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Previously . . .
Prolog Programs
• Prolog programs consist of facts and rules.
• We use Prolog by asking queries to programs.
• Answers to queries can be Boolean (yes/no) . . .
• . . .or given by variable assignments.
• Prolog programs are declarative (to a certain extent).
direct(frankfurt,san_francisco).
direct(frankfurt,chicago).
direct(san_francisco,honolulu).
direct(honolulu,maui).

connection(X, Y) :- direct(X, Y).
connection(X, Y) :- direct(X, Z),

connection(Z, Y).

| ?- connection(frankfurt, maui).
yes

| ?- connection(frankfurt, X).
X = san_francisco
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The Need to Perform Unification
p(f(X),g(f(c),X)).

| ?- p(U,g(V,f(W))).

U = f(f(W)),
V = f(c)

| ?- p(U,g(c,f(W))).

no

| ?- p(U,g(V,U)).

U = f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f ...

Unification (Lecture 2)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 4 of 31 Computational
Logic ∴ Group



Ranked Alphabets and Terms
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Ranked Alphabets and Term Universes

• A variable is a first-order predicate logic variable
• A ranked alphabet is a finite set Σ of symbols; to every symbol a naturalnumber n ≥ 0 (its arity or rank) is assigned(Σ(n) denotes the subset of Σ with symbols of arity n)
• Parentheses, commas
• For V a set of variables, F a ranked alphabet of function symbols:

The term universe TUF ,V (over F and V ) is the smallest set with
1. V ⊆ TUF ,V ;2. if f ∈ F (0), then f ∈ TUF ,V ;3. if f ∈ F (n) with n ≥ 1 and t1, . . . , tn ∈ TUF ,V , then f (t1, . . . , tn) ∈ TUF ,V .The elements of TUF ,V are called terms.
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Ground Terms and Herbrand Universes

• Var(t) :⇐⇒ set of variables in t
• t ground term :⇐⇒ Var(t) = ∅
• F ranked alphabet of function symbols:

Herbrand universe HUF (over F) :⇐⇒ TUF ,∅• s sub-term of t :⇐⇒ term s is sub-string of t (equivalently: sub-tree)

Unification (Lecture 2)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 7 of 31 Computational
Logic ∴ Group



Substitutions
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Substitutions
Definition
Let V be a set of variables, X ⊆ V be finite, and F be a ranked alphabet.A substitution is a function θ : X → TUF ,V with x ̸= θ(x) for every x ∈ X .
We use the notation θ = {x1/t1, . . . , xn/tn} to express that
1. X = {x1, . . . , xn}, and
2. θ(xi) = ti for every xi ∈ X .
• empty substitution ε :⇐⇒ n = 0
• θ ground substitution :⇐⇒ t1, . . . , tn ground terms
• θ pure variable substitution :⇐⇒ t1, . . . , tn variables
• θ renaming :⇐⇒ {t1, . . . , tn} = {x1, . . . , xn}

Unification (Lecture 2)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 9 of 31 Computational
Logic ∴ Group



Substitutions (II)

Consider a substitution θ = {x1/t1, . . . , xn/tn}.

Dom(θ) := {x1, . . . , xn}
Range(θ) := {t1, . . . , tn}
Ran(θ) := Var(Range(θ))
Var(θ) := Dom(θ)∪ Ran(θ)
θ|Y := { y/t | y/t ∈ θ and y ∈ Y} for every Y ⊆ {x1, . . . , xn}
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Applying Substitutions
Definition
Let t be a term and θ be a substitution.The application of θ to t is the term tθ obtained as follows:
1. If t = x is a variable, then tθ = xθ :=

{
θ(x) if x ∈ Dom(θ),
x otherwise.

2. If t = c ∈ Σ(0) is a constant symbol, then tθ = cθ := c.
3. If f = f (t1, . . . , tn) for an f ∈ Σ(n), then tθ = f (t1, . . . , tn)θ := f (t1θ, . . . , tnθ).
• t is an instance of s :⇐⇒ there is a substitution θ with sθ = t
• s ismore general than t :⇐⇒ t is an instance of s
• t is a variant of s :⇐⇒ there is a renaming θ with sθ = t
Lemma 2.5
t is a variant of s iff t is an instance of s and s is an instance of t.
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Composition
Definition
Let θ and η be substitutions. The composition θη is defined by setting

(θη)(x) := (xθ)η
for each variable x.
Intuition: First apply θ, then apply η.
Lemma
Let θ = {x1/t1, . . . , xn/tn}, η = { y1/s1, . . . , ym/sm}.Then θη can be constructed from the sequence

x1/t1η, . . . , xn/tnη, y1/s1, . . . , ym/sm
1. by removing all bindings xi/tiη where xi = tiηand all bindings yj/sj where yj ∈ {x1, . . . , xn}, and
2. then forming a substitution from the resulting sequence.
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Comparing Substitutions
Definition
Let θ and τ be substitutions.
θ ismore general than τ :⇐⇒ τ = θη for some substitution η.
Examples
• θ = {x/y} is more general than τ = {x/a, y/a} (with η = {y/a})
• θ = {x/y} is not more general than τ = {x/a}(since for every η with τ = θη:

x/a ∈ {x/y}η =⇒ y/a ∈ η =⇒ y ∈ Dom(θη) = Dom(τ))
• θ is more general than θ for every θ, via θ = θε
• θ = {x/y} is more general than τ = {y/x} (with η = τ),and τ is more general than θ (with η = θ), but θ ̸= τ.
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Unifiers and Most General Unifiers
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Unifiers
Definition
Let s and t be terms.
• substitution θ is unifier of terms s and t :⇐⇒ sθ = tθ
• s and t unifiable :⇐⇒ a unifier of s and t exists
• θmost general unifier (mgu) of s and t :⇐⇒

θ unifier of s and t that is more general than all unifiers of s and t
Definition
Let s1, . . . , sn, t1, . . . , tn be terms, let si =̇ ti denote the (ordered) pair (si, ti) andlet E = {s1 =̇ t1, . . . , sn =̇ tn}.
• θ is unifier of E :⇐⇒ siθ = tiθ for every i ∈ [1,n]
• θmost general unifier (mgu) of E :⇐⇒

θ unifier of E that is more general than all unifiers of E
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Unifying Sets of Pairs of Terms
Definition
• Sets E and E ′ of pairs of terms are equivalent:⇐⇒ E and E ′ have the same set of unifiers
• The set {x1 =̇ t1, . . . , xn =̇ tn} of pairs is solved:⇐⇒ xi, xj pairwise distinct variables (1 ≤ i ̸= j ≤ n)and no xi occurs in tj (1 ≤ i, j ≤ n)
Lemma
If E = {x1 =̇ t1, . . . , xn =̇ tn} is solved, then θ = {x1/t1, . . . , xn/tn} is an mgu of E.
Proof.
1. xiθ = ti = tiθ2. for every unifier η of E: xiη = tiη = xiθη for every i ∈ [1,n] and xη = xθηfor every x /∈ {x1, . . . , xn}; thus η = θη.
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Quiz: Most General Unifiers

Quiz
Consider the following set of pairs:

E = { f (a, y) =̇ x, g(y) =̇ g(z) }
. . .
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Martelli-Montanari Algorithm
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Martelli-Montanari Algorithm
Let E be a set of pairs of terms.As long as possible, nondeterministically choose a pair of a form below andperform the associated action.
(1) f (s1, . . . , sn) =̇ f (t1, . . . , tn) replace by s1 =̇ t1, . . . , sn =̇ tn(2) f (s1, . . . , sn) =̇ g(t1, . . . , tm) where f ̸= g halt with failure(3) x =̇ x delete the pair(4) t =̇ x where t is not a variable replace by x =̇ t(5) x =̇ t where x ̸∈ Var(t) and perform substitution {x/t}

x occurs in some other pair on all other pairs(6) x =̇ t where x ∈ Var(t) and x ̸= t halt with failure
The algorithm terminates with success when no action can be performed.
(2) =̂ “clash”(6) =̂ “occur check”-failure
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Martelli-Montanari (Theorem)
Theorem
If the original set E has a unifier, then the algorithm successfully terminatesand produces a solved set E ′ that is equivalent to E;
otherwise the algorithm terminates with failure.
Corollary: In case of success, E ′ determines an mgu of E.
Proof Steps
1. Prove that the algorithm terminates.
2. Prove that each action replaces the set of pairs by an equivalent one.
3. Prove that if the algorithm terminates successfully, then the final set ofpairs is solved.
4. Prove that if the algorithm terminates with failure, then the set of pairs atthe moment of failure does not have a unifier.
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Relations

R relation on a set A :⇐⇒ R ⊆ A×A

R reflexive :⇐⇒ (a,a) ∈ R for all a ∈ A

R irreflexive :⇐⇒ (a,a) /∈ R for all a ∈ A

R antisymmetric :⇐⇒ (a,b) ∈ R and (b,a) ∈ R implies a = b
R transitive :⇐⇒ (a,b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R
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Well-founded Order(ing)s
• (A,⊑) partial order:⇐⇒ ⊑ reflexive, antisymmetric, and transitive relation on A• (A,⊏) strict partial order:⇐⇒ ⊏ irreflexive and transitive relation on A• strict partial order (A,⊏) well-founded:⇐⇒ there is no infinite descending chain

. . . ⊏ a2 ⊏ a1 ⊏ a0of elements a0,a1,a2, . . . ∈ A

Examples
• (IN,≤), (ZZ,≤), (P({1, 2, 3}),⊆) partial orders;
• (IN, <), (ZZ, <), (P({1, 2, 3}),⊊) strict partial orders;
• (IN, <), (P({1, 2, 3}),⊊) are well-founded,
• whereas (ZZ, <) is not.
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Lexicographic Ordering
The lexicographic ordering ≺n (n ≥ 1) is defined inductively on the set INn

of n-tuples of natural numbers:
(a1) ≺1 (b1) :⇐⇒ a1 < b1and

(a1, . . . ,an+1) ≺n+1 (b1, . . . ,bn+1) :⇐⇒ (a1, . . . ,an) ≺n (b1, . . . ,bn)or (a1, . . . ,an) = (b1, . . . ,bn) and an+1 < bn+1
Example
For n = 3, we have (3, 12, 7) ≺3 (4, 2, 1) and (8, 4, 2) ≺3 (8, 4, 3).
Theorem
For every n ∈ IN, the pair (INn,≺n) is a well-founded strict partial order.
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Proof Step 1 (I)
Proposition
The Martelli-Montanari Algorithm terminates.
Definition
Variable x solved in E :⇐⇒ x =̇ t ∈ E, and this is the only occurrence of xin E.

uns(E) :⇐⇒ number of variables in E that are unsolved
lfun(E) :⇐⇒ number of occurrences of function symbolsin the first components of pairs in E
card(E) :⇐⇒ number of pairs in E

Example
Consider E = { f (x) =̇ f (y), y =̇ a}.

Then uns(E) = 2, lfun(E) = 1, card(E) = 2.
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Proof Step 1 (II)

Proposition
The Martelli-Montanari Algorithm terminates.
Proof.
Each successful action reduces (uns(E), lfun(E), card(E)) wrt. ≺3.For every u, l, c ∈ IN the reduction is as follows:
(1) (u, l, c) ≻3 (u – k, l – 1, c + n – 1) for some k ∈ [0,n](3) (u, l, c) ≻3 (u – k, l, c – 1) for some k ∈ {0, 1}(4) (u, l, c) ≻3 (u – k1, l – k2, c) for some k1 ∈ {0, 1} and k2 ≥ 1(5) (u, l, c) ≻3 (u – 1, l + k, c) for some k ≥ 1
Termination is now a consequence of (IN3,≺3) being well-founded.
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Proof Step 2

Proposition
Each action replaces the set of pairs by an equivalent one.
Proof.
This is obviously true for actions (1), (3), and (4).Regarding action (5), consider E ∪ {x =̇ t} and E{x/t} ∪ {x =̇ t}. Then:

θ is a unifier of E ∪ {x =̇ t}iff θ is a unifier of E and xθ = tθiff θ is a unifier of E{x/t} and xθ = tθiff θ is a unifier of E{x/t} ∪ {x =̇ t}
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Proof Step 3

Proposition
If the algorithm successfully terminates, then the final set of pairs is solved.
Proof.
• If the algorithm successfully terminates, then the actions (1), (2), and (4)do not apply, so each pair in E is of the form x =̇ t with x being a variable.
• Moreover, actions (3), (5), and (6) do not apply, so the variables in the firstcomponents of all pairs in E are pairwise disjoint and do not occur in thesecond component of a pair in E.
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Proof Step 4
Proposition
If the algorithm terminates with failure, then the set of pairs at the momentof failure does not have a unifier.
Proof.
• If the failure results from action (2), then some

f (s1, . . . , sn) =̇ g(t1, . . . , tm)
occurs in E (where f ̸= g), and for no substitution θ we have
f (s1, . . . , sn)θ = g(t1, . . . , tm)θ.

• If the failure results by action (6), then some x =̇ t (where x is a propersubterm of t) occurs in E, and for no substitution θ we have xθ = tθ.
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Unifiers may be Exponential

E1 = {f (x1) =̇ f (g(x0, x0))}
θ1 = {x1/g(x0, x0)}

E2 = {f (x1, x2) =̇ f (g(x0, x0), g(x1, x1))}
θ2 = θ1 ∪ {x2/g(g(x0, x0), g(x0, x0))}

E3 = {f (x1, x2, x3) =̇ f (g(x0, x0), g(x1, x1), g(x2, x2))}
θ3 = θ2 ∪ {x3/g(g(g(x0, x0), g(x0, x0)), g(g(x0, x0), g(x0, x0)))}

rrr
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MM Algorithm without Occur Check
• In most PROLOG systems the occur check does not apply, for the sake ofefficiency.
• As for the Martelli-Montanari algorithm this amounts to omitting theoccur check in action (5) and to drop action (6).
• Then the algorithm terminates with success, e.g., for {x =̇ f (x)}, despite xand f (x) not being unifiable.
• Moreover, the algorithm may not terminate at all:

{x =̇ f (x), y =̇ g(x)}
(5)
⇝ {x =̇ f (x), y =̇ g(f (x))}
(5)
⇝ {x =̇ f (x), y =̇ g(f (f (x)))}

rrr
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Conclusion
Summary
• A substitution replaces variables by terms, and is applied to terms.
• A unifier is a substitution that equates two terms when applied to them.
• TheMartelli-Montanari Algorithm decides if a set of pairs of terms hasa unifier and even outputs (a most general) one if it exists.
• The algorithm is correct (i.e., sound and complete) and terminates.
Suggested action points:
• Try out the Martelli-Montanari Algorithm on a few examples by hand.
• Verify your results using a Prolog system (try to turn the occur check on).
• Come up with examples how the different values for parameters k, k1,and k2 in proof step 1 could be realised.
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