
DATABASE THEORY

Lecture 2: First-Order Queries

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 5th April 2022

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2022)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

What is a Query?

The relational queries considered so far produced a result table from a database.
Other query languages can be completely different, but they usually agree on this:

Definition 2.1:

• Syntax: a query expression q is a word from a query language (algebra
expression, logical expression, etc.)

• Semantics: a query mapping M[q] is a function that maps a database
instance I to a database table M[q](I)

{ for some semantics, query mappings are not defined on all database instances

Markus Krötzsch, 5th April 2022 Database Theory slide 2 of 29

Generic Queries

We only consider queries that do not depend on the concrete names given to constants
in the database:

Definition 2.2: A query q is generic if, for every bijective renaming function
µ : dom→ dom and database instance I:

µ(M[q](I)) = M[µ(q)](µ(I)).

In this case, M[q] is closed under isomorphisms.

Markus Krötzsch, 5th April 2022 Database Theory slide 3 of 29

Review: Example from Previous Lecture

Lines:

Line Type

85 bus

3 tram

F1 ferry

.

Stops:

SID Stop Accessible

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

Connect:

From To Line

57 42 85

17 789 3

.

Every table has a schema:

• Lines[Line:string, Type:string]

• Stops[SID:int, Stop:string,
Accessible:bool]

• Connect[From:int, To:int, Line:string]
Markus Krötzsch, 5th April 2022 Database Theory slide 4 of 29

First-order Logic as a Query Language

Idea: database instances are finite first-order interpretations
{ use first-order formulae as query language
{ use unnamed perspective (more natural here)

Examples (using schema as in previous lecture):

• Find all bus lines: Lines(x, "bus")
• Find all possible types of lines: ∃y.Lines(y, x)
• Find all lines that depart from an accessible stop:

∃ySID, yStop, yTo.
(
Stops(ySID, yStop,"true") ∧ Connect(ySID, yTo, xLine)

)

Markus Krötzsch, 5th April 2022 Database Theory slide 5 of 29

First-order Logic with Equality: Syntax

Basic building blocks:

• Predicate names with an arity ≥ 0: p, q, Lines, Stops

• Variables: x, y, z

• Constants: a, b, c

• Terms are variables or constants: s, t

Formulae of first-order logic are defined as usual:

ϕ ::= p(t1, . . . , tn) | t1 ≈ t2 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∀x.ϕ

where p is an n-ary predicate, ti are terms, and x is a variable.

• An atom is a formula of the form p(t1, . . . , tn)
• A literal is an atom or a negated atom

• Occurrences of variables in the scope of a quantifier are bound;
other occurrences of variables are free

Markus Krötzsch, 5th April 2022 Database Theory slide 6 of 29

First-order Logic Syntax: Simplifications

We use the usual shortcuts and simplifications:

• flat conjunctions (ϕ1 ∧ ϕ2 ∧ ϕ3 instead of (ϕ1 ∧ (ϕ2 ∧ ϕ3)))
• flat disjunctions (similar)

• flat quantifiers (∃x, y, z.ϕ instead of ∃x.∃y.∃z.ϕ)

• ϕ→ ψ as shortcut for ¬ϕ ∨ ψ

• ϕ↔ ψ as shortcut for (ϕ→ ψ) ∧ (ψ→ ϕ)
• t1 0 t2 as shortcut for ¬(t1 ≈ t2)

But we always use parentheses to clarify nesting of ∧ and ∨:

No “ϕ1 ∧ ϕ2 ∨ ϕ3”!

Markus Krötzsch, 5th April 2022 Database Theory slide 7 of 29

First-order Logic with Equality: Semantics

First-order formulae are evaluated over interpretations 〈∆I, ·I〉, where ∆I is the domain.
To interpret formulas with free variables, we need a variable assignment Z : Var→ ∆I.

• constants a interpreted as aI,Z = aI ∈ ∆I

• variables x interpreted as xI,Z = Z(x) ∈ ∆I

• n-ary predicates p interpreted as pI ⊆ (∆I)n

A formula ϕ can be satisfied by I and Z, written I,Z |= ϕ:

• I,Z |= p(t1, . . . , tn) if 〈tI,Z

1 , . . . , tI,Z
n 〉 ∈ pI

• I,Z |= t1 ≈ t2 if tI,Z

1 = tI,Z

2

• I,Z |= ¬ϕ if I,Z 6|= ϕ

• I,Z |= ϕ ∧ ψ if I,Z |= ϕ and I,Z |= ψ

• I,Z |= ϕ ∨ ψ if I,Z |= ϕ or I,Z |= ψ

• I,Z |= ∃x.ϕ if there is δ ∈ ∆I with I, {x 7→ δ},Z |= ϕ

• I,Z |= ∀x.ϕ if for all δ ∈ ∆I we have I, {x 7→ δ},Z |= ϕ

Markus Krötzsch, 5th April 2022 Database Theory slide 8 of 29

First-order Logic with Equality: Semantics

First-order formulae are evaluated over interpretations 〈∆I, ·I〉, where ∆I is the domain.
To interpret formulas with free variables, we need a variable assignment Z : Var→ ∆I.

• constants a interpreted as aI,Z = aI ∈ ∆I

• variables x interpreted as xI,Z = Z(x) ∈ ∆I

• n-ary predicates p interpreted as pI ⊆ (∆I)n

A formula ϕ can be satisfied by I and Z, written I,Z |= ϕ:

• I,Z |= p(t1, . . . , tn) if 〈tI,Z

1 , . . . , tI,Z
n 〉 ∈ pI

• I,Z |= t1 ≈ t2 if tI,Z

1 = tI,Z

2

• I,Z |= ¬ϕ if I,Z 6|= ϕ

• I,Z |= ϕ ∧ ψ if I,Z |= ϕ and I,Z |= ψ

• I,Z |= ϕ ∨ ψ if I,Z |= ϕ or I,Z |= ψ

• I,Z |= ∃x.ϕ if there is δ ∈ ∆I with I, {x 7→ δ},Z |= ϕ

• I,Z |= ∀x.ϕ if for all δ ∈ ∆I we have I, {x 7→ δ},Z |= ϕ

Markus Krötzsch, 5th April 2022 Database Theory slide 8 of 29

First-order Logic Queries

Definition 2.3: An n-ary first-order query q is an expression ϕ[x1, . . . , xn] where
x1, . . . , xn are exactly the free variables of ϕ (in a specific order).

Definition 2.4: An answer to q = ϕ[x1, . . . , xn] over an interpretation I is a tuple
〈a1, . . . , an〉 of constants such that

I |= ϕ[x1/a1, . . . , xn/an]

where ϕ[x1/a1, . . . , xn/an] is ϕ with each free xi replaced by ai.

The result of q over I is the set of all answers of q over I.

Markus Krötzsch, 5th April 2022 Database Theory slide 9 of 29

Boolean Queries

A Boolean query is a query of arity 0
{ we simply write ϕ instead of ϕ[]
{ ϕ is a closed formula (a.k.a. sentence)

What does a Boolean query return?

Two possible cases:

• I 6|= ϕ, then the result of ϕ over I is ∅ (the empty table)

• I |= ϕ, then the result of ϕ over I is {〈〉} (the unit table)

Interpreted as Boolean check with result true or false (match or no match)

Markus Krötzsch, 5th April 2022 Database Theory slide 10 of 29

Boolean Queries

A Boolean query is a query of arity 0
{ we simply write ϕ instead of ϕ[]
{ ϕ is a closed formula (a.k.a. sentence)

What does a Boolean query return?

Two possible cases:

• I 6|= ϕ, then the result of ϕ over I is ∅ (the empty table)

• I |= ϕ, then the result of ϕ over I is {〈〉} (the unit table)

Interpreted as Boolean check with result true or false (match or no match)

Markus Krötzsch, 5th April 2022 Database Theory slide 10 of 29

Domain Dependence

We have defined FO queries over interpretations
{ How exactly do we get from databases to interpretations?

• Constants are just interpreted as themselves: aI = a

• Predicates are interpreted according to the table contents

• But what is the domain of the interpretation?

Example 2.5: What should the following queries return?

(1) ¬Lines(x, "bus")[x]

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

(3) ∀y.p(x, y)[x]

{ Answers depend on the interpretation domain, not just on the database contents

Markus Krötzsch, 5th April 2022 Database Theory slide 11 of 29

Domain Dependence

We have defined FO queries over interpretations
{ How exactly do we get from databases to interpretations?

• Constants are just interpreted as themselves: aI = a

• Predicates are interpreted according to the table contents

• But what is the domain of the interpretation?

Example 2.5: What should the following queries return?

(1) ¬Lines(x, "bus")[x]

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

(3) ∀y.p(x, y)[x]

{ Answers depend on the interpretation domain, not just on the database contents

Markus Krötzsch, 5th April 2022 Database Theory slide 11 of 29

Domain Dependence

We have defined FO queries over interpretations
{ How exactly do we get from databases to interpretations?

• Constants are just interpreted as themselves: aI = a

• Predicates are interpreted according to the table contents

• But what is the domain of the interpretation?

Example 2.5: What should the following queries return?

(1) ¬Lines(x, "bus")[x]

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

(3) ∀y.p(x, y)[x]

{ Answers depend on the interpretation domain, not just on the database contents

Markus Krötzsch, 5th April 2022 Database Theory slide 11 of 29

Natural Domain

First possible solution: the natural domain

Natural domain semantics (ND):

• fix the interpretation domain to dom (infinite)

• query answers might be infinite (not a valid result table)
{ query result undefined for such cases

Markus Krötzsch, 5th April 2022 Database Theory slide 12 of 29

Natural Domain: Examples

Query answers under natural domain semantics:

(1) ¬Lines(x, "bus")[x]
Undefined on all databases

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

Undefined on databases with matching x1 or x2 in Connect, otherwise empty

(3) ∀y.p(x, y)[x]
Empty on all databases

Markus Krötzsch, 5th April 2022 Database Theory slide 13 of 29

Natural Domain: Examples

Query answers under natural domain semantics:

(1) ¬Lines(x, "bus")[x]
Undefined on all databases

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

Undefined on databases with matching x1 or x2 in Connect, otherwise empty

(3) ∀y.p(x, y)[x]
Empty on all databases

Markus Krötzsch, 5th April 2022 Database Theory slide 13 of 29

Natural Domain: Examples

Query answers under natural domain semantics:

(1) ¬Lines(x, "bus")[x]
Undefined on all databases

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

Undefined on databases with matching x1 or x2 in Connect, otherwise empty

(3) ∀y.p(x, y)[x]
Empty on all databases

Markus Krötzsch, 5th April 2022 Database Theory slide 13 of 29

Active Domain

Alternative: restrict to constants that are really used
{ active domain

• for a database instance I, adom(I) is the set of constants used in relations of I

• for a query q, adom(q) is the set of constants in q

• adom(I, q) = adom(I) ∪ adom(q)

Active domain semantics (AD):

consider database instance as interpretation over adom(I, q)

Markus Krötzsch, 5th April 2022 Database Theory slide 14 of 29

Active Domain: Examples

Query answers under active domain semantics:

(1) ¬Lines(x, "bus")[x]
Let q′ = Lines(x, "bus")[x]. The answer is adom(I, q) \M[q′](I)

(2)
(
Connect(x1, "42", "85")︸ ︷︷ ︸

ϕ1[x1]

∨Connect("57", x2, "85")︸ ︷︷ ︸
ϕ2[x2]

)
[x1, x2]

The answer is M[ϕ1](I) × adom(I, q) ∪ adom(I, q) ×M[ϕ2](I)

(3) ∀y.p(x, y)[x]
{ exercise (to think about)

Markus Krötzsch, 5th April 2022 Database Theory slide 15 of 29

Active Domain: Examples

Query answers under active domain semantics:

(1) ¬Lines(x, "bus")[x]
Let q′ = Lines(x, "bus")[x]. The answer is adom(I, q) \M[q′](I)

(2)
(
Connect(x1, "42", "85")︸ ︷︷ ︸

ϕ1[x1]

∨Connect("57", x2, "85")︸ ︷︷ ︸
ϕ2[x2]

)
[x1, x2]

The answer is M[ϕ1](I) × adom(I, q) ∪ adom(I, q) ×M[ϕ2](I)

(3) ∀y.p(x, y)[x]
{ exercise (to think about)

Markus Krötzsch, 5th April 2022 Database Theory slide 15 of 29

Active Domain: Examples

Query answers under active domain semantics:

(1) ¬Lines(x, "bus")[x]
Let q′ = Lines(x, "bus")[x]. The answer is adom(I, q) \M[q′](I)

(2)
(
Connect(x1, "42", "85")︸ ︷︷ ︸

ϕ1[x1]

∨Connect("57", x2, "85")︸ ︷︷ ︸
ϕ2[x2]

)
[x1, x2]

The answer is M[ϕ1](I) × adom(I, q) ∪ adom(I, q) ×M[ϕ2](I)

(3) ∀y.p(x, y)[x]
{ exercise (to think about)

Markus Krötzsch, 5th April 2022 Database Theory slide 15 of 29

Domain Independence

Observation: some queries do not depend on the domain

• Stops(x, y, "true")[x, y]
• (x ≈ a)[x]
• p(x) ∧ ¬q(x)[x]
• r(x) ∧ ∀y.(q(x, y)→ p(x, y))[x] (exercise: why?)

In contrast, all example queries on the previous few slides are not domain independent

Domain independent semantics (DI):

consider only domain independent queries
use any domain adom(I, q) ⊆ ∆I ⊆ dom for interpretation

Markus Krötzsch, 5th April 2022 Database Theory slide 16 of 29

How to Compare Query Languages

We have seen three ways of defining FO query semantics
{ how to compare them?

Definition 2.6: The set of query mappings that can be described in a query lan-
guage L is denoted QM(L).
• L1 is subsumed by L2, written L1 v L2, if QM(L1)⊆QM(L2)
• L1 is equivalent to L2, written L1 ≡ L2, if QM(L1) = QM(L2)

We will also compare query languages under named perspective with query languages under
unnamed perspective.
This is possible since there is an easy one-to-one correspondence between query mappings of
either kind (see exercise).

Markus Krötzsch, 5th April 2022 Database Theory slide 17 of 29

How to Compare Query Languages

We have seen three ways of defining FO query semantics
{ how to compare them?

Definition 2.6: The set of query mappings that can be described in a query lan-
guage L is denoted QM(L).
• L1 is subsumed by L2, written L1 v L2, if QM(L1)⊆QM(L2)
• L1 is equivalent to L2, written L1 ≡ L2, if QM(L1) = QM(L2)

We will also compare query languages under named perspective with query languages under
unnamed perspective.
This is possible since there is an easy one-to-one correspondence between query mappings of
either kind (see exercise).

Markus Krötzsch, 5th April 2022 Database Theory slide 17 of 29

Equivalence of Relational Query Languages

Theorem 2.7: The following query languages are equivalent:

• Relational algebra RA

• FO queries under active domain semantics AD

• Domain independent FO queries DI

This holds under named and under unnamed perspective.

To prove it, we will show:

RAnamed v DIunnamed v ADunnamed v RAnamed

Markus Krötzsch, 5th April 2022 Database Theory slide 18 of 29

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA expressions respect the global
order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [yB1 , . . . , yBn]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes, while b1, . . . , bn might be in another order.
We use {B1, . . . , Bn} = {b1, . . . , bn} to denote the ordered version of the bi attributes. ϕq′ [yB1 , . . . , yBn] is like ϕq′ but using variables yBi .)

Markus Krötzsch, 5th April 2022 Database Theory slide 19 of 29

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA expressions respect the global
order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [yB1 , . . . , yBn]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes, while b1, . . . , bn might be in another order.
We use {B1, . . . , Bn} = {b1, . . . , bn} to denote the ordered version of the bi attributes. ϕq′ [yB1 , . . . , yBn] is like ϕq′ but using variables yBi .)

Markus Krötzsch, 5th April 2022 Database Theory slide 19 of 29

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA expressions respect the global
order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [yB1 , . . . , yBn]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes, while b1, . . . , bn might be in another order.
We use {B1, . . . , Bn} = {b1, . . . , bn} to denote the ordered version of the bi attributes. ϕq′ [yB1 , . . . , yBn] is like ϕq′ but using variables yBi .)

Markus Krötzsch, 5th April 2022 Database Theory slide 19 of 29

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA expressions respect the global
order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [yB1 , . . . , yBn]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes, while b1, . . . , bn might be in another order.
We use {B1, . . . , Bn} = {b1, . . . , bn} to denote the ordered version of the bi attributes. ϕq′ [yB1 , . . . , yBn] is like ϕq′ but using variables yBi .)

Markus Krötzsch, 5th April 2022 Database Theory slide 19 of 29

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA expressions respect the global
order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [yB1 , . . . , yBn]

(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes, while b1, . . . , bn might be in another order.
We use {B1, . . . , Bn} = {b1, . . . , bn} to denote the ordered version of the bi attributes. ϕq′ [yB1 , . . . , yBn] is like ϕq′ but using variables yBi .)

Markus Krötzsch, 5th April 2022 Database Theory slide 19 of 29

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA expressions respect the global
order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [yB1 , . . . , yBn]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes, while b1, . . . , bn might be in another order.
We use {B1, . . . , Bn} = {b1, . . . , bn} to denote the ordered version of the bi attributes. ϕq′ [yB1 , . . . , yBn] is like ϕq′ but using variables yBi .)

Markus Krötzsch, 5th April 2022 Database Theory slide 19 of 29

RAnamed v DIunnamed (cont’d)

Remaining cases:

• if q = πa1,...,an (q′) for a subquery q′[b1, . . . , bm] with

{b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck},

then ϕq = ∃xc1 , . . . , xck .ϕq′

• if q = q1 ./ q2, then ϕq = ϕq1 ∧ ϕq2

• if q = q1 ∪ q2, then ϕq = ϕq1 ∨ ϕq2

• if q = q1 − q2, then ϕq = ϕq1 ∧ ¬ϕq2

One can show that ϕq[xa1 , . . . , xan] is domain independent and equivalent to q
{ exercise

Markus Krötzsch, 5th April 2022 Database Theory slide 20 of 29

RAnamed v DIunnamed (cont’d)

Remaining cases:

• if q = πa1,...,an (q′) for a subquery q′[b1, . . . , bm] with

{b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck},

then ϕq = ∃xc1 , . . . , xck .ϕq′

• if q = q1 ./ q2, then ϕq = ϕq1 ∧ ϕq2

• if q = q1 ∪ q2, then ϕq = ϕq1 ∨ ϕq2

• if q = q1 − q2, then ϕq = ϕq1 ∧ ¬ϕq2

One can show that ϕq[xa1 , . . . , xan] is domain independent and equivalent to q
{ exercise

Markus Krötzsch, 5th April 2022 Database Theory slide 20 of 29

RAnamed v DIunnamed (cont’d)

Remaining cases:

• if q = πa1,...,an (q′) for a subquery q′[b1, . . . , bm] with

{b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck},

then ϕq = ∃xc1 , . . . , xck .ϕq′

• if q = q1 ./ q2, then ϕq = ϕq1 ∧ ϕq2

• if q = q1 ∪ q2, then ϕq = ϕq1 ∨ ϕq2

• if q = q1 − q2, then ϕq = ϕq1 ∧ ¬ϕq2

One can show that ϕq[xa1 , . . . , xan] is domain independent and equivalent to q
{ exercise

Markus Krötzsch, 5th April 2022 Database Theory slide 20 of 29

RAnamed v DIunnamed (cont’d)

Remaining cases:

• if q = πa1,...,an (q′) for a subquery q′[b1, . . . , bm] with

{b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck},

then ϕq = ∃xc1 , . . . , xck .ϕq′

• if q = q1 ./ q2, then ϕq = ϕq1 ∧ ϕq2

• if q = q1 ∪ q2, then ϕq = ϕq1 ∨ ϕq2

• if q = q1 − q2, then ϕq = ϕq1 ∧ ¬ϕq2

One can show that ϕq[xa1 , . . . , xan] is domain independent and equivalent to q
{ exercise

Markus Krötzsch, 5th April 2022 Database Theory slide 20 of 29

RAnamed v DIunnamed (cont’d)

Remaining cases:

• if q = πa1,...,an (q′) for a subquery q′[b1, . . . , bm] with

{b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck},

then ϕq = ∃xc1 , . . . , xck .ϕq′

• if q = q1 ./ q2, then ϕq = ϕq1 ∧ ϕq2

• if q = q1 ∪ q2, then ϕq = ϕq1 ∨ ϕq2

• if q = q1 − q2, then ϕq = ϕq1 ∧ ¬ϕq2

One can show that ϕq[xa1 , . . . , xan] is domain independent and equivalent to q
{ exercise

Markus Krötzsch, 5th April 2022 Database Theory slide 20 of 29

DIunnamed v ADunnamed

This is easy to see

:

• Consider an FO query q that is domain independent

• The semantics of q is the same for any domain adom ⊆ ∆I ⊆ dom

• In particular, the semantics of q is the same under active domain semantics

• Hence, for every DI query, there is an equivalent AD query

Markus Krötzsch, 5th April 2022 Database Theory slide 21 of 29

DIunnamed v ADunnamed

This is easy to see:

• Consider an FO query q that is domain independent

• The semantics of q is the same for any domain adom ⊆ ∆I ⊆ dom

• In particular, the semantics of q is the same under active domain semantics

• Hence, for every DI query, there is an equivalent AD query

Markus Krötzsch, 5th April 2022 Database Theory slide 21 of 29

ADunnamed v RAnamed

Consider an AD query q = ϕ[x1, . . . , xn].

For an arbitrary attribute name a, we can construct an RA expression Ea,adom such that
Ea,adom(I) = {{a 7→ c} | c ∈ adom(I, q)}
{ exercise

For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables x1 = tv1 , . . . , xn = tvn

and constants c1 = tw1 , . . . , ck = twk ,
then Eϕ = δav1 ...avn→ax1 ...axn

(πav1 ,...,avn
(σaw1 =c1 (. . . σawk =ck (R) . . .)))

• if ϕ = (x ≈ c), then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y), then Eϕ = σax=ay (Eax,adom ./ Eay,adom)

• other forms of equality atoms are similar

Markus Krötzsch, 5th April 2022 Database Theory slide 22 of 29

ADunnamed v RAnamed

Consider an AD query q = ϕ[x1, . . . , xn].

For an arbitrary attribute name a, we can construct an RA expression Ea,adom such that
Ea,adom(I) = {{a 7→ c} | c ∈ adom(I, q)}
{ exercise

For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables x1 = tv1 , . . . , xn = tvn

and constants c1 = tw1 , . . . , ck = twk ,

then Eϕ = δav1 ...avn→ax1 ...axn
(πav1 ,...,avn

(σaw1 =c1 (. . . σawk =ck (R) . . .)))

• if ϕ = (x ≈ c), then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y), then Eϕ = σax=ay (Eax,adom ./ Eay,adom)

• other forms of equality atoms are similar

Markus Krötzsch, 5th April 2022 Database Theory slide 22 of 29

ADunnamed v RAnamed

Consider an AD query q = ϕ[x1, . . . , xn].

For an arbitrary attribute name a, we can construct an RA expression Ea,adom such that
Ea,adom(I) = {{a 7→ c} | c ∈ adom(I, q)}
{ exercise

For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables x1 = tv1 , . . . , xn = tvn

and constants c1 = tw1 , . . . , ck = twk ,
then Eϕ = δav1 ...avn→ax1 ...axn

(πav1 ,...,avn
(σaw1 =c1 (. . . σawk =ck (R) . . .)))

• if ϕ = (x ≈ c)

, then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y), then Eϕ = σax=ay (Eax,adom ./ Eay,adom)

• other forms of equality atoms are similar

Markus Krötzsch, 5th April 2022 Database Theory slide 22 of 29

ADunnamed v RAnamed

Consider an AD query q = ϕ[x1, . . . , xn].

For an arbitrary attribute name a, we can construct an RA expression Ea,adom such that
Ea,adom(I) = {{a 7→ c} | c ∈ adom(I, q)}
{ exercise

For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables x1 = tv1 , . . . , xn = tvn

and constants c1 = tw1 , . . . , ck = twk ,
then Eϕ = δav1 ...avn→ax1 ...axn

(πav1 ,...,avn
(σaw1 =c1 (. . . σawk =ck (R) . . .)))

• if ϕ = (x ≈ c), then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y)

, then Eϕ = σax=ay (Eax,adom ./ Eay,adom)

• other forms of equality atoms are similar

Markus Krötzsch, 5th April 2022 Database Theory slide 22 of 29

ADunnamed v RAnamed

Consider an AD query q = ϕ[x1, . . . , xn].

For an arbitrary attribute name a, we can construct an RA expression Ea,adom such that
Ea,adom(I) = {{a 7→ c} | c ∈ adom(I, q)}
{ exercise

For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables x1 = tv1 , . . . , xn = tvn

and constants c1 = tw1 , . . . , ck = twk ,
then Eϕ = δav1 ...avn→ax1 ...axn

(πav1 ,...,avn
(σaw1 =c1 (. . . σawk =ck (R) . . .)))

• if ϕ = (x ≈ c), then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y), then Eϕ = σax=ay (Eax,adom ./ Eay,adom)

• other forms of equality atoms are similar

Markus Krötzsch, 5th April 2022 Database Theory slide 22 of 29

ADunnamed v RAnamed (cont’d)

Remaining cases:

• if ϕ = ¬ψ

, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2, then Eϕ = Eϕ1 ./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn,
then Eϕ = πax1 ,...,axn

Eψ

The cases for ∨ and ∀ can be constructed from the above
{ exercise

A note on order: The translation yields an expression Eϕ[ax1 , . . . , axn]. For this to be equivalent to
the query ϕ[x1, . . . , xn], we must choose the attribute names such that their global order is
ax1 , . . . , axn . This is clearly possible, since the names are arbitrary and we have infinitely many
names available.

Markus Krötzsch, 5th April 2022 Database Theory slide 23 of 29

ADunnamed v RAnamed (cont’d)

Remaining cases:

• if ϕ = ¬ψ, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2

, then Eϕ = Eϕ1 ./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn,
then Eϕ = πax1 ,...,axn

Eψ

The cases for ∨ and ∀ can be constructed from the above
{ exercise

A note on order: The translation yields an expression Eϕ[ax1 , . . . , axn]. For this to be equivalent to
the query ϕ[x1, . . . , xn], we must choose the attribute names such that their global order is
ax1 , . . . , axn . This is clearly possible, since the names are arbitrary and we have infinitely many
names available.

Markus Krötzsch, 5th April 2022 Database Theory slide 23 of 29

ADunnamed v RAnamed (cont’d)

Remaining cases:

• if ϕ = ¬ψ, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2, then Eϕ = Eϕ1 ./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn

,
then Eϕ = πax1 ,...,axn

Eψ

The cases for ∨ and ∀ can be constructed from the above
{ exercise

A note on order: The translation yields an expression Eϕ[ax1 , . . . , axn]. For this to be equivalent to
the query ϕ[x1, . . . , xn], we must choose the attribute names such that their global order is
ax1 , . . . , axn . This is clearly possible, since the names are arbitrary and we have infinitely many
names available.

Markus Krötzsch, 5th April 2022 Database Theory slide 23 of 29

ADunnamed v RAnamed (cont’d)

Remaining cases:

• if ϕ = ¬ψ, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2, then Eϕ = Eϕ1 ./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn,
then Eϕ = πax1 ,...,axn

Eψ

The cases for ∨ and ∀ can be constructed from the above
{ exercise

A note on order: The translation yields an expression Eϕ[ax1 , . . . , axn]. For this to be equivalent to
the query ϕ[x1, . . . , xn], we must choose the attribute names such that their global order is
ax1 , . . . , axn . This is clearly possible, since the names are arbitrary and we have infinitely many
names available.

Markus Krötzsch, 5th April 2022 Database Theory slide 23 of 29

ADunnamed v RAnamed (cont’d)

Remaining cases:

• if ϕ = ¬ψ, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2, then Eϕ = Eϕ1 ./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn,
then Eϕ = πax1 ,...,axn

Eψ

The cases for ∨ and ∀ can be constructed from the above
{ exercise

A note on order: The translation yields an expression Eϕ[ax1 , . . . , axn]. For this to be equivalent to
the query ϕ[x1, . . . , xn], we must choose the attribute names such that their global order is
ax1 , . . . , axn . This is clearly possible, since the names are arbitrary and we have infinitely many
names available.

Markus Krötzsch, 5th April 2022 Database Theory slide 23 of 29

How to find DI queries?

Domain independent queries are arguably most intuitive, since their result does not
depend on special assumptions.

{ How can we check if a query is in DI?

Unfortunately, we can’t:

Theorem 2.8: Given a FO query q, it is undecidable if q ∈ DI.

{ find decidable sufficient conditions for a query to be in DI

Markus Krötzsch, 5th April 2022 Database Theory slide 24 of 29

How to find DI queries?

Domain independent queries are arguably most intuitive, since their result does not
depend on special assumptions.

{ How can we check if a query is in DI? Unfortunately, we can’t:

Theorem 2.8: Given a FO query q, it is undecidable if q ∈ DI.

{ find decidable sufficient conditions for a query to be in DI

Markus Krötzsch, 5th April 2022 Database Theory slide 24 of 29

A Normal Form for Queries

We first define a normal form for FO queries:
Safe-Range Normal Form (SRNF)

• Rename variables apart (distinct quantifiers bind distinct variables, bound variables
distinct from free variables)

• Eliminate all universal quantifiers: ∀y.ψ 7→ ¬∃y.¬ψ
• Push negations inwards:

– ¬(ϕ ∧ ψ) 7→ (¬ϕ ∨ ¬ψ)
– ¬(ϕ ∨ ψ) 7→ (¬ϕ ∧ ¬ψ)
– ¬¬ψ 7→ ψ

Markus Krötzsch, 5th April 2022 Database Theory slide 25 of 29

Safe-Range Queries

Let ϕ be a formula in SRNF. The set rr(ϕ) of range-restricted variables of ϕ is defined
recursively:

rr(R(t1, . . . , tn)) = {x | x a variable among the t1, . . . , tn}

rr(x ≈ a) = {x}

rr(x ≈ y) = ∅

rr(ϕ1 ∧ ϕ2) =

rr(ϕ1) ∪ {x, y} if ϕ2 = (x≈ y) and {x, y} ∩ rr(ϕ1) , ∅

rr(ϕ1) ∪ rr(ϕ2) otherwise

rr(ϕ1 ∨ ϕ2) = rr(ϕ1) ∩ rr(ϕ2)

rr(∃y.ψ) =

rr(ψ) \ {y} if y ∈ rr(ψ)

throw new NotSafeException() if y < rr(ψ)

rr(¬ψ) = ∅ if rr(ψ) is defined (no exception)

Markus Krötzsch, 5th April 2022 Database Theory slide 26 of 29

Safe-Range Queries

Definition 2.9: An FO query q = ϕ[x1, . . . , xn] is a safe-range query if

rr(SRNF(ϕ)) = {x1, . . . , xn}.

Safe-range queries are domain independent.

One can show a much stronger result:

Theorem 2.10: The following query languages are equivalent:

• Safe-range queries SR

• Relational algebra RA

• FO queries under active domain semantics AD

• Domain independent FO queries DI

Markus Krötzsch, 5th April 2022 Database Theory slide 27 of 29

Safe-Range Queries

Definition 2.9: An FO query q = ϕ[x1, . . . , xn] is a safe-range query if

rr(SRNF(ϕ)) = {x1, . . . , xn}.

Safe-range queries are domain independent.
One can show a much stronger result:

Theorem 2.10: The following query languages are equivalent:

• Safe-range queries SR

• Relational algebra RA

• FO queries under active domain semantics AD

• Domain independent FO queries DI

Markus Krötzsch, 5th April 2022 Database Theory slide 27 of 29

Tuple-Relational Calculus

There are more equivalent ways to define a relational query language

Example: Codd’s tuple calculus

• Based on named perspective

• Use first-order logic, but variables range over sorted tuples (rows) instead of values

• Use expressions like x : From,To,Line to declare sorts of variables in queries

• Use expressions like x.From to access a specific value of a tuple
• Example: Find all lines that depart from an accessible stop

{x : Line | ∃y : SID,Stop,Accessible.(Stops(y) ∧ y.Accessible ≈ "true"

∧ ∃z : From,To,Line.(Connect(z) ∧ z.From ≈ y.SID

∧ z.Line ≈ x.Line))}

Markus Krötzsch, 5th April 2022 Database Theory slide 28 of 29

Summary and Outlook

First-order logic gives rise to a relational query language

The problem of domain dependence can be solved in several ways

All common definitions lead to equivalent calculi
{ “relational calculus”

Open questions:

• How hard is it to actually answer such queries? (next lecture)

• How can we study the expressiveness of query languages?

• Are there interesting query languages that are not equivalent to RA?

Markus Krötzsch, 5th April 2022 Database Theory slide 29 of 29

	First-Order Queries

