Complexity Theory

Exercise 3: Time Complexity

Exercise 3.1. Use the approach presented in lecture 4 to create a quine in your favourite programming language (or just use Python). What is the equivalent of "TM concatenation" here? Also note that the function q is often more complicated than one might think, due to character escaping.

Exercise 3.2. A language $\mathbf{L} \in P$ is complete for P under polynomial-time reductions if $\mathbf{L}' \leq_p \mathbf{L}$ for every $\mathbf{L}' \in P$. Show that every language in P except \emptyset and Σ^* is complete for P under polynomial-time reductions.

Exercise 3.3. Let

 $\mathsf{A}_{\mathsf{PNTM}} = \{ \langle \mathcal{M}, p, w \rangle \mid \mathcal{M} \text{ is a non-deterministic TM that accepts } w \text{ in time } p(|w|) \\ \text{with } p \text{ a polynomial function} \}$

Show that A_{PNTM} is NP-complete.

Exercise 3.4. Show that the following problem is NP-complete:

Input: A propositional formula φ in CNF

Question: Does φ have at least 2 different satisfying assignments?

Exercise 3.5. We recall some definitions.

- Given some language L, L \in CONP if and only if $\overline{L} \in$ NP.
- **L** is CONP-hard if and only if $\mathbf{L}' \leq_p \mathbf{L}$ for every $\mathbf{L}' \in \text{CONP}$.
- L is CONP-complete if and only if $L \in \text{CONP}$ and L is CONP-hard.

Show that if any CONP-complete problem is in NP, then NP = CONP.

Exercise 3.6. If G is an undirected graph, a *vertex cover* of G is a subset of the nodes where every edge of G touches one of those nodes. The vertex cover problem asks whether a graph contains a vertex cover of a specified size.

VERTEX-COVER = $\{\langle G, k \rangle \mid G \text{ is an undirected graph that has a } k\text{-node vertex cover.}\}$

Show that **Vertex-Cover** is NP-complete.

Hint:

Try to find a reduction from 3-Sat