Logical Modeling

The IDP^3 System and the $\mathsf{FO}(\cdot)$ Language

Research Seminar, SoSe 2017

Lukas Schweizer mailto:lukas.schweizer@tu-dresden.de

https://ddll.inf.tu-dresden.de/web/Logical_Modeling_(SS2017)

April 19, 2017

The IDP 3 System and the FO($\cdot)$ Language $_{\mbox{Overview}}$

- ► IDP³: Inductive Definition Programming
- ▶ $FO(\cdot)$: First Order + Extensions

https://dtai.cs.kuleuven.be/software/idp

 $\mathsf{FO}(\cdot)$ formulae differ from FO formulae in two ways:

 $\mathsf{FO}(\cdot)$ formulae differ from FO formulae in two ways:

▶ it is a many-sorted logic

 $\mathsf{FO}(\cdot)$ formulae differ from FO formulae in two ways:

- ▶ it is a many-sorted logic
- terms are extended by aggregate terms

 $\mathsf{FO}(\cdot)$ formulae differ from FO formulae in two ways:

- it is a many-sorted logic
- terms are extended by aggregate terms

Many-sorted Logic (informally)

- variables have an associated type, and
- each type has an associated domain.

 $\mathsf{FO}(\cdot)$ formulae differ from FO formulae in two ways:

- it is a many-sorted logic
- terms are extended by aggregate terms

Many-sorted Logic (informally)

- variables have an associated type, and
- each type has an associated domain.

Aggregate Terms

- functions over a set of domain elements and associated num. values,
- > mapped e.g. to the *sum*, *cardinality*, *minimum* value of the set.

- Vocabularies
 - Declare a set of types and typed symbols.
 - \rightsquigarrow Predicate names (types) and (typed) constants.

- Vocabularies
 - Declare a set of types and typed symbols.

 Predicate names (types) and (typed) constants.
- Theories
 - Consist of sentences and definitions over a vocabulary.
 - \rightsquigarrow Definitions are of the form $\forall \bar{x} : p(\bar{x}) \leftarrow \phi[\bar{x}]$, where ϕ is an FO(·) formula

- Vocabularies
 - Declare a set of types and typed symbols.
 ~> Predicate names (types) and (typed) constants.
- Theories
 - ► Consist of sentences and definitions over a vocabulary. \rightsquigarrow Definitions are of the form $\forall \overline{x} : p(\overline{x}) \leftarrow \phi[\overline{x}]$, where ϕ is an FO(·) formula
- Structures
 - Specify factual data over some vocabulary.
 - ~> Thus, a (partial) interpretation of the symbols in its vocabulary.

The IDP 3 System and the FO($\cdot)$ Language IDP 3 main inference tasks

The model expansion inference

Given a theory \mathcal{T} and a vocabulary Σ , a partial interpretation \mathcal{I} over Σ and an "output" vocabulary $\Sigma_{out} \subseteq \Sigma$.

• Search for interpretation of Σ_{out} such that an extension exists to Σ that also extends \mathcal{I} and is a model of \mathcal{T} .