
Artificial Intelligence, Computational Logic

DECOMPOSING ABSTRACT
DIALECTICAL FRAMEWORKS

Sarah Gaggl and Hannes Strass

Pitlochry, 12th September 2014



Motivation
• Computational complexity of semantics for ADFs is in general higher than

for AFs [Strass and Wallner, 2014].
• Algorithms based on SCC-recursive schema for AF semantics show

significant performance gain [Cerutti et.al. KR 2014].
• We propose a similar approach based on a recursive decomposition

along SCCs.
• Allows to define cf2 and stage2 semantics for ADFs.

Gaggl, Strass Decomposing ADFs slide 2 of 27



Motivation
• Computational complexity of semantics for ADFs is in general higher than

for AFs [Strass and Wallner, 2014].
• Algorithms based on SCC-recursive schema for AF semantics show

significant performance gain [Cerutti et.al. KR 2014].
• We propose a similar approach based on a recursive decomposition

along SCCs.
• Allows to define cf2 and stage2 semantics for ADFs.

Main Difference to AFs
1 Acceptance conditions of statements in sub-frameworks may still depend

on statements not contained in sub-framework.
2 Elimination of redundancies from links and acceptance formulas.
3 Propagation of truth values to subsequent SCCs.

Gaggl, Strass Decomposing ADFs slide 3 of 27



Agenda

1 Introduction and Background
– Abstract Dialectical Framework (ADFs)

2 Decomposing ADFs
– Sub-Frameworks
– Redundancies
– Reduced Frameworks
– Decomposition-based Semantics

3 Conclusion and Future Work

Gaggl, Strass Decomposing ADFs slide 4 of 27



ADFs - The Formal Framework
• Like AFs, use graph to describe dependencies among nodes.
• Unlike AFs, allow individual acceptance condition for each node.
• Assigns t(rue) or f(alse) depending on status of parents.

Definition
An abstract dialectical framework (ADF) is a tuple D = (S, L, C) where

• S is a set of statements (positions, nodes),
• L ⊆ S× S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}, one for each

statement s. Cs is called acceptance condition of s.

Gaggl, Strass Decomposing ADFs slide 5 of 27



Semantics

Definition
Let ϕ be a propositional formula over vocabulary S and for an M ⊆ S let
v : M → {t, f, u} be a three-valued interpretation.
The partial valuation of ϕ by v is ϕv = ϕ[p/t : v(p) = t][p/f : v(p) = f].

Definition
Let D = (S, L, C) be an ADF. A three-valued interpretation v is

• conflict-free iff for all s ∈ S we have:
– v(s) = t implies that ϕv

s is satisfiable,
– v(s) = f implies that ϕv

s is unsatisfiable;
• naive iff it is ≤i-maximal with respect to being conflict-free;

Where ≤i is a partial order over the truth values (resp. interpretations), i.e.
u <i t and u <i f.

Gaggl, Strass Decomposing ADFs slide 6 of 27



Semantics ctd.

Definition
Let D = (S, L, C) be an ADF. The partial valuation of ϕ by v is
ϕv = ϕ[p/t : v(p) = t][p/f : v(p) = f].
A three-valued interpretation v is

• conflict-free iff for all s ∈ S we have:
– v(s) = t implies that ϕv

s is satisfiable,
– v(s) = f implies that ϕv

s is unsatisfiable;
• naive iff it is ≤i-maximal with respect to being conflict-free;

Example

a

¬c

b

¬a

c

¬b

v = {a 7→ f, b 7→ u, c 7→ t} is conflict-free, as ϕv
a = ¬t is unsatisfiable and

ϕv
c = ¬b is satisfiable.

Gaggl, Strass Decomposing ADFs slide 7 of 27



Sub-Frameworks and Redundancies

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

• independent set indD(∅) = {a, b, c} = M0

• independent modulo M0: indD(M0) = {a, b, c, d, e, f} = S

• M independent set: sub-framework D|M = (M, L ∩ (M ×M), {ϕs}s∈M)

Gaggl, Strass Decomposing ADFs slide 8 of 27



Sub-Frameworks and Redundancies

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

• independent set indD(∅) = {a, b, c} = M0

• independent modulo M0: indD(M0) = {a, b, c, d, e, f} = S

• M independent set: sub-framework D|M = (M, L ∩ (M ×M), {ϕs}s∈M)

• Redundancies can change dependencies between statements.
• If (r, s) is redundant then r has no influence on the truth value of ϕs

whatsoever.

Example
Consider ϕs = a ∨ (b ∧ c) and the interpretation v = {a 7→ u, b 7→ f, c 7→ u}.
ϕv

s = a ∨ (f ∧ c)

Gaggl, Strass Decomposing ADFs slide 9 of 27



Sub-Frameworks and Redundancies

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

• independent set indD(∅) = {a, b, c} = M0

• independent modulo M0: indD(M0) = {a, b, c, d, e, f} = S

• M independent set: sub-framework D|M = (M, L ∩ (M ×M), {ϕs}s∈M)

• Redundancies can change dependencies between statements.
• If (r, s) is redundant then r has no influence on the truth value of ϕs

whatsoever.

Example
Consider ϕs = a ∨ (b ∧ c) and the interpretation v = {a 7→ u, b 7→ f, c 7→ u}.
ϕv

s = a ∨ (f ∧ c) ≡ a c has no influence

Gaggl, Strass Decomposing ADFs slide 10 of 27



Reduced ADF
Given an ADF D = (S, L, C), an independent set M ⊆ S and an interpretation
v : M → {t, f, u}. The ADF D reduced with v on M is obtained by:

• adapt the acceptance condition of statement s to
– t (resp. f) if v(s) = t (resp. v(s) = f)
– ¬s if v(s) = u
– partial valuation ϕv

s for remaining statements and if r is redundant in
ϕv

s , replace r with t
• remove redundant links
• add links {(s, s) | v(s) = u}

Gaggl, Strass Decomposing ADFs slide 11 of 27



Reduced ADF
Given an ADF D = (S, L, C), an independent set M ⊆ S and an interpretation
v : M → {t, f, u}. The ADF D reduced with v on M is obtained by:

• adapt the acceptance condition of statement s to
– t (resp. f) if v(s) = t (resp. v(s) = f)
– ¬s if v(s) = u
– partial valuation ϕv

s for remaining statements and if r is redundant in
ϕv

s , replace r with t
• remove redundant links
• add links {(s, s) | v(s) = u}

Procedure
For a semantics σ and an ADF D, we obtain the σ2 interpretations recursively by
applying σ2(D) = σ2(indD(∅), D) by:

1 Start with all statements independent modulo ∅, i.e. M0 = indD(∅)
2 Compute all σ-interpretations of sub-framework D|M0

3 For each σ-interpretation w of D|M0
compute the reduced ADF

4 Call Step 1 with reduced ADF and M1 = indD(M0).

Gaggl, Strass Decomposing ADFs slide 12 of 27



Example

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

Gaggl, Strass Decomposing ADFs slide 13 of 27



Example

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

2 Then we obtain nai(D|M0
) = {v0, v1, v2}:

v0 = {a 7→ u, b 7→ t, c 7→ f},
v1 = {a 7→ f, b 7→ u, c 7→ t},
v2 = {a 7→ t, b 7→ f, c 7→ u}.

Gaggl, Strass Decomposing ADFs slide 14 of 27



Example

a

¬c

b

¬a

c

¬b

d

c ∨ f

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

2 v1 = {a 7→ f, b 7→ u, c 7→ t}

Gaggl, Strass Decomposing ADFs slide 15 of 27



Example

a

f

b

¬b

c

t

d

t ∨ f

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

2 v1 = {a 7→ f, b 7→ u, c 7→ t}
3 Reduced ADF with t ∨ f ≡ t, thus link (f , d) is redundant

Gaggl, Strass Decomposing ADFs slide 16 of 27



Example

a

f

b

¬b

c

t

d

t ∨ t

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

2 v1 = {a 7→ f, b 7→ u, c 7→ t}
3 Reduced ADF

Gaggl, Strass Decomposing ADFs slide 17 of 27



Example

a

f

b

¬b

c

t

d

t ∨ t

e

d ∧ f

f

e

nai2(D) = nai2(indD(∅), D)

1 indD(∅) = {a, b, c} = M0

2 v1 = {a 7→ f, b 7→ u, c 7→ t}
3 Reduced ADF
4 Call Step 1 with reduced ADF D1 and M1 = indD1 (M0).

Gaggl, Strass Decomposing ADFs slide 18 of 27



Example

a

f

b

¬b

c

t

d

t ∨ t

e

d ∧ f

f

e

nai2(M1, D1)

1 M1 = indD1 (M0) = {a, b, c, d}

Gaggl, Strass Decomposing ADFs slide 19 of 27



Example

a

f

b

¬b

c

t

d

t ∨ t

e

d ∧ f

f

e

nai2(M1, D1)

1 M1 = indD1 (M0) = {a, b, c, d}
2 nai(D|M1

) = v3 = v1 ∪ {d 7→ t}

Gaggl, Strass Decomposing ADFs slide 20 of 27



Example

a

f

b

¬b

c

t

d

t

e

t ∧ f

f

e

nai2(M1, D1)

1 M1 = indD1 (M0) = {a, b, c, d}
2 nai(D|M1

) = v3 = v1 ∪ {d 7→ t}
3 Reduced ADF

Gaggl, Strass Decomposing ADFs slide 21 of 27



Example

a

f

b

¬b

c

t

d

t

e

t ∧ f

f

e

nai2(M1, D1)

1 M1 = indD1 (M0) = {a, b, c, d}
2 nai(D|M1

) = v3 = v1 ∪ {d 7→ t}
3 Reduced ADF
4 Call Step 1 with reduced ADF D2 and M2 = indD2 (M1)

Gaggl, Strass Decomposing ADFs slide 22 of 27



Example

a

f

b

¬b

c

t

d

t

e

t ∧ f

f

e

nai2(M2, D2)

1 M2 = indD2 (M1) = {a, b, c, d, e, f} = S

Gaggl, Strass Decomposing ADFs slide 23 of 27



Example

a

f

b

¬b

c

t

d

t

e

t ∧ f

f

e

nai2(M2, D2)

1 M2 = indD2 (M1) = {a, b, c, d, e, f} = S
2 nai(D2) = {v4, v6}:

v4 = v3 ∪ {e 7→ t, f 7→ t}, v6 = v3 ∪ {e 7→ f, f 7→ f}.

Gaggl, Strass Decomposing ADFs slide 24 of 27



Main Theorem

Theorem
1. Let σ ∈ {cfi, adm, pre, com, mod}. Then σ ≤ σ2.
2. Let σ ∈ {nai, stg}. Then σ 6≤ σ2.
3. Let σ ∈ {cfi, nai, adm, pre, com, mod}. Then σ2 ≤ σ.
4. Let σ ∈ {stg}. Then σ2 6≤ σ.

Gaggl, Strass Decomposing ADFs slide 25 of 27



Conclusion
• We proposed a decomposition schema for semantics for ADFs.
• We introduced nai2 and stg2 for ADFs.
• Due to the relation of ADFs to logic programms we also get nai2 and stg2

semantics for LPs.
• Also in the paper: composing ADFs.

Future Work
• Analysis of the complexity of the approach.
• Implementation.
• Study splittings of ADFs and equivalences.

Gaggl, Strass Decomposing ADFs slide 26 of 27



References
Leila Amgoud and Claudette Cayrol and Marie-Christine Lagasquie and Pierre Livet,
On Bipolarity in Argumentation Frameworks
International Journal of Intelligent Systems 23(10): 1062–1093 (2008)

P. Baroni, F. Cerutti, M. Giacomin and G. Guida.
AFRA: Argumentation Framework with Recursive Attacks.
Int. J. Approx. Reasoning 52(1): 19–37 (2011).

Baroni, P., Giacomin, M., and Guida, G. (2005).
Scc-recursiveness: A general schema for argumentation semantics.
Artif. Intell., 168(1-2):162–210.

G. Brewka and S. Woltran.
Abstract Dialectical Frameworks.
KR 2010, pp. 102–111, AAAI Press, 2010.

Dung, P. M. (1995).
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games.
Artif. Intell., 77(2):321–358.

S. Modgil.
Reasoning about Preferences in Argumentation Frameworks.
Artif. Intell. 173(9-10): 910–934 (2009).

H. Strass and J. Wallner.
Analyzing the Computational Complexity of Abstract Dialectical Frameworks via Approximation
Fixpoint Theory.

KR 2014, AAAI Press, 2014.
Gaggl, Strass Decomposing ADFs slide 27 of 27


