
DEDUCTION SYSTEMS

Optimizations for Tableau Procedures

Markus Krötzsch

Chair for Knowledge-Based Systems

Slides by Sebastian Rudolph

TU Dresden, 14 May 2018

https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 2 of 84

Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 3 of 84

Tableau Algorithm for ALC Concepts and TBoxes

• check satisfiability of C by constructing an abstraction of a model I such that CI 6= ∅

• concepts in negation normal form (NNF) makes rules simpler
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t-rule non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (clash)
• tableau construction successful, if no further rules are applicable and there is no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 4 of 84

Tableau Algorithm for ALC Concepts and TBoxes

• check satisfiability of C by constructing an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) makes rules simpler

• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t-rule non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (clash)
• tableau construction successful, if no further rules are applicable and there is no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 5 of 84

Tableau Algorithm for ALC Concepts and TBoxes

• check satisfiability of C by constructing an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) makes rules simpler
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉

• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t-rule non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (clash)
• tableau construction successful, if no further rules are applicable and there is no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 6 of 84

Tableau Algorithm for ALC Concepts and TBoxes

• check satisfiability of C by constructing an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) makes rules simpler
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}

• extend G by applying tableau rules
– t-rule non-deterministic (we guess)

• tableau branch closed if G contains an atomic contradiction (clash)
• tableau construction successful, if no further rules are applicable and there is no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 7 of 84

Tableau Algorithm for ALC Concepts and TBoxes

• check satisfiability of C by constructing an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) makes rules simpler
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t-rule non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (clash)
• tableau construction successful, if no further rules are applicable and there is no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 8 of 84

Tableau Algorithm for ALC Concepts and TBoxes

• check satisfiability of C by constructing an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) makes rules simpler
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t-rule non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (clash)

• tableau construction successful, if no further rules are applicable and there is no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 9 of 84

Tableau Algorithm for ALC Concepts and TBoxes

• check satisfiability of C by constructing an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) makes rules simpler
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t-rule non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (clash)
• tableau construction successful, if no further rules are applicable and there is no contradiction

• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 10 of 84

Tableau Algorithm for ALC Concepts and TBoxes

• check satisfiability of C by constructing an abstraction of a model I such that CI 6= ∅
• concepts in negation normal form (NNF) makes rules simpler
• tableau (model abstraction) corresponds to a graph/tree G = 〈V, E, L〉
• initialize G with a node v such that L(v) = {C}
• extend G by applying tableau rules

– t-rule non-deterministic (we guess)
• tableau branch closed if G contains an atomic contradiction (clash)
• tableau construction successful, if no further rules are applicable and there is no contradiction
• C is satisfiable iff there is a successful tableau construction

TU Dresden, 14 May 2018 Deduction Systems slide 11 of 84

Treatment of Knowledge Bases

we condense the TBox into one concept:
for T = {Ci v Di | 1 ≤ i ≤ n}, CT = NNF(

d
1≤i≤n ¬Ci t Di)

we extend the rules of the ALC tableau algorithm:

T -rule: for an arbitrary v ∈ V with CT /∈ L(v),
let L(v) := L(v) ∪ {CT }.

in order to take an ABox A into account, initialize G such that
• V contains a node va for every individual a in A
• L(va) = {C | C(a) ∈ A}
• 〈va, vb〉 ∈ E iff r(a, b) ∈ A

TU Dresden, 14 May 2018 Deduction Systems slide 12 of 84

Extensions of the Logic

• plus inverses (ALCI): inverse roles in edge labels, definition and use of r-neighbors instead of
r-successors in tableau rules

• plus functional roles (ALCIF): merging of nodes to account for functionality

blocking guarantees termination:
• ALC subset-blocking
• plus inverses (ALCI): equality blocking
• plus functional roles (ALCIF): pairwise blocking

TU Dresden, 14 May 2018 Deduction Systems slide 13 of 84

Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 14 of 84

Optimizations

• Naïve implementation not performant enough
– T -rule adds one disjunction per axiom to the corresponding node
– ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes

• realistic implementations use many optimizations
– (Lazy) unfolding
– Absorbtion
– Dependency directed backtracking
– Simplification and Normalization
– Caching
– Heuristics
– . . .

TU Dresden, 14 May 2018 Deduction Systems slide 15 of 84

Optimizations

• Naïve implementation not performant enough
– T -rule adds one disjunction per axiom to the corresponding node
– ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes

• realistic implementations use many optimizations
– (Lazy) unfolding
– Absorbtion
– Dependency directed backtracking
– Simplification and Normalization
– Caching
– Heuristics
– . . .

TU Dresden, 14 May 2018 Deduction Systems slide 16 of 84

Optimizations

• Naïve implementation not performant enough
– T -rule adds one disjunction per axiom to the corresponding node
– ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes

• realistic implementations use many optimizations
– (Lazy) unfolding
– Absorbtion
– Dependency directed backtracking
– Simplification and Normalization
– Caching
– Heuristics
– . . .

TU Dresden, 14 May 2018 Deduction Systems slide 17 of 84

Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 18 of 84

Unfolding

• T -rule is not necessary if T is unfoldable, i.e., every axiom is:
– definitorial: form A v C or A ≡ C for A a concept name

(A ≡ C corresponds to A v C and C v A)
– acyclic: C uses A neither directly nor indirectly
– unique: only one such axiom exists for every concept name A

• If T is unfoldable, the TBox can be (unfolded) into a concept

TU Dresden, 14 May 2018 Deduction Systems slide 19 of 84

Unfolding

• T -rule is not necessary if T is unfoldable, i.e., every axiom is:
– definitorial: form A v C or A ≡ C for A a concept name

(A ≡ C corresponds to A v C and C v A)
– acyclic: C uses A neither directly nor indirectly
– unique: only one such axiom exists for every concept name A

• If T is unfoldable, the TBox can be (unfolded) into a concept

TU Dresden, 14 May 2018 Deduction Systems slide 20 of 84

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :

A

A v B u ∃r.C

 A u B u ∃r.C

B ≡ C t D

 A u (C t D) u ∃r.C

C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff
A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden, 14 May 2018 Deduction Systems slide 21 of 84

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :
A A v B u ∃r.C

 A u B u ∃r.C

B ≡ C t D

 A u (C t D) u ∃r.C

C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff
A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden, 14 May 2018 Deduction Systems slide 22 of 84

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :
A A v B u ∃r.C

 A u B u ∃r.C B ≡ C t D

 A u (C t D) u ∃r.C

C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff
A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden, 14 May 2018 Deduction Systems slide 23 of 84

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :
A A v B u ∃r.C

 A u B u ∃r.C B ≡ C t D

 A u (C t D) u ∃r.C C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff
A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden, 14 May 2018 Deduction Systems slide 24 of 84

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :
A A v B u ∃r.C

 A u B u ∃r.C B ≡ C t D

 A u (C t D) u ∃r.C C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff
A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden, 14 May 2018 Deduction Systems slide 25 of 84

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :
A A v B u ∃r.C

 A u B u ∃r.C B ≡ C t D

 A u (C t D) u ∃r.C C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff
A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden, 14 May 2018 Deduction Systems slide 26 of 84

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
U = A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D):

v0

v1 v2

v3

r r

r

L(v0) = {U, A, (C u ∃r.D) t D,

∃r.(C u ∃r.D), C u ∃r.D,

C, ∃r.D}
L(v1) = {C u ∃r.D, C, ∃r.D}
L(v2) = {D}
L(v3) = {D}

Only one disjunctive decision left!

TU Dresden, 14 May 2018 Deduction Systems slide 27 of 84

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
U = A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D):

v0

v1 v2

v3

r r

r

L(v0) = {U, A, (C u ∃r.D) t D,

∃r.(C u ∃r.D), C u ∃r.D,

C, ∃r.D}
L(v1) = {C u ∃r.D, C, ∃r.D}
L(v2) = {D}
L(v3) = {D}

Only one disjunctive decision left!

TU Dresden, 14 May 2018 Deduction Systems slide 28 of 84

Lazy Unfolding

• computation of NNF together with unfolding may decrease performance, e.g.:
– satisfiability of C u ¬C w.r.t. T = {C v A u B}
– unfolding: C u A u B u ¬(C u A u B)
– NNF + unfolding: C u A u B u (¬C t ¬A t ¬B)

• better: apply NNF and unfolding if needed, via corresponding tableau rules:
– A ≡ C A v C and A w C

v-rule: For v ∈ V such that A v C ∈ T , A ∈ L(v) and C /∈ L(v)
let L(v) := L(v) ∪ C.

w-rule: For v ∈ V such that A w C ∈ T , ¬A ∈ L(v) and ¬C /∈ L(v)
let L(v) := L(v) ∪ {¬C}.

¬-rule: For v ∈ V such that ¬C ∈ L(v) and NNF(¬C) /∈ L(v),
let L(v) := L(v) ∪ {NNF(¬C)}.

TU Dresden, 14 May 2018 Deduction Systems slide 29 of 84

Lazy Unfolding

• computation of NNF together with unfolding may decrease performance, e.g.:
– satisfiability of C u ¬C w.r.t. T = {C v A u B}
– unfolding: C u A u B u ¬(C u A u B)
– NNF + unfolding: C u A u B u (¬C t ¬A t ¬B)

• better: apply NNF and unfolding if needed, via corresponding tableau rules:
– A ≡ C A v C and A w C

v-rule: For v ∈ V such that A v C ∈ T , A ∈ L(v) and C /∈ L(v)
let L(v) := L(v) ∪ C.

w-rule: For v ∈ V such that A w C ∈ T , ¬A ∈ L(v) and ¬C /∈ L(v)
let L(v) := L(v) ∪ {¬C}.

¬-rule: For v ∈ V such that ¬C ∈ L(v) and NNF(¬C) /∈ L(v),
let L(v) := L(v) ∪ {NNF(¬C)}.

TU Dresden, 14 May 2018 Deduction Systems slide 30 of 84

Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 31 of 84

Absorption

• What if T is not unfoldable?
– Separate T into Tu (unfoldable part) and Tg (GCIs, not unfoldable)
– Tu is treated via v- and w-rules
– Tg is treated via the T -rule

• absorption decreases Tg and increases Tu

1 take an axiom from Tg, e.g., A u B v C
2 transform the axiom: A v C t ¬B
3 if Tu contains an axiom of the form A ≡ D (A v D and D w A), then A v C t ¬B cannot be

absorbed;
A v C t ¬B remains in Tg

4 otherwise, if Tu contains an axiom of the form A v D,
then absorb A v C t ¬B resulting in A v D u (C t ¬B)

5 otherwise move A v C t ¬B to Tu

• If A ≡ D ∈ Tu, try rewriting/absorption with other axioms in Tu

• nondeterministic: B v C t ¬A also possible

TU Dresden, 14 May 2018 Deduction Systems slide 32 of 84

Absorption

• What if T is not unfoldable?
– Separate T into Tu (unfoldable part) and Tg (GCIs, not unfoldable)
– Tu is treated via v- and w-rules
– Tg is treated via the T -rule

• absorption decreases Tg and increases Tu

1 take an axiom from Tg, e.g., A u B v C
2 transform the axiom: A v C t ¬B
3 if Tu contains an axiom of the form A ≡ D (A v D and D w A), then A v C t ¬B cannot be

absorbed;
A v C t ¬B remains in Tg

4 otherwise, if Tu contains an axiom of the form A v D,
then absorb A v C t ¬B resulting in A v D u (C t ¬B)

5 otherwise move A v C t ¬B to Tu

• If A ≡ D ∈ Tu, try rewriting/absorption with other axioms in Tu

• nondeterministic: B v C t ¬A also possible

TU Dresden, 14 May 2018 Deduction Systems slide 33 of 84

Absorption

• What if T is not unfoldable?
– Separate T into Tu (unfoldable part) and Tg (GCIs, not unfoldable)
– Tu is treated via v- and w-rules
– Tg is treated via the T -rule

• absorption decreases Tg and increases Tu

1 take an axiom from Tg, e.g., A u B v C
2 transform the axiom: A v C t ¬B
3 if Tu contains an axiom of the form A ≡ D (A v D and D w A), then A v C t ¬B cannot be

absorbed;
A v C t ¬B remains in Tg

4 otherwise, if Tu contains an axiom of the form A v D,
then absorb A v C t ¬B resulting in A v D u (C t ¬B)

5 otherwise move A v C t ¬B to Tu

• If A ≡ D ∈ Tu, try rewriting/absorption with other axioms in Tu

• nondeterministic: B v C t ¬A also possible

TU Dresden, 14 May 2018 Deduction Systems slide 34 of 84

Absorption

• What if T is not unfoldable?
– Separate T into Tu (unfoldable part) and Tg (GCIs, not unfoldable)
– Tu is treated via v- and w-rules
– Tg is treated via the T -rule

• absorption decreases Tg and increases Tu

1 take an axiom from Tg, e.g., A u B v C
2 transform the axiom: A v C t ¬B
3 if Tu contains an axiom of the form A ≡ D (A v D and D w A), then A v C t ¬B cannot be

absorbed;
A v C t ¬B remains in Tg

4 otherwise, if Tu contains an axiom of the form A v D,
then absorb A v C t ¬B resulting in A v D u (C t ¬B)

5 otherwise move A v C t ¬B to Tu

• If A ≡ D ∈ Tu, try rewriting/absorption with other axioms in Tu

• nondeterministic: B v C t ¬A also possible

TU Dresden, 14 May 2018 Deduction Systems slide 35 of 84

Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 36 of 84

Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t-rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden, 14 May 2018 Deduction Systems slide 37 of 84

Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t-rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden, 14 May 2018 Deduction Systems slide 38 of 84

Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}

∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t-rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden, 14 May 2018 Deduction Systems slide 39 of 84

Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}

∀-rule L(w) := {¬A, A} clash
t-rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden, 14 May 2018 Deduction Systems slide 40 of 84

Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

t-rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden, 14 May 2018 Deduction Systems slide 41 of 84

Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

t-rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden, 14 May 2018 Deduction Systems slide 42 of 84

Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t-rule L(v) := L(v) ∪ {Dn}

∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden, 14 May 2018 Deduction Systems slide 43 of 84

Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t-rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}

∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden, 14 May 2018 Deduction Systems slide 44 of 84

Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t-rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden, 14 May 2018 Deduction Systems slide 45 of 84

Dependency-Directed Backtracking

• despite those optimizations, search space often too big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t-rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t-rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden, 14 May 2018 Deduction Systems slide 46 of 84

Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them

• most frequently used: backjumping
• backjumping works roughly as follows:

– concepts in the node label are tagged with a set of integers (dependency set) allowing to
identify the concept’s “origin”

– initially, all concepts are tagged with ∅
– tableau rules combine and extend these tags
– t-rule adds the tag {d} to the existing tag, where d is the t-depth (number of t-rules

applied by now)
– when encountering a contradiction, the labels allow to identify the origin of the concepts

causing the contradiction
– jump back to the last relevant application of a t-rule

• irrelevant part of the search space is not considered

TU Dresden, 14 May 2018 Deduction Systems slide 47 of 84

Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them
• most frequently used: backjumping

• backjumping works roughly as follows:
– concepts in the node label are tagged with a set of integers (dependency set) allowing to

identify the concept’s “origin”
– initially, all concepts are tagged with ∅
– tableau rules combine and extend these tags
– t-rule adds the tag {d} to the existing tag, where d is the t-depth (number of t-rules

applied by now)
– when encountering a contradiction, the labels allow to identify the origin of the concepts

causing the contradiction
– jump back to the last relevant application of a t-rule

• irrelevant part of the search space is not considered

TU Dresden, 14 May 2018 Deduction Systems slide 48 of 84

Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them
• most frequently used: backjumping
• backjumping works roughly as follows:

– concepts in the node label are tagged with a set of integers (dependency set) allowing to
identify the concept’s “origin”

– initially, all concepts are tagged with ∅
– tableau rules combine and extend these tags
– t-rule adds the tag {d} to the existing tag, where d is the t-depth (number of t-rules

applied by now)
– when encountering a contradiction, the labels allow to identify the origin of the concepts

causing the contradiction
– jump back to the last relevant application of a t-rule

• irrelevant part of the search space is not considered

TU Dresden, 14 May 2018 Deduction Systems slide 49 of 84

Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them
• most frequently used: backjumping
• backjumping works roughly as follows:

– concepts in the node label are tagged with a set of integers (dependency set) allowing to
identify the concept’s “origin”

– initially, all concepts are tagged with ∅
– tableau rules combine and extend these tags
– t-rule adds the tag {d} to the existing tag, where d is the t-depth (number of t-rules

applied by now)
– when encountering a contradiction, the labels allow to identify the origin of the concepts

causing the contradiction
– jump back to the last relevant application of a t-rule

• irrelevant part of the search space is not considered

TU Dresden, 14 May 2018 Deduction Systems slide 50 of 84

Dependency-Directed Backtracking Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t-rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the contradiction
• Output false (unsatisfiable)

TU Dresden, 14 May 2018 Deduction Systems slide 51 of 84

Dependency-Directed Backtracking Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t-rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the contradiction
• Output false (unsatisfiable)

TU Dresden, 14 May 2018 Deduction Systems slide 52 of 84

Dependency-Directed Backtracking Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t-rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}

∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the contradiction
• Output false (unsatisfiable)

TU Dresden, 14 May 2018 Deduction Systems slide 53 of 84

Dependency-Directed Backtracking Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t-rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅

∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the contradiction
• Output false (unsatisfiable)

TU Dresden, 14 May 2018 Deduction Systems slide 54 of 84

Dependency-Directed Backtracking Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t-rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the contradiction
• Output false (unsatisfiable)

TU Dresden, 14 May 2018 Deduction Systems slide 55 of 84

Dependency-Directed Backtracking Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t-rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A} clash ¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the contradiction
• Output false (unsatisfiable)

TU Dresden, 14 May 2018 Deduction Systems slide 56 of 84

Dependency-Directed Backtracking Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t-rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A} clash ¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅

• None of the t-rules has contributed to the contradiction
• Output false (unsatisfiable)

TU Dresden, 14 May 2018 Deduction Systems slide 57 of 84

Dependency-Directed Backtracking Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t-rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A} clash ¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the contradiction

• Output false (unsatisfiable)

TU Dresden, 14 May 2018 Deduction Systems slide 58 of 84

Dependency-Directed Backtracking Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u-rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t-rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A} clash ¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the contradiction
• Output false (unsatisfiable)

TU Dresden, 14 May 2018 Deduction Systems slide 59 of 84

Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 60 of 84

Further Optimizations

• Simplification and Normalization
– quick recognition of trivial contradictions
– normalization, e.g., A u (B u C) ≡ u{A, B, C}, ∀r.C ≡ ¬∃r.¬C
– simplification, e.g., u{A, . . . ,¬A, . . .} ≡ ⊥, ∃r.⊥ ≡ ⊥, ∀r.> ≡ >

• caching
– prevents the repeated construction of equal subtrees
– L(v) initialized with {C1, . . . , Cn} via ∃- and ∀-rules
– check if satisfiability status is cached, otherwise
– check satisfiability of C1 u . . . u Cn, update the cache

• heuristics
– try to find good orders for the “don’t care” nondeterminism
– e.g., u, ∀, t, ∃

• . . .

TU Dresden, 14 May 2018 Deduction Systems slide 61 of 84

Further Optimizations

• Simplification and Normalization
– quick recognition of trivial contradictions
– normalization, e.g., A u (B u C) ≡ u{A, B, C}, ∀r.C ≡ ¬∃r.¬C
– simplification, e.g., u{A, . . . ,¬A, . . .} ≡ ⊥, ∃r.⊥ ≡ ⊥, ∀r.> ≡ >

• caching
– prevents the repeated construction of equal subtrees
– L(v) initialized with {C1, . . . , Cn} via ∃- and ∀-rules
– check if satisfiability status is cached, otherwise
– check satisfiability of C1 u . . . u Cn, update the cache

• heuristics
– try to find good orders for the “don’t care” nondeterminism
– e.g., u, ∀, t, ∃

• . . .

TU Dresden, 14 May 2018 Deduction Systems slide 62 of 84

Further Optimizations

• Simplification and Normalization
– quick recognition of trivial contradictions
– normalization, e.g., A u (B u C) ≡ u{A, B, C}, ∀r.C ≡ ¬∃r.¬C
– simplification, e.g., u{A, . . . ,¬A, . . .} ≡ ⊥, ∃r.⊥ ≡ ⊥, ∀r.> ≡ >

• caching
– prevents the repeated construction of equal subtrees
– L(v) initialized with {C1, . . . , Cn} via ∃- and ∀-rules
– check if satisfiability status is cached, otherwise
– check satisfiability of C1 u . . . u Cn, update the cache

• heuristics
– try to find good orders for the “don’t care” nondeterminism
– e.g., u, ∀, t, ∃

• . . .

TU Dresden, 14 May 2018 Deduction Systems slide 63 of 84

Further Optimizations

• Simplification and Normalization
– quick recognition of trivial contradictions
– normalization, e.g., A u (B u C) ≡ u{A, B, C}, ∀r.C ≡ ¬∃r.¬C
– simplification, e.g., u{A, . . . ,¬A, . . .} ≡ ⊥, ∃r.⊥ ≡ ⊥, ∀r.> ≡ >

• caching
– prevents the repeated construction of equal subtrees
– L(v) initialized with {C1, . . . , Cn} via ∃- and ∀-rules
– check if satisfiability status is cached, otherwise
– check satisfiability of C1 u . . . u Cn, update the cache

• heuristics
– try to find good orders for the “don’t care” nondeterminism
– e.g., u, ∀, t, ∃

• . . .

TU Dresden, 14 May 2018 Deduction Systems slide 64 of 84

Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 65 of 84

Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification
• compute all subclass relationships between atomic concepts in T

• check for T |= C v D can be reduced to checking satisfiability of T together with the ABox
(C u ¬D)(a) (or, equivalenty: C(a), (¬D)(a))
 if > is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 if > is unsatisfiable: subsumption holds (no counter-model exists)

• naïve approach needs n2 subsumption checks for n concept names
• normally cached in the concept hierarchy graph

TU Dresden, 14 May 2018 Deduction Systems slide 66 of 84

Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification
• compute all subclass relationships between atomic concepts in T
• check for T |= C v D can be reduced to checking satisfiability of T together with the ABox

(C u ¬D)(a) (or, equivalenty: C(a), (¬D)(a))
 if > is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 if > is unsatisfiable: subsumption holds (no counter-model exists)

• naïve approach needs n2 subsumption checks for n concept names
• normally cached in the concept hierarchy graph

TU Dresden, 14 May 2018 Deduction Systems slide 67 of 84

Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification
• compute all subclass relationships between atomic concepts in T
• check for T |= C v D can be reduced to checking satisfiability of T together with the ABox

(C u ¬D)(a) (or, equivalenty: C(a), (¬D)(a))
 if > is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 if > is unsatisfiable: subsumption holds (no counter-model exists)

• naïve approach needs n2 subsumption checks for n concept names
• normally cached in the concept hierarchy graph

TU Dresden, 14 May 2018 Deduction Systems slide 68 of 84

Concept Hierarchy Graph

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

TU Dresden, 14 May 2018 Deduction Systems slide 69 of 84

Optimizing Classification

most wide-spread technique is called enhanced traversal

• hierarchy is created incrementally by introducing concept after concept
• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts
• transitivity of v used to save checks

A

B C

D

only if

• If A v B and C v D hold,
• then B v C −→ A v D

• and A 6v D −→ B 6v C

TU Dresden, 14 May 2018 Deduction Systems slide 70 of 84

Optimizing Classification

most wide-spread technique is called enhanced traversal
• hierarchy is created incrementally by introducing concept after concept

• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts
• transitivity of v used to save checks

A

B C

D

only if

• If A v B and C v D hold,
• then B v C −→ A v D

• and A 6v D −→ B 6v C

TU Dresden, 14 May 2018 Deduction Systems slide 71 of 84

Optimizing Classification

most wide-spread technique is called enhanced traversal
• hierarchy is created incrementally by introducing concept after concept
• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts

• transitivity of v used to save checks

A

B C

D

only if

• If A v B and C v D hold,
• then B v C −→ A v D

• and A 6v D −→ B 6v C

TU Dresden, 14 May 2018 Deduction Systems slide 72 of 84

Optimizing Classification

most wide-spread technique is called enhanced traversal
• hierarchy is created incrementally by introducing concept after concept
• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts
• transitivity of v used to save checks

A

B C

D

only if

• If A v B and C v D hold,
• then B v C −→ A v D

• and A 6v D −→ B 6v C

TU Dresden, 14 May 2018 Deduction Systems slide 73 of 84

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden, 14 May 2018 Deduction Systems slide 74 of 84

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v ? Disease

• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden, 14 May 2018 Deduction Systems slide 75 of 84

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v Disease
• JointDisease v? JuvDisease

• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden, 14 May 2018 Deduction Systems slide 76 of 84

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease v? Arthritis

• JointDisease 6v Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden, 14 May 2018 Deduction Systems slide 77 of 84

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease v? Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden, 14 May 2018 Deduction Systems slide 78 of 84

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:
• JuvArthritis v ? JointDisease

• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden, 14 May 2018 Deduction Systems slide 79 of 84

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:
• JuvArthritis v JointDisease
• JuvDisease v? JointDisease

• Arthritis v JointDisease

TU Dresden, 14 May 2018 Deduction Systems slide 80 of 84

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:
• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v ? JointDisease

TU Dresden, 14 May 2018 Deduction Systems slide 81 of 84

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:
• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden, 14 May 2018 Deduction Systems slide 82 of 84

Agenda

• Recap Tableau Calculus
• Optimizations

– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden, 14 May 2018 Deduction Systems slide 83 of 84

Summary

• we have a tableau algorithm for ALCIF knowledge bases
– ABox treated like for ALC
– number restrictions are treated similar to functionality and existential quantifiers

• termination via cycle detection
– becomes harder as the logic becomes more expressive

• naive tableau algorithm not sufficiently performant
• diverse optimizations improve average case
• specific methods for classification

– enhanced traversal
• tableaux algorithms or variants modifications thereof are the basis of many OWL reasoners

TU Dresden, 14 May 2018 Deduction Systems slide 84 of 84

	Recap Tableau Calculus
	Recap Tableau Calculus
	Optimizations
	Unfolding
	Absorption
	Dependency-Directed Backtracking
	Further Optimizations

	Classification
	Summary

