

DEDUCTION SYSTEMS

Optimizations for Tableau Procedures

Markus Krötzsch Chair for Knowledge-Based Systems

Slides by Sebastian Rudolph

DRESOEN Concept Invitient and Noticestation

TU Dresden, 14 May 2018

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

• check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> makes rules simpler

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend G by applying tableau rules

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend *G* by applying tableau rules
 - ⊔-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend *G* by applying tableau rules
 - ⊔-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend *G* by applying tableau rules
 - ⊔-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
- *C* is satisfiable iff there is a successful tableau construction

Treatment of Knowledge Bases

we condense the TBox into one concept: for $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}, C_{\mathcal{T}} = \mathsf{NNF}(\prod_{1 \le i \le n} \neg C_i \sqcup D_i)$

we extend the rules of the \mathcal{ALC} tableau algorithm:

 \mathcal{T} -rule: for an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$, let $L(v) := L(v) \cup \{C_{\mathcal{T}}\}$.

in order to take an ABox \mathcal{A} into account, initialize G such that

- V contains a node v_a for every individual a in A
- $L(v_a) = \{C \mid C(a) \in \mathcal{A}\}$
- $\langle v_a, v_b \rangle \in E \text{ iff } r(a, b) \in \mathcal{A}$

Extensions of the Logic

- plus inverses (*ALCT*): inverse roles in edge labels, definition and use of r-neighbors instead of *r*-successors in tableau rules
- plus functional roles (ALCIF): merging of nodes to account for functionality

blocking guarantees termination:

- ALC subset-blocking
- plus inverses (ALCI): equality blocking
- plus functional roles (ALCIF): pairwise blocking

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Optimizations

- Naïve implementation not performant enough
 - \mathcal{T} -rule adds one disjunction per axiom to the corresponding node
 - ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes

Optimizations

- Naïve implementation not performant enough
 - \mathcal{T} -rule adds one disjunction per axiom to the corresponding node
 - ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes
- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...

Optimizations

- Naïve implementation not performant enough
 - \mathcal{T} -rule adds one disjunction per axiom to the corresponding node
 - ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes
- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Unfolding

- T-rule is not necessary if T is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name ($A \equiv C$ corresponds to $A \sqsubset C$ and $C \sqsubset A$)
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A

Unfolding

- T-rule is not necessary if T is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name ($A \equiv C$ corresponds to $A \sqsubset C$ and $C \sqsubset A$)
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A
- If \mathcal{T} is unfoldable, the TBox can be (unfolded) into a concept

• We check satisfiability of A w.r.t. the TBox T

• We check satisfiability of A w.r.t. the TBox T

Α

• We check satisfiability of A w.r.t. the TBox T

 $A \\ \rightsquigarrow A \sqcap B \sqcap \exists r.C$

• We check satisfiability of A w.r.t. the TBox T

A $\rightsquigarrow A \sqcap B \sqcap \exists r.C$ $\rightsquigarrow A \sqcap (C \sqcup D) \sqcap \exists r.C$

• We check satisfiability of A w.r.t. the TBox T

A $\rightsquigarrow A \sqcap B \sqcap \exists r.C$ $\rightsquigarrow A \sqcap (C \sqcup D) \sqcap \exists r.C$ $\rightsquigarrow A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$

• We check satisfiability of A w.r.t. the TBox T

T: $A \sqsubseteq B \sqcap \exists r.C$ $\Rightarrow A \sqcap B \sqcap \exists r.C$ $B \equiv C \sqcup D$ $\Rightarrow A \sqcap (C \sqcup D) \sqcap \exists r.C$ $C \sqsubseteq \exists r.D$ $\Rightarrow A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$

• A is satisfiable w.r.t. T iff

$A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$

is satisfiable w.r.t. the empty TBox

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of $U = A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D):$

$$L(v_0) = \{U, A, (C \sqcap \exists r.D) \sqcup D, \\ \exists r.(C \sqcap \exists r.D), C \sqcap \exists r.D, \\ C, \exists r.D\} \}$$
$$L(v_1) = \{C \sqcap \exists r.D, C, \exists r.D\} \\ L(v_2) = \{D\} \\ L(v_3) = \{D\}$$

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of $U = A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D):$


```
L(v_0) = \{U, A, (C \sqcap \exists r.D) \sqcup D, \\ \exists r.(C \sqcap \exists r.D), C \sqcap \exists r.D, \\ C, \exists r.D\} \\ L(v_1) = \{C \sqcap \exists r.D, C, \exists r.D\} \\ L(v_2) = \{D\} \\ L(v_3) = \{D\}
```

Only one disjunctive decision left!

Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T} = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$

Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T} = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$
- better: apply NNF and unfolding if needed, via corresponding tableau rules:
 - $A \equiv C \rightsquigarrow A \sqsubseteq C \text{ and } A \sqsupseteq C$
- \sqsubseteq -rule: For $v \in V$ such that $A \sqsubseteq C \in \mathcal{T}$, $A \in L(v)$ and $C \notin L(v)$ let $L(v) := L(v) \cup C$.
- □-rule: For v ∈ V such that A □ C ∈ T, ¬A ∈ L(v) and ¬C ∉ L(v) $let L(v) := L(v) ∪ {¬C}.$
- ¬-rule: For $v \in V$ such that $\neg C \in L(v)$ and NNF($\neg C$) ∉ L(v), let $L(v) := L(v) \cup {NNF(\neg C)}.$

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

- What if \mathcal{T} is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \sqsupseteq -rules
 - T_g is treated via the T-rule

- What if \mathcal{T} is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \sqsupseteq -rules
 - T_g is treated via the T-rule
- absorption decreases T_g and increases T_u
 - 1) take an axiom from \mathcal{T}_g , e.g., $A \sqcap B \sqsubseteq C$
 - 2 transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 - if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;

 $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g

- 4 otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$,
 - then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
- **5** otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u

- What if \mathcal{T} is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \sqsupseteq -rules
 - T_g is treated via the T-rule
- absorption decreases T_g and increases T_u
 - 1 take an axiom from \mathcal{T}_g , e.g., $A \sqcap B \sqsubseteq C$
 - transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 - if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;

 $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g

- 4 otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$,
 - then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
- **5** otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u
- If $A \equiv D \in T_u$, try rewriting/absorption with other axioms in T_u

- What if \mathcal{T} is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \sqsupseteq -rules
 - T_g is treated via the T-rule
- absorption decreases T_g and increases T_u
 - 1 take an axiom from \mathcal{T}_g , e.g., $A \sqcap B \sqsubseteq C$
 - 2 transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 - if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;

 $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g

- 4 otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$,
 - then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
- **5** otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u
- If $A \equiv D \in T_u$, try rewriting/absorption with other axioms in T_u
- nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- · despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

 $v \qquad \qquad \sqcap \text{-rule} \quad L(v) \quad := \quad L(v) \cup \{(C_1 \sqcup D_1), \dots, (C_n \sqcup D_n), \\ \exists r. \neg A, \forall r. A\}$

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

v	□-rule	L(v)	:=	$L(v) \cup \{ (C_1 \sqcup D_1), \dots, (C_n \sqcup D_n), \\ \exists r = A \ \forall r \ A \}$
	⊔-rule	L(v)	:=	$L(v) \cup \{C_1\}$
	:	:		
	⊔-rule	L(v)	:=	$L(v) \cup \{C_n\}$

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

$C_n \sqcup D_n),$

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

• exponentially big search space is traversed

• goal: recognize bad branching decisions quickly and do not repeat them

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept's "origin"
 - initially, all concepts are tagged with \emptyset
 - tableau rules combine and extend these tags
 - \Box -rule adds the tag {*d*} to the existing tag, where *d* is the \Box -depth (number of \Box -rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a ⊔-rule

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept's "origin"
 - initially, all concepts are tagged with \emptyset
 - tableau rules combine and extend these tags
 - \Box -rule adds the tag {*d*} to the existing tag, where *d* is the \Box -depth (number of \Box -rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a ⊔-rule
- irrelevant part of the search space is not considered

Dependency-Directed Backtracking Example

 $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$ tagged with \emptyset

Dependency-Directed Backtracking Example

 $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r.A \in L(v) \quad \text{tagged with } \emptyset$ $\sqcap \text{-rule} \quad L(v) \quad := \quad L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ \exists r. \neg A, \forall r.A\} \quad \text{all with } \emptyset$

Dependency-Directed Backtracking Example

 $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r.A \in L(v) \quad \text{tagged with } \emptyset$ $\sqcap \text{-rule} \quad L(v) := \quad L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ \exists r. \neg A, \forall r.A \} \quad \text{all with } \emptyset$ $\sqcup \text{-rule} \quad L(v) := \quad L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}$ $\vdots \quad \vdots \quad \vdots \\ \sqcup \text{-rule} \quad L(v) := \quad L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}$

r

w

Dependency-Directed Backtracking Example

 $\begin{array}{rcl} (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r.A \in L(v) & \text{tagged with } \emptyset \\ \sqcap \text{-rule} & L(v) & := & L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ & \exists r. \neg A, \forall r.A\} & \text{all with } \emptyset \\ \sqcup \text{-rule} & L(v) & := & L(v) \cup \{C_1\} & C_1 \text{ tagged with } \{1\} \\ \vdots & \vdots & \vdots \\ \sqcup \text{-rule} & L(v) & := & L(v) \cup \{C_n\} & C_n \text{ tagged with } \{n\} \\ \exists \text{-rule} & L(w) & := & \{\neg A\} & A, r \text{ tagged with } \emptyset \end{array}$

r

w

Dependency-Directed Backtracking Example

 $\begin{array}{rcl} (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r.A \in L(v) & \text{tagged with } \emptyset \\ \sqcap \text{-rule} & L(v) & := & L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ & \exists r. \neg A, \forall r.A\} & \text{all with } \emptyset \\ \sqcup \text{-rule} & L(v) & := & L(v) \cup \{C_1\} & C_1 \text{ tagged with } \{1\} \\ \vdots & \vdots & \vdots \\ \sqcup \text{-rule} & L(v) & := & L(v) \cup \{C_n\} & C_n \text{ tagged with } \{n\} \\ \exists \text{-rule} & L(w) & := & \{\neg A\} & A, r \text{ tagged with } \emptyset \\ \forall \text{-rule} & L(w) & := & \{\neg A, A\} & \neg A \text{ tagged with mit } \emptyset \end{array}$

r

w

Dependency-Directed Backtracking Example

 $\begin{array}{rcl} (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r.A \in L(v) & \text{tagged with } \emptyset \\ \sqcap \text{-rule} & L(v) & := & L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ & \exists r. \neg A, \forall r.A\} & \text{all with } \emptyset \\ \sqcup \text{-rule} & L(v) & := & L(v) \cup \{C_1\} & C_1 \text{ tagged with } \{1\} \\ \vdots & \vdots & \vdots \\ \sqcup \text{-rule} & L(v) & := & L(v) \cup \{C_n\} & C_n \text{ tagged with } \{n\} \\ \exists \text{-rule} & L(w) & := & \{\neg A\} & A, r \text{ tagged with } \emptyset \\ \forall \text{-rule} & L(w) & := & \{\neg A, A\} \text{ clash} & \neg A \text{ tagged with mit } \emptyset \end{array}$

Dependency-Directed Backtracking Example

 $(C_1 \sqcup D_1) \sqcap \dots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r.A \in L(v) \quad \text{tagged with } \emptyset$ $\sqcap \text{-rule} \quad L(v) := \quad L(v) \cup \{(C_1 \sqcup D_1), \dots, (C_n \sqcup D_n), \\ \exists r. \neg A, \forall r.A \} \quad \text{all with } \emptyset$ $\amalg \text{-rule} \quad L(v) := \quad L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}$ $\vdots \quad \vdots \quad \vdots \\ \sqcup \text{-rule} \quad L(v) := \quad L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}$ $\exists \text{-rule} \quad L(w) := \quad \{\neg A\} \quad A, r \text{ tagged with } \emptyset$ $\forall \text{-rule} \quad L(w) := \quad \{\neg A, A\} \text{ clash} \quad \neg A \text{ tagged with mit } \emptyset$

• $tag(A) \cup tag(\neg A) = \emptyset$

Dependency-Directed Backtracking Example

- $tag(A) \cup tag(\neg A) = \emptyset$
- None of the ⊔-rules has contributed to the contradiction

r

Dependency-Directed Backtracking Example

 $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r.A \in L(v) \quad \text{tagged with } \emptyset$ $\downarrow \quad \square \text{-rule} \quad L(v) := \quad L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ \exists r. \neg A, \forall r.A \} \quad \text{all with } \emptyset$ $\square \text{-rule} \quad L(v) := \quad L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}$ $\vdots \quad \vdots \quad \vdots$ $\square \text{-rule} \quad L(v) := \quad L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}$ $\exists \text{-rule} \quad L(w) := \quad \{\neg A\} \quad A, r \text{ tagged with } \emptyset$ $\forall \text{-rule} \quad L(w) := \quad \{\neg A, A\} \text{ clash} \quad \neg A \text{ tagged with mit } \emptyset$

- $tag(A) \cup tag(\neg A) = \emptyset$
- None of the ⊔-rules has contributed to the contradiction
- Output false (unsatisfiable)

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, e.g., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r. \bot \equiv \bot, \forall r. \top \equiv \top$

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, e.g., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r. \bot \equiv \bot, \forall r. \top \equiv \top$
- caching
 - prevents the repeated construction of equal subtrees
 - L(v) initialized with $\{C_1, \ldots, C_n\}$ via \exists and \forall -rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \sqcap \ldots \sqcap C_n$, update the cache

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, e.g., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r. \bot \equiv \bot, \forall r. \top \equiv \top$
- caching
 - prevents the repeated construction of equal subtrees
 - L(v) initialized with $\{C_1, \ldots, C_n\}$ via \exists and \forall -rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \sqcap \ldots \sqcap C_n$, update the cache
- heuristics
 - try to find good orders for the "don't care" nondeterminism
 - $\text{ e.g.}, \sqcap, \forall, \sqcup, \exists$

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, e.g., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r. \bot \equiv \bot, \forall r. \top \equiv \top$
- caching
 - prevents the repeated construction of equal subtrees
 - L(v) initialized with $\{C_1, \ldots, C_n\}$ via \exists and \forall -rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \sqcap \ldots \sqcap C_n$, update the cache
- heuristics
 - try to find good orders for the "don't care" nondeterminism
 - $\text{ e.g.}, \sqcap, \forall, \sqcup, \exists$

• ...

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

One of the most wide-spread tasks for automated reasoning is classification

• compute all subclass relationships between atomic concepts in ${\mathcal T}$

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in ${\mathcal T}$
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $(C \sqcap \neg D)(a)$ (or, equivalenty: $C(a), (\neg D)(a)$)
 - → if T is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \rightsquigarrow if \top is unsatisfiable: subsumption holds (no counter-model exists)

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in ${\mathcal T}$
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T} together with the ABox $(C \sqcap \neg D)(a)$ (or, equivalenty: $C(a), (\neg D)(a)$)
 - → if T is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \rightsquigarrow if \top is unsatisfiable: subsumption holds (no counter-model exists)
- naïve approach needs n² subsumption checks for n concept names
- normally cached in the concept hierarchy graph

Concept Hierarchy Graph

most wide-spread technique is called enhanced traversal

most wide-spread technique is called enhanced traversal

• hierarchy is created incrementally by introducing concept after concept

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts

Optimizing Classification

most wide-spread technique is called enhanced traversal

- · hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts
- transitivity of **_** used to save checks

- If $A \sqsubseteq B$ and $C \sqsubseteq D$ hold,
- then $B \sqsubseteq C \longrightarrow A \sqsubseteq D$
- and $A \not\sqsubseteq D \longrightarrow B \not\sqsubseteq C$

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease \sqsubseteq ? Disease

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease \sqsubseteq ? JuvDisease

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease ⊑[?] Arthritis

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease $\not\sqsubseteq$ Arthritis
- JointDisease ⊑[?] Joint

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease

Bottom-Up Phase:

• JuvArthritis \sqsubseteq ? JointDisease

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease

- JuvDisease \sqsubseteq ? JointDisease

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease

- JuvArthritis \sqsubseteq JointDisease
- JuvDisease $\not\sqsubseteq$ JointDisease
- Arthritis \sqsubseteq ? JointDisease

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease

- JuvArthritis \sqsubseteq JointDisease
- JuvDisease \blacksquare JointDisease
- Arthritis ⊑ JointDisease

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Summary

- we have a tableau algorithm for *ALCIF* knowledge bases
 - ABox treated like for \mathcal{ALC}
 - number restrictions are treated similar to functionality and existential quantifiers
- termination via cycle detection
 - becomes harder as the logic becomes more expressive
- naive tableau algorithm not sufficiently performant
- diverse optimizations improve average case
- specific methods for classification
 - enhanced traversal
- tableaux algorithms or variants modifications thereof are the basis of many OWL reasoners