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Tableau Algorithm for ALC Concepts and TBoxes

• check satisfiability of C by constructing an abstraction of a model I such that CI 6= ∅

• concepts in negation normal form (NNF) makes rules simpler
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t-rule non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (clash)
• tableau construction successful, if no further rules are applicable and there is no contradiction
• C is satisfiable iff there is a successful tableau construction
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Treatment of Knowledge Bases

we condense the TBox into one concept:
for T = {Ci v Di | 1 ≤ i ≤ n}, CT = NNF(

d
1≤i≤n ¬Ci t Di)

we extend the rules of the ALC tableau algorithm:

T -rule: for an arbitrary v ∈ V with CT /∈ L(v),
let L(v) := L(v) ∪ {CT }.

in order to take an ABox A into account, initialize G such that
• V contains a node va for every individual a in A
• L(va) = {C | C(a) ∈ A}
• 〈va, vb〉 ∈ E iff r(a, b) ∈ A
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Extensions of the Logic

• plus inverses (ALCI): inverse roles in edge labels, definition and use of r-neighbors instead of
r-successors in tableau rules

• plus functional roles (ALCIF ): merging of nodes to account for functionality

blocking guarantees termination:
• ALC subset-blocking
• plus inverses (ALCI): equality blocking
• plus functional roles (ALCIF ): pairwise blocking
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Optimizations

• Naïve implementation not performant enough
– T -rule adds one disjunction per axiom to the corresponding node
– ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes

• realistic implementations use many optimizations
– (Lazy) unfolding
– Absorbtion
– Dependency directed backtracking
– Simplification and Normalization
– Caching
– Heuristics
– . . .
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Unfolding

• T -rule is not necessary if T is unfoldable, i.e., every axiom is:
– definitorial: form A v C or A ≡ C for A a concept name

(A ≡ C corresponds to A v C and C v A)
– acyclic: C uses A neither directly nor indirectly
– unique: only one such axiom exists for every concept name A

• If T is unfoldable, the TBox can be (unfolded) into a concept
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Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :

A

A v B u ∃r.C

 A u B u ∃r.C

B ≡ C t D

 A u (C t D) u ∃r.C

C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff
A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox
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Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
U = A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D):

v0

v1 v2

v3

r r

r

L(v0) = {U, A, (C u ∃r.D) t D,

∃r.(C u ∃r.D), C u ∃r.D,

C, ∃r.D}
L(v1) = {C u ∃r.D, C, ∃r.D}
L(v2) = {D}
L(v3) = {D}

Only one disjunctive decision left!
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Lazy Unfolding

• computation of NNF together with unfolding may decrease performance, e.g.:
– satisfiability of C u ¬C w.r.t. T = {C v A u B}
– unfolding: C u A u B u ¬(C u A u B)
– NNF + unfolding: C u A u B u (¬C t ¬A t ¬B)

• better: apply NNF and unfolding if needed, via corresponding tableau rules:
– A ≡ C  A v C and A w C

v-rule: For v ∈ V such that A v C ∈ T , A ∈ L(v) and C /∈ L(v)
let L(v) := L(v) ∪ C.

w-rule: For v ∈ V such that A w C ∈ T , ¬A ∈ L(v) and ¬C /∈ L(v)
let L(v) := L(v) ∪ {¬C}.

¬-rule: For v ∈ V such that ¬C ∈ L(v) and NNF(¬C) /∈ L(v),
let L(v) := L(v) ∪ {NNF(¬C)}.
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Absorption

• What if T is not unfoldable?
– Separate T into Tu (unfoldable part) and Tg (GCIs, not unfoldable)
– Tu is treated via v- and w-rules
– Tg is treated via the T -rule

• absorption decreases Tg and increases Tu

1 take an axiom from Tg, e.g., A u B v C
2 transform the axiom: A v C t ¬B
3 if Tu contains an axiom of the form A ≡ D (A v D and D w A), then A v C t ¬B cannot be

absorbed;
A v C t ¬B remains in Tg

4 otherwise, if Tu contains an axiom of the form A v D,
then absorb A v C t ¬B resulting in A v D u (C t ¬B)

5 otherwise move A v C t ¬B to Tu

• If A ≡ D ∈ Tu, try rewriting/absorption with other axioms in Tu

• nondeterministic: B v C t ¬A also possible
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Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t-rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed
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Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them

• most frequently used: backjumping
• backjumping works roughly as follows:

– concepts in the node label are tagged with a set of integers (dependency set) allowing to
identify the concept’s “origin”

– initially, all concepts are tagged with ∅
– tableau rules combine and extend these tags
– t-rule adds the tag {d} to the existing tag, where d is the t-depth (number of t-rules

applied by now)
– when encountering a contradiction, the labels allow to identify the origin of the concepts

causing the contradiction
– jump back to the last relevant application of a t-rule

• irrelevant part of the search space is not considered
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Dependency-Directed Backtracking Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t-rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the contradiction
• Output false (unsatisfiable)
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Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary
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Further Optimizations

• Simplification and Normalization
– quick recognition of trivial contradictions
– normalization, e.g., A u (B u C) ≡ u{A, B, C}, ∀r.C ≡ ¬∃r.¬C
– simplification, e.g., u{A, . . . ,¬A, . . .} ≡ ⊥, ∃r.⊥ ≡ ⊥, ∀r.> ≡ >

• caching
– prevents the repeated construction of equal subtrees
– L(v) initialized with {C1, . . . , Cn} via ∃- and ∀-rules
– check if satisfiability status is cached, otherwise
– check satisfiability of C1 u . . . u Cn, update the cache

• heuristics
– try to find good orders for the “don’t care” nondeterminism
– e.g., u, ∀, t, ∃

• . . .
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Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary
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Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification
• compute all subclass relationships between atomic concepts in T

• check for T |= C v D can be reduced to checking satisfiability of T together with the ABox
(C u ¬D)(a) (or, equivalenty: C(a), (¬D)(a))
 if > is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 if > is unsatisfiable: subsumption holds (no counter-model exists)

• naïve approach needs n2 subsumption checks for n concept names
• normally cached in the concept hierarchy graph
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Concept Hierarchy Graph

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

TU Dresden, 14 May 2018 Deduction Systems slide 69 of 84



Optimizing Classification

most wide-spread technique is called enhanced traversal

• hierarchy is created incrementally by introducing concept after concept
• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts
• transitivity of v used to save checks

A

B C

D

only if

• If A v B and C v D hold,
• then B v C −→ A v D

• and A 6v D −→ B 6v C
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Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease
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Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary
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Summary

• we have a tableau algorithm for ALCIF knowledge bases
– ABox treated like for ALC
– number restrictions are treated similar to functionality and existential quantifiers

• termination via cycle detection
– becomes harder as the logic becomes more expressive

• naive tableau algorithm not sufficiently performant
• diverse optimizations improve average case
• specific methods for classification

– enhanced traversal
• tableaux algorithms or variants modifications thereof are the basis of many OWL reasoners

TU Dresden, 14 May 2018 Deduction Systems slide 84 of 84


	Recap Tableau Calculus
	Recap Tableau Calculus
	Optimizations
	Unfolding
	Absorption
	Dependency-Directed Backtracking
	Further Optimizations

	Classification
	Summary

