

Artificial Intelligence, Computational Logic

DECOMPOSING ABSTRACT DIALECTICAL FRAMEWORKS

Sarah Gaggl and Hannes Strass

Pitlochry, 12th September 2014

Motivation

- Computational complexity of semantics for ADFs is in general higher than for AFs [Strass and Wallner, 2014].
- Algorithms based on SCC-recursive schema for AF semantics show significant performance gain [Cerutti et.al. KR 2014].
- We propose a similar approach based on a recursive decomposition along SCCs.
- Allows to define *cf2* and *stage2* semantics for ADFs.

Motivation

- Computational complexity of semantics for ADFs is in general higher than for AFs [Strass and Wallner, 2014].
- Algorithms based on SCC-recursive schema for AF semantics show significant performance gain [Cerutti et.al. KR 2014].
- We propose a similar approach based on a recursive decomposition along SCCs.
- Allows to define *cf2* and *stage2* semantics for ADFs.

Main Difference to AFs

- Acceptance conditions of statements in sub-frameworks may still depend on statements not contained in sub-framework.
- 2 El
 - Elimination of redundancies from links and acceptance formulas.
- Propagation of truth values to subsequent SCCs.

Agenda

- Introduction and Background
 - Abstract Dialectical Framework (ADFs)
- 2 Decomposing ADFs
 - Sub-Frameworks
 - Redundancies
 - Reduced Frameworks
 - Decomposition-based Semantics
- Conclusion and Future Work

ADFs - The Formal Framework

- Like AFs, use graph to describe dependencies among nodes.
- Unlike AFs, allow individual acceptance condition for each node.
- Assigns t(rue) or f(alse) depending on status of parents.

Definition

An abstract dialectical framework (ADF) is a tuple D = (S, L, C) where

- *S* is a set of statements (positions, nodes),
- $L \subseteq S \times S$ is a set of links,
- C = {C_s}_{s∈S} is a set of total functions C_s : 2^{par(s)} → {t, t}, one for each statement s. C_s is called acceptance condition of s.

Semantics

Definition

Let φ be a propositional formula over vocabulary *S* and for an $M \subseteq S$ let $v: M \to \{\mathbf{t}, \mathbf{f}, \mathbf{u}\}$ be a three-valued interpretation. The partial valuation of φ by v is $\varphi^v = \varphi[p/\mathbf{t}: v(p) = \mathbf{t}][p/\mathbf{f}: v(p) = \mathbf{f}]$.

Definition

Let D = (S, L, C) be an ADF. A three-valued interpretation v is

- conflict-free iff for all *s* ∈ *S* we have:
 - $v(s) = \mathbf{t}$ implies that φ_s^v is satisfiable,
 - $v(s) = \mathbf{f}$ implies that φ_s^v is unsatisfiable;
- naive iff it is \leq_i -maximal with respect to being conflict-free;

Where \leq_i is a partial order over the truth values (resp. interpretations), i.e. $\mathbf{u} <_i \mathbf{t}$ and $\mathbf{u} <_i \mathbf{f}$.

Semantics ctd.

Definition

Let D = (S, L, C) be an ADF. The partial valuation of φ by v is $\varphi^v = \varphi[p/\mathbf{t} : v(p) = \mathbf{t}][p/\mathbf{f} : v(p) = \mathbf{f}].$ A three-valued interpretation v is

- conflict-free iff for all $s \in S$ we have:
 - $v(s) = \mathbf{t}$ implies that φ_s^v is satisfiable,
 - $v(s) = \mathbf{f}$ implies that φ_s^v is unsatisfiable;
- naive iff it is \leq_i -maximal with respect to being conflict-free;

Example

 $v = \{a \mapsto \mathbf{f}, b \mapsto \mathbf{u}, c \mapsto \mathbf{t}\}$ is conflict-free, as $\varphi_a^v = \neg \mathbf{t}$ is unsatisfiable and $\varphi_c^v = \neg b$ is satisfiable.

Sub-Frameworks and Redundancies

- independent set $ind_D(\emptyset) = \{a, b, c\} = M_0$
- independent modulo M_0 : $ind_D(M_0) = \{a, b, c, d, e, f\} = S$
- *M* independent set: sub-framework $D|_M = (M, L \cap (M \times M), \{\varphi_s\}_{s \in M})$

Sub-Frameworks and Redundancies

- independent set $ind_D(\emptyset) = \{a, b, c\} = M_0$
- independent modulo M_0 : $ind_D(M_0) = \{a, b, c, d, e, f\} = S$
- *M* independent set: sub-framework $D|_M = (M, L \cap (M \times M), \{\varphi_s\}_{s \in M})$
- Redundancies can change dependencies between statements.
- If (r, s) is redundant then r has no influence on the truth value of φ_s whatsoever.

Example

Consider $\varphi_s = a \lor (b \land c)$ and the interpretation $v = \{a \mapsto \mathbf{u}, b \mapsto \mathbf{f}, c \mapsto \mathbf{u}\}$. $\varphi_s^v = a \lor (\mathbf{f} \land c)$

Sub-Frameworks and Redundancies

- independent set $ind_D(\emptyset) = \{a, b, c\} = M_0$
- independent modulo M_0 : $ind_D(M_0) = \{a, b, c, d, e, f\} = S$
- *M* independent set: sub-framework $D|_M = (M, L \cap (M \times M), \{\varphi_s\}_{s \in M})$
- Redundancies can change dependencies between statements.
- If (r, s) is redundant then r has no influence on the truth value of φ_s whatsoever.

Example

Consider $\varphi_s = a \lor (b \land c)$ and the interpretation $v = \{a \mapsto \mathbf{u}, b \mapsto \mathbf{f}, c \mapsto \mathbf{u}\}$. $\varphi_s^v = a \lor (\mathbf{f} \land c) \equiv a$ c has no influence

Reduced ADF

Given an ADF D = (S, L, C), an independent set $M \subseteq S$ and an interpretation $v : M \to \{\mathbf{t}, \mathbf{f}, \mathbf{u}\}$. The ADF *D* reduced with *v* on *M* is obtained by:

- adapt the acceptance condition of statement s to
 - t (resp. f) if v(s) = t (resp. v(s) = f)
 - $\neg s$ if $v(s) = \mathbf{u}$
 - partial valuation φ_s^v for remaining statements and if r is redundant in φ_s^v , replace r with t
- remove redundant links
- add links $\{(s,s) \mid v(s) = \mathbf{u}\}$

Reduced ADF

Given an ADF D = (S, L, C), an independent set $M \subseteq S$ and an interpretation $v : M \to \{\mathbf{t}, \mathbf{f}, \mathbf{u}\}$. The ADF *D* reduced with v on *M* is obtained by:

- adapt the acceptance condition of statement s to
 - t (resp. f) if v(s) = t (resp. v(s) = f)
 - $\neg s$ if $v(s) = \mathbf{u}$
 - partial valuation φ_s^v for remaining statements and if r is redundant in φ_s^v , replace r with t
- remove redundant links
- add links $\{(s,s) \mid v(s) = \mathbf{u}\}$

Procedure

For a semantics σ and an ADF D, we obtain the σ_2 interpretations recursively by applying $\sigma_2(D) = \sigma_2(ind_D(\emptyset), D)$ by:

- **1** Start with all statements independent modulo \emptyset , i.e. $M_0 = ind_D(\emptyset)$
- 2 Compute all σ -interpretations of sub-framework $D|_{M_0}$
- So For each σ -interpretation w of $D|_{M_0}$ compute the reduced ADF
- 4 Call Step 1 with reduced ADF and $M_1 = ind_D(M_0)$.

 $nai_2(D) = nai_2(ind_D(\emptyset), D)$ $1 \quad ind_D(\emptyset) = \{a, b, c\} = M_0$

 $nai_{2}(D) = nai_{2}(ind_{D}(\emptyset), D)$ 1 $ind_{D}(\emptyset) = \{a, b, c\} = M_{0}$ 2 Then we obtain $nai(D|_{M_{0}}) = \{v_{0}, v_{1}, v_{2}\}$:

$$v_0 = \{a \mapsto \mathbf{u}, b \mapsto \mathbf{t}, c \mapsto \mathbf{f}\}, v_1 = \{a \mapsto \mathbf{f}, b \mapsto \mathbf{u}, c \mapsto \mathbf{t}\}, v_2 = \{a \mapsto \mathbf{t}, b \mapsto \mathbf{f}, c \mapsto \mathbf{u}\}.$$

 $nai_{2}(D) = nai_{2}(ind_{D}(\emptyset), D)$ $ind_{D}(\emptyset) = \{a, b, c\} = M_{0}$ $v_{1} = \{a \mapsto \mathbf{f}, b \mapsto \mathbf{u}, c \mapsto \mathbf{t}\}$ $ind_{D}(\mathbf{f}, d) \text{ is redundant}$ $\mathbf{f} = \mathbf{t}, \text{ thus link } (f, d) \text{ is redundant}$

 $nai_{2}(D) = nai_{2}(ind_{D}(\emptyset), D)$ $ind_{D}(\emptyset) = \{a, b, c\} = M_{0}$ $v_{1} = \{a \mapsto \mathbf{f}, b \mapsto \mathbf{u}, c \mapsto \mathbf{t}\}$ $ind_{D}(\emptyset) = \{a \mapsto \mathbf{f}, b \mapsto \mathbf{u}, c \mapsto \mathbf{t}\}$ $ind_{D}(\emptyset) = \{a \mapsto \mathbf{f}, b \mapsto \mathbf{u}, c \mapsto \mathbf{t}\}$

 $1 M_1 = ind_{D_1}(M_0) = \{a, b, c, d\}$

1 $M_1 = ind_{D_1}(M_0) = \{a, b, c, d\}$ **2** $nai(D|_{M_1}) = v_3 = v_1 \cup \{d \mapsto \mathbf{t}\}$

 $nai_2(M_2, D_2)$

1
$$M_2 = ind_{D_2}(M_1) = \{a, b, c, d, e, f\} = S$$

 $nai_2(M_2, D_2)$

Main Theorem

Theorem1. Let $\sigma \in \{cfi, adm, pre, com, mod\}$.Then $\sigma \leq \sigma_2$.2. Let $\sigma \in \{nai, stg\}$.Then $\sigma \not\leq \sigma_2$.3. Let $\sigma \in \{cfi, nai, adm, pre, com, mod\}$.Then $\sigma_2 \leq \sigma$.4. Let $\sigma \in \{stg\}$.Then $\sigma_2 \not\leq \sigma$.

Conclusion

- We proposed a decomposition schema for semantics for ADFs.
- We introduced *nai*₂ and *stg*₂ for ADFs.
- Due to the relation of ADFs to logic programms we also get *nai*₂ and *stg*₂ semantics for LPs.
- Also in the paper: composing ADFs.

Future Work

- Analysis of the complexity of the approach.
- Implementation.
- Study splittings of ADFs and equivalences.

References

