Logical Modeling

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language

Research Seminar, SoSe 2017

Lukas Schweizer
mailto:lukas.schweizer@tu-dresden.de

https://ddll.inf.tu-dresden.de/web/Logical_Modeling_(SS2017)

April 19, 2017

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language Overview

- IDP 3 : Inductive Definition Programming
- $\mathrm{FO}(\cdot)$: First Order + Extensions
https://dtai.cs.kuleuven.be/software/idp

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language FO(.) in Detail
$\mathrm{FO}(\cdot)$ formulae differ from FO formulae in two ways:

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language FO(.) in Detail
$\mathrm{FO}(\cdot)$ formulae differ from FO formulae in two ways:

- it is a many-sorted logic

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language FO(.) in Detail

FO(.) formulae differ from FO formulae in two ways:

- it is a many-sorted logic
- terms are extended by aggregate terms

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language FO(.) in Detail
$\mathrm{FO}(\cdot)$ formulae differ from FO formulae in two ways:

- it is a many-sorted logic
- terms are extended by aggregate terms

Many-sorted Logic (informally)

- variables have an associated type, and
- each type has an associated domain.

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language
FO(.) in Detail
$\mathrm{FO}(\cdot)$ formulae differ from FO formulae in two ways:

- it is a many-sorted logic
- terms are extended by aggregate terms

Many-sorted Logic (informally)

- variables have an associated type, and
- each type has an associated domain.

Aggregate Terms

- functions over a set of domain elements and associated num. values,
- mapped e.g. to the sum, cardinality, minimum value of the set.

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language FO(.) in Detail

An FO(.) specification consists of several named logical components:

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language
FO(.) in Detail

An FO(•) specification consists of several named logical components:

- Vocabularies
- Declare a set of types and typed symbols. \rightsquigarrow Predicate names (types) and (typed) constants.

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language

An FO(•) specification consists of several named logical components:

- Vocabularies
- Declare a set of types and typed symbols. \rightsquigarrow Predicate names (types) and (typed) constants.
- Theories
- Consist of sentences and definitions over a vocabulary.
\rightsquigarrow Definitions are of the form $\forall \bar{x}: p(\bar{x}) \leftarrow \phi[\bar{x}]$, where ϕ is an FO(.) formula

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language

FO(.) in Detail

An FO (\cdot) specification consists of several named logical components:

- Vocabularies
- Declare a set of types and typed symbols. \rightsquigarrow Predicate names (types) and (typed) constants.
- Theories
- Consist of sentences and definitions over a vocabulary.
\rightsquigarrow Definitions are of the form $\forall \bar{x}: p(\bar{x}) \leftarrow \phi[\bar{x}]$, where ϕ is an FO (\cdot) formula
- Structures
- Specify factual data over some vocabulary.
\rightsquigarrow Thus, a (partial) interpretation of the symbols in its vocabulary.

The IDP ${ }^{3}$ System and the $\mathrm{FO}(\cdot)$ Language
IDP ${ }^{3}$ main inference tasks

The model expansion inference
Given a theory \mathcal{T} and a vocabulary Σ, a partial interpretation \mathcal{I} over Σ and an "output" vocabulary $\Sigma_{\text {out }} \subseteq \Sigma$.

- Search for interpretation of $\Sigma_{\text {out }}$ such that an extension exists to Σ that also extends \mathcal{I} and is a model of \mathcal{T}.

