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Motivation
• Computational complexity of semantics for ADFs is in general higher than

for AFs [Strass and Wallner, 2014].
• Algorithms based on SCC-recursive schema for AF semantics show

significant performance gain [Cerutti et.al. KR 2014].
• We propose a similar approach based on a recursive decomposition

along SCCs.
• Allows to define cf2 and stage2 semantics for ADFs.
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Motivation
• Computational complexity of semantics for ADFs is in general higher than

for AFs [Strass and Wallner, 2014].
• Algorithms based on SCC-recursive schema for AF semantics show

significant performance gain [Cerutti et.al. KR 2014].
• We propose a similar approach based on a recursive decomposition

along SCCs.
• Allows to define cf2 and stage2 semantics for ADFs.

Main Difference to AFs
1 Acceptance conditions of statements in sub-frameworks may still depend

on statements not contained in sub-framework.
2 Elimination of redundancies from links and acceptance formulas.
3 Propagation of truth values to subsequent SCCs.
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Agenda

1 Introduction and Background
– Abstract Dialectical Framework (ADFs)

2 Decomposing ADFs
– Sub-Frameworks
– Redundancies
– Reduced Frameworks
– Decomposition-based Semantics

3 Conclusion and Future Work
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ADFs - The Formal Framework
• Like AFs, use graph to describe dependencies among nodes.
• Unlike AFs, allow individual acceptance condition for each node.
• Assigns t(rue) or f(alse) depending on status of parents.

Definition
An abstract dialectical framework (ADF) is a tuple D = (S, L, C) where

• S is a set of statements (positions, nodes),
• L ⊆ S× S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}, one for each

statement s. Cs is called acceptance condition of s.
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Semantics

Definition
Let ϕ be a propositional formula over vocabulary S and for an M ⊆ S let
v : M → {t, f, u} be a three-valued interpretation.
The partial valuation of ϕ by v is ϕv = ϕ[p/t : v(p) = t][p/f : v(p) = f].

Definition
Let D = (S, L, C) be an ADF. A three-valued interpretation v is

• conflict-free iff for all s ∈ S we have:
– v(s) = t implies that ϕv

s is satisfiable,
– v(s) = f implies that ϕv

s is unsatisfiable;
• naive iff it is ≤i-maximal with respect to being conflict-free;

Where ≤i is a partial order over the truth values (resp. interpretations), i.e.
u <i t and u <i f.
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Semantics ctd.

Definition
Let D = (S, L, C) be an ADF. The partial valuation of ϕ by v is
ϕv = ϕ[p/t : v(p) = t][p/f : v(p) = f].
A three-valued interpretation v is

• conflict-free iff for all s ∈ S we have:
– v(s) = t implies that ϕv

s is satisfiable,
– v(s) = f implies that ϕv

s is unsatisfiable;
• naive iff it is ≤i-maximal with respect to being conflict-free;

Example

a

¬c

b

¬a

c

¬b

v = {a 7→ f, b 7→ u, c 7→ t} is conflict-free, as ϕv
a = ¬t is unsatisfiable and

ϕv
c = ¬b is satisfiable.
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Sub-Frameworks and Redundancies

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

• independent set indD(∅) = {a, b, c} = M0

• independent modulo M0: indD(M0) = {a, b, c, d, e, f} = S

• M independent set: sub-framework D|M = (M, L ∩ (M ×M), {ϕs}s∈M)
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Sub-Frameworks and Redundancies

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

• independent set indD(∅) = {a, b, c} = M0

• independent modulo M0: indD(M0) = {a, b, c, d, e, f} = S

• M independent set: sub-framework D|M = (M, L ∩ (M ×M), {ϕs}s∈M)

• Redundancies can change dependencies between statements.
• If (r, s) is redundant then r has no influence on the truth value of ϕs

whatsoever.

Example
Consider ϕs = a ∨ (b ∧ c) and the interpretation v = {a 7→ u, b 7→ f, c 7→ u}.
ϕv

s = a ∨ (f ∧ c)
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Sub-Frameworks and Redundancies

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

• independent set indD(∅) = {a, b, c} = M0

• independent modulo M0: indD(M0) = {a, b, c, d, e, f} = S

• M independent set: sub-framework D|M = (M, L ∩ (M ×M), {ϕs}s∈M)

• Redundancies can change dependencies between statements.
• If (r, s) is redundant then r has no influence on the truth value of ϕs

whatsoever.

Example
Consider ϕs = a ∨ (b ∧ c) and the interpretation v = {a 7→ u, b 7→ f, c 7→ u}.
ϕv

s = a ∨ (f ∧ c) ≡ a c has no influence
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Reduced ADF
Given an ADF D = (S, L, C), an independent set M ⊆ S and an interpretation
v : M → {t, f, u}. The ADF D reduced with v on M is obtained by:

• adapt the acceptance condition of statement s to
– t (resp. f) if v(s) = t (resp. v(s) = f)
– ¬s if v(s) = u
– partial valuation ϕv

s for remaining statements and if r is redundant in
ϕv

s , replace r with t
• remove redundant links
• add links {(s, s) | v(s) = u}
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Reduced ADF
Given an ADF D = (S, L, C), an independent set M ⊆ S and an interpretation
v : M → {t, f, u}. The ADF D reduced with v on M is obtained by:

• adapt the acceptance condition of statement s to
– t (resp. f) if v(s) = t (resp. v(s) = f)
– ¬s if v(s) = u
– partial valuation ϕv

s for remaining statements and if r is redundant in
ϕv

s , replace r with t
• remove redundant links
• add links {(s, s) | v(s) = u}

Procedure
For a semantics σ and an ADF D, we obtain the σ2 interpretations recursively by
applying σ2(D) = σ2(indD(∅), D) by:

1 Start with all statements independent modulo ∅, i.e. M0 = indD(∅)
2 Compute all σ-interpretations of sub-framework D|M0

3 For each σ-interpretation w of D|M0
compute the reduced ADF

4 Call Step 1 with reduced ADF and M1 = indD(M0).
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Example

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0
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Example

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

2 Then we obtain nai(D|M0
) = {v0, v1, v2}:

v0 = {a 7→ u, b 7→ t, c 7→ f},
v1 = {a 7→ f, b 7→ u, c 7→ t},
v2 = {a 7→ t, b 7→ f, c 7→ u}.
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Example

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

2 v1 = {a 7→ f, b 7→ u, c 7→ t}
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Example

a

f

b

¬b

c

t

d

t ∨ f

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

2 v1 = {a 7→ f, b 7→ u, c 7→ t}
3 Reduced ADF with t ∨ f ≡ t, thus link (f , d) is redundant
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Example

a

f

b

¬b

c

t

d

t ∨ t

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

2 v1 = {a 7→ f, b 7→ u, c 7→ t}
3 Reduced ADF
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Example

a

f

b

¬b

c

t

d

t ∨ t

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

2 v1 = {a 7→ f, b 7→ u, c 7→ t}
3 Reduced ADF
4 Call Step 1 with reduced ADF D1 and M1 = indD1 (M0).
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Example

a

f

b

¬b

c

t

d

t ∨ t

e

d ∧ f

f

e

nai2(M1, D1)

1 M1 = indD1 (M0) = {a, b, c, d}
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Example

a

f

b

¬b

c

t

d

t ∨ t

e

d ∧ f

f

e

nai2(M1, D1)

1 M1 = indD1 (M0) = {a, b, c, d}
2 nai(D|M1

) = v3 = v1 ∪ {d 7→ t}
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Example

a

f

b

¬b

c

t

d

t

e

t ∧ f

f

e

nai2(M1, D1)

1 M1 = indD1 (M0) = {a, b, c, d}
2 nai(D|M1

) = v3 = v1 ∪ {d 7→ t}
3 Reduced ADF
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Example

a

f

b

¬b

c

t

d

t

e

t ∧ f

f

e

nai2(M1, D1)

1 M1 = indD1 (M0) = {a, b, c, d}
2 nai(D|M1

) = v3 = v1 ∪ {d 7→ t}
3 Reduced ADF
4 Call Step 1 with reduced ADF D2 and M2 = indD2 (M1)
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Example

a

f

b

¬b

c

t

d

t

e

t ∧ f

f

e

nai2(M2, D2)

1 M2 = indD2 (M1) = {a, b, c, d, e, f} = S
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Example

a

f

b

¬b

c

t

d

t

e

t ∧ f

f

e

nai2(M2, D2)

1 M2 = indD2 (M1) = {a, b, c, d, e, f} = S
2 nai(D2) = {v4, v6}:

v4 = v3 ∪ {e 7→ t, f 7→ t}, v6 = v3 ∪ {e 7→ f, f 7→ f}.
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Main Theorem

Theorem
1. Let σ ∈ {cfi, adm, pre, com, mod}. Then σ ≤ σ2.
2. Let σ ∈ {nai, stg}. Then σ 6≤ σ2.
3. Let σ ∈ {cfi, nai, adm, pre, com, mod}. Then σ2 ≤ σ.
4. Let σ ∈ {stg}. Then σ2 6≤ σ.
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Conclusion
• We proposed a decomposition schema for semantics for ADFs.
• We introduced nai2 and stg2 for ADFs.
• Due to the relation of ADFs to logic programms we also get nai2 and stg2

semantics for LPs.
• Also in the paper: composing ADFs.

Future Work
• Analysis of the complexity of the approach.
• Implementation.
• Study splittings of ADFs and equivalences.
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