Cer B,where  Letus now show that the rules of Table 2 indeed yield a poly-

C' = CU{AC C,D C B}with AandB new conceptnames. nhomial algorithm for subsumption n&’ﬁ**(Dl, ..., Dy)

Our subsumption algorithm not only computes subsumptioprovided that the concrete domair,,..., D, are p-

between two given concept names w.r.t. the normalized inpuddmissible.

CBoxC; it ratherclassifie<, i.e., it simultaneously computes ~ The following lemma is an easy consequence of the facts

the subsumption relationships betweah pairs of concept that (i) each rule application adds an element to one of the

names occurring id. setsS(C) € BCc U{T,L} or R(C,D) C BC¢ x BC¢,
Now, letC be a CBox in normal form that is to be classified. (ii) the cardinality ofBC, is polynomial in the size of, and

We useRc to denote the set of all role names usedirThe  (iii) the relation~- r can be computed using (polytime) graph
algorithm computes reachability, and (iv) the concrete domains are p-admissible.

e amappingS fromBC¢ to asubset oBC-U{T, L},and Lemma 2 For a normalized CBo¥, the rules of Table 2 can
only be applied a polynomial number of times, and each rule

e a mappingk from R¢ to a binary relation oBCc. application is polynomial,

The intuition is that these mappings make implicit subsump-

tion relationships explicit in the following sense: The next lemma shows how all subsumption relationships

between concept names occurringdncan be determined

(11) D € S(C) implies thatC C¢ D, once the completion algorithm has terminated.
(I2) (C,D) e R(r) implies thatC' Ce 3r.D. Lemma 3 Let S be the mapping obtained after the applica-
In the algorithm, these mappings are initialized as follows: tion of the rules of Table 2 for the normalized CB®has

e S(C):= {C, T} foreachC € BCe, terminated, and letd, B be concept nhames occurring ¢h

ThenA C. B iff one of the following two conditions holds:
e R(r):=( foreachr € R¢.

Then the sets(C) and R(r) tended b lying th S(A)N 1B, L} #0,
en the se and R(r) are extended by applying the :
completion rules shown in Table 2 until no more rule applies. ® M€ 1S anfa} € BCc suchthatl € S({a}).
Some of the rules use abbreviations that still need to b&he if-direction of this lemma (soundness) immediately fol-
introduced. First,cre uses the relation~rp C BCc X lows from the fact that (11) and (12) are satisfied for the initial



definition of S, R, and that application of the rules preservesName | Syntax| Semantics |
(11) and (12). This is trivial for most of the rules. We consider |negation -C | AT\ C*

cre in more detall. If{a} € S(C)n S(D), thenC,D Cg disjunction cubDlcTuD?

{a}. Now, C ~»g D implies thatC Ce Jry.---Fre—1.D value restriction | Vr.C' |{z |Vy: (z,y) € v —y € C*}
or {b} C¢ Ir1.- - Irk—1.D for some individual nameé. In at-least restriction> n )| {z | #{y € AT | (z,y) € 2} > n}
the second case, this implies thHatcannot be empty in any — = =
model ofC, and in the first case it implies thatis non-empty ~ |2tmostrestiiction(s n r)|{z | #{y € A" | (xl’ vEr }IS n}
in any model of¢ for which C is non-empty. Together with [inverse roles I C{z|3y:(ya)er” AyeC7}
C,D C¢ {a}, this implies thatC T, D, which shows that ) .
the I‘U|eCR£ ié sound since it preserves (11). Table 3: The additional constructors.

To show the only-if-direction of the lemma, we assume thathas been proved ifLutz, 2003. Moreover, we can show
the two conditions do not hold, and then use the computedBaaderet al,, 2009 that bothQ andS are convex.
mappingss, R to construct a model of € such thatd” ¢  proposition 5 Q and$S are p-admissible.

BZ. Basically, the domaimd\? of this model consists of all
element” € BC¢ suchthatd ~~z C. However, we identify
elements”, D of BC¢ if there is an individual name such
that{a} € S(C) N S(D). The interpretation of concept and

Both Q andS are interesting concrete domains since they
allow us to refer to concrete numbers and strings in concepts,
and use the properties of the concrete predicates when rea-
; : . : soning. However, the predicates available in these concrete
role names is determined I f2: if D € BCc is a concept domains are rather restricted. Unfortunately, p-admissibility

name, thenD? = {C € BC; | D € S(C)}, andifrisa . . .
role name, therC, D) € < iff (C,D) € R(r). Finally, is a fragile property, i.e., we cannot exteQdandS by other

the interpretation of the feature names is determined by th#?lgesrt(raastttilgr? evrgi'gr?;?dse\;vggglgxlt%ﬂg% ﬁéﬁ%%ﬂg”g As an
the assignments satisfying the conjunctions; (S(C)) (see ’ ;

PO "

[Baaderet al, 2005 for a more detailed description of this ! n;?; g?g ;gf;gg"}a'% Th«z)r(]tetﬂgséii)x(tlhsof;l]?ud&(t)igﬁl
. . . _q qe . — 7 -

construction, and a proof that it indeed yields a countermode>0(f,) implies the disjunction<y(f) v >o(f) without im-

to the subsumption relationshipC B). : o 15 :
iy ; o .plying one of its disjuncts. Thu§Q=+~« is not convex.
To sum up, we have shown the following tractability result: Next, consider any concrete domain with domainx*

Theorem 4 Let Dy, ..., D, be p-admissible concrete do- for some finite alphabet and, for everys € ©*, the unary
mains.  Then subsumption £ (Dy,...,D,) Wt predicategref, andsuff, with the semantics
CBoxes can be decided in polynomial time. .

pref>. = {5’ e ©* | sis a prefix ofs'}
P-admissibile and non-admissible concrete domains suff® = {s € 2*|sisasuffix ofs'}.

In order in ncr DL f the form . .
order to_obtain concrete s_of the o Let¥ = {a4,...,a,}. Then theS*-conjunctionsuff,, (f)

ELTT(Dy,...,D,) for n > 0 to which Theorem 4 ap- =" ° - .
plies, we need concrete domains that are p-admissible. I[Plies the disjunctiorpref,, (f) V...V pref, (f) without
Implying any of its disjuncts.

the following, we introduce two concrete domains that are
-admissible, and show that small extensions of them are n . .
Ponger p-admissible. 4 Intractable extensions of€ £ with GCls
The concrete domai@ = (Q, P®) has as its domain the set In this section we consider the sublanguat® of ££1+
@Q of rational numbers, and its set of predica®s consists  and restrict the attention to general TBoxes, i.e., finite sets of

of the following predicates: GCls. Recall thaE £ is obtained fron€ £* by dropping all
e aunary predicat@ q with (Tq)? = @; concept constructors except conjunction, existential restric-
. ¢ h . tion, and top. We will show that the extension &£ with
e unary predicates-, and>, for eachq € Q; basically any typical DL constructor not presentii™ " re-
e a binary predicate-; sults in intractability of subsumption w.r.t. general TBoxes.

Syntax and semantics of the additional constructors used in

bi dicate-, f , With 4 . ;
* abinary predicate-, for eachy € Q, wi this section can be found in Table 3, whe#$' denotes the

_ /i 2 / I
(+)% ={(d,d) €Q*| ¢ +a=4"} cardinality of a sefS.

The concrete domais is defined agx*, P°), whereX is In addition to the subsumption problem, we will sometimes
the 1ISO 8859-1 (Latin-1) character set aRd consistes of also consider theatisfiability problem the concept descrip-
the following predicates: tion C is satisfiable w.r.t. the general TB@x ff there exists

e aunary predicatd s with (Ts)S = X*; a modelZ of 7" with ct # 0. As in the previous section,

. we can restrict the attention to satisfiability/subsumption of

e aunary predicate-,, for eachw < 3% conceptnamesw.r.t. general TBoxes.

e a binary predicate-; Atomic negation

e a blné";lry prec!|calt/eonc1,,j, for ?achw € ¥*, with Let£L™ be the extension & £ with negation, and lef (™)
concy = {(w',w") | w" = w'w}. be obtained fron§ £~ by restricting the applicability of nega-

Polynomiality of reasoning iQ can be shown by a reduction tion to concept namesf{omicnegation). Sinc€ L™ is a ho-
to linear programming, and polynomiality of reasoningSin  tational variant of the DLALC, EXPTIME-completeness of



satisfiability and subsumption id£C w.r.t. general TBoxes
[Schild, 199] carries over t&€ L. EXPTIME-completeness
even carries over t6£(™) since—~C with C complex can be
replaced with—A for a new concept namd if we add the
two GCIsA C C andC C A.

Theorem 6 In ££(7), satisfiability and subsumption w.r..
general TBoxes iEXPTIME-complete.

Disjunction

Let £L£U be the extension df £ with disjunction. Subsump-
tion in £LU w.r.t. general TBoxes is in B TIME since& LU
is a fragment ofALC. To obtain a matching ¥ TIME lower
bound, we reduce satisfiability £ w.r.t. general TBoxes
to subsumption i¥ £/ w.r.t. general TBoxes. To this end, let
Ag be a concept name afda generaEE(ﬂ) TBox. For each
concept namel occurring in7, we take anewconcept name
A’ (i.e., one not occurring iff"). Also fix an additional new
concept namé.. Then the general TBoX™* is obtained from
T by replacing each subconceptl with A’, and then adding
the following GCls:

e TC AU A andAM A’ C L foreachAd € N¢cinT;
o IJr. L C L.
Note that3r.L C L is equivalent to-L C Vr.=L. It thus

ensures thak acts as the bottom concept in connected coun

termodels ofd, Cr« L. Using this observation, it is not hard
to verify thatA, is satisfiable w.rt7 iff Aq Z7« L.

Theorem 7 In £L£U, subsumption w.r.t. general TBoxes is
ExXPTIME-complete.

At-least restrictions

Let ££22 be the extension of £ with at-least restrictions
of the form (> 2 ). Subsumption ir€£>2 w.r.t. general
TBoxes is in EXPTIME since£L>? is a fragment ofALC
extended with number restriction®e Giacomo and Lenz-

erini, 1994. We establish a matching lower bound by reduc-

ing subsumption ir€ LU w.r.t. general TBoxes. Lefiy and
By be concept names arid a generall £U{ TBox. Without

Non-p-admissible concrete domains

P-admissibility of the concrete domains is not only a suffi-
cient condition for polynomiality of reasoning 12", but
also a necessary one:7if is a non-convex concrete domain,
then subsumption i6 £(D) is ExPTIME-hard, where £(D)

is the extension of L with the concrete domai®. The
proof uses a stronger version of Theorem 7: we can show that
subsumption of concept names w.rgstricted& LU/ TBoxes

is EXPTIME-complete, where a restrictefiC/ TBox is a
general£L TBox extended with asingle GCI of the form

A C By U B, [Baaderet al,, 2004.

The subsumption problem for such restricgai/ TBoxes
can be reduced to subsumptiondd ™ * (D) as follows. Let
Ap and By be concept names ard a restrictedt £/ TBox.
SinceD is not convex, there is a satisfiable conjunctioof
atoms of the fornp(f1,..., fr) that implies a disjunction
a1 V ...V a, of such atoms, but none of its disjuncts. If
we assume that this is a minimal such counterexample (i.e.,
m IS minimal), then we also know that does not imply
as V ...V a,, and that each of the; is satifiable. Then
we have (i) each assignment of values fronthat satisfies
satisfiesi; Oras V.. .Vay,; (i) there is an assignment satisfy-
ing c anday, but notas V. ..V a,,; (iii) there is an assignment
satisfyingc andas V ... V a,, but nota;. Now, let7* be ob-
tained from7 by replacing the single GCA C B U B’ by
ACc¢a C B,anda; C B fori =2,...,m. Itiseasy to
see thatdyg C+ By iff Ag &7« By.

Theorem 9 For any non-convex concrete domalp, sub-
sumption in€ £(D) w.r.t. general TBoxes iExPTIME-hard.

For example, this theorem applies to the non-convex concrete
domains introduced in Section 3.

Inverse roles

Let £L7 be the extension df £ with inverse roles. We show
that subsumption i€ £Z w.r.t. general TBoxes is FBCE
hard by reducing satisfiability id LE w.r.t. primitive TBoxes
ALE extend< £ with value restrictions and atomic negation;
primitive TBoxes are finite sets of GCls whose left-hand side

loss of generality, we may assume that all concept inclusionis a concephame This satisfiability problem is known to be

in 7 have one of the following forms:

CCD, IrCLCD, C C3r.D,
CinNCyCC, CLCCiUCQCy,
whereC, D, Cy, andCs are concept names ar. Call the
resulting TBox7 *. To convert7 into an£L£=2 CBox, we

simulate each GCC' C C; U Cy by introducing two new
concept named and B and a new role name and putting

CCIr.ANIr.B,
Cnar(AnNB)CCy, Cn(z2r)CC,.

It is easy to see thaty C+ By iff Ag C7+ By.

Theorem 8 In ££22, subsumption w.r.t. general TBoxes is
ExPTIME-complete.

PSrAcE-completeCalvanese, 1996

Let Ay be a concept name ard a primitive ALE TBox.
We assume without loss of generality tHAtcontains only
concept inclusions of the following forms:

ACB, AC-B, AC3r.B, ACVYrB,

where A, B, andB’ are concept names. We take a new con-
cept name. and define the gener&iCZ TBox 7* to consist
of the following GCls:

e AC Dforal ACDeT
if D is a concept name or of the forfr. B;

e Jr  ACB foral ACVYVr.BeT;
e ANMBLC L foral AC-BeT,;
e dr.L C L.

The interested reader may note that similar reductions can b&s in the case o LU/, the concept inclusiodr.L. T L is

used to show EPTIME-completeness faf £ extended with

equivalent to-L C Vr.—L and ensures thak acts as the

one of the role constructors negation, union, and transitivdbottom concept in connected countermodelsAgf T« L.

closure.

Additionally, 3r—.A C B is clearly equivalent tol C Vr.B.



Thus, it is not hard to verify thatl, is satisfiable w.r.t7 iff [Baader, 2003aF. Baader. Restricted role-value-maps in a descrip-
Ao L~ L. tion logic with existential restrictions and terminological cycles.
Theorem 10 Subsumption ir€£Z w.r.t. general TBoxes is In Proc. DL'03 http://CEUR-Ws.org/YOI-Sll, 20(.)3' -
PSpAcEhard [Baader, 2003b F. Baader. Terminological cycles in a description
' ] ) o logic with existential restrictions. IRroc. IJCAI'03 2003.
The exact complexity of this problem is still open (the best|grachman and Levesque, 198R.J. Brachman and H.J. Levesque.
upper bound we know of isXPTIME, stemming from results The tractability of subsumption in frame-based description lan-
for the DL ALCT [De Giacomo and Lenzerini, 1994 guages. IrProc. AAAI'84 1984.

At-most restrictions/functional roles/F L, [Brandt, 2004 S. Brandt. Polynomial time reasoning in a descrip-

Let ££51 be the extension of £ with at-most restrictions tion logic with existential restrictions, GCI axioms, and—what

. ; else? InProc. ECAI 20042004.
< ) 22 ’ . L .
of the forn(< 1 r). As in the case of£=*, subsumption [Calvanese, 1996D. Calvanese. Reasoning with inclusion ax-

n EL=' w.rt. general TBoxes Is in ¥PTIME since £L=! ioms in description logics: Algorithms and complexity. Froc.

is a fragment ofALC with number restrictions. We prove a  ECcAI'96, 1996.

matching lower bound by reducing subsumption in the DL[consortium, 200D The GO Consortium. Gene Ontology: Tool for
.7-'/36f w.r.t. general TBOXES.?-"EBf offers only the concept the unification of biologyNature Genetigs25, 2000.

constructors conjunction and value restriction and requires a[De Giacomo and Lenzerini, 19p45. De Giacomo and M. Lenz-
roles to be interpreted as total functions. Subsumption in this erini. Boosting the correspondence between description logics

DL w.r.t. general TBoxes was provekETIME-complete in and propositional dynamic logics. Rroc. AAAI'94 1994.
[Toman and Weddell, 2005 [Doniniet al, 1991 F. Donini, M. Lenzerini, D. Nardi, and W.
Let Ay and By be concept names ard a general?—‘ﬁgf Nutt. Complexity of concept languages. Pmoc. KR'91, 1991.
TBox. We convertZ into a generaf£=' TBox 7* by re-  [Haarslevand Nlller, 200] V. Haarslev and R. Mller. RACER

placing each subconcept.C' with 3r.C in GCI left-hand system description. IRroc. IJCAR 012001.

sides, and wit{< 1 )11 3r.C in GClI right-hand sides. Then [Hofmann, 2005 M. Hofmann. Proof-theoretic approach to de-

. . . iption logic. InProc. of LICS-052005
Ao T Boin FLY iff Ag Cr- Boin EL5. serip _—
0 &7 Boin FLy oL Boin&L [Horrocks and Sattler, 2003. Horrocks and U. Sattler. Decidabil-
Theorem 11 Subsumption i€ £=! w.rt. general TBoxes is ity of SHIQ with complex role inclusion axioms. Proc. IJCAI-

EXPTIME-complete. 03, 2003.

Interestingly, the result of Toman and Weddell can also bdHorrocksetal, 200q 1. Horrocks, U. Sattler, and S. Tobies. Prac-
used to prove EPTIME-completeness of subsumption in tical reasoning for very expressive description logids.of the

IGPL, 8, 2000.
. tf y O

FLo W'r'i[' general TBoxes. Recall IWO IS ‘7:£0 without [Horrockset al, 2003 I. Horrocks, P.F. Patel-Schneider, and F. van
the restriction that roles be total functions. [Baaderet al., Harmelen. From SHIQ and RDF to OWL: The making of a web
2003 we show thatdg T By in }—['?flﬁ Ao C7 Bpin ontology languagel. of Web Semantic&, 2003.
FLy , i.e., subsumption itF £y andF L, coincides. [Horrocks, 1998 I. Horrocks. Using an expressive description
Theorem 12 Subsumption inFL, w.r.t. general TBoxes is  logic: FaCT or fiction? IrProc. KR'98 1998.
ExPTIME-complete. [Kazakov and de Nivelle, 2003Y. Kazakov and H. de Nivelle.

. Subsumption of concepts L, for (cyclic) terminologies with
5 Conclusion respect to descriptive semantics is PSPACE-completeRrd.

We believe that the results of this paper show that—in con- Pl 03 http//CEUR-WS.org/Vol-81/, 2003. o
trast to the negative conclusions drawn from early complex!Lutz, 2003 C. Lutz. NExpTime-complete description logics with
ity results in the area—the quest for tractable DLs that are concrete domainsACM Transactions on Computational Logic
expressive enough to be useful in practice can be successf?l. 5(4):669-705, 2004, . . .
Our DLELH is tractable even w.r.t. GCIs, and it offers many [Nebel, 1988 B. Nebel. Computational complexity of terminolog-
constructors that are important in ontology applications. ical reasoning in BACKArt'_f'C'aI “_me"'gence _34’_1988' )
This is in strong contrast to its counterpart with value [NePel, 1990 B. Nebel. Terminological reasoning is inherently in-
restrictions: FL, is tractable without TBoxe$Brachman tractable.Artificial Intelligence 43, 1990. .
and Levesque, 1984co-NP-complete for acyclic TBoxes [Rector at)ndklj-lorroclrs, 1997A. Reg:ltor arad I.lHorr(?cks. Experl-d
] y : ence building a large, re-usable medical ontology using a de-
E_Nggg_ehé':zgaq)l’(;/@;nc dE%%mﬁllﬁﬁlgor %%%Ig ;nioxg(as%?/ld:_r’ scription logic with transitivity and concept inclusions. Rnoc.

complete for general TBoxes (as shown above, and indepenS Workshop on Ontological Engineeringo97.
dently, in[Hofmann, 2005). [Schild, 1991 K. Schild. A correspondence theory for terminolog-

ical logics: Preliminary report. IRroc. IJCAI'9], 1991.
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