Exercise 5: Tree width and Hypertree width

Database Theory
2020-05-11
Maximilian Marx, David Carral

Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- $2. \ \exists x,y,z,u,v. \left(\mathsf{a}(x,y) \land \mathsf{b}(y,z) \land \mathsf{c}(z,u) \land \mathsf{d}(u,v) \land \mathsf{e}(v,z) \land \mathsf{f}(z,x) \land \mathsf{d}(x,u) \land \mathsf{d}(u,y) \right)$

Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- $2. \ \exists x,y,z,u,v. \left(\mathsf{a}(x,y) \land \mathsf{b}(y,z) \land \mathsf{c}(z,u) \land \mathsf{d}(u,v) \land \mathsf{e}(v,z) \land \mathsf{f}(z,x) \land \mathsf{d}(x,u) \land \mathsf{d}(u,y) \right)$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.

Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.

Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The *primal graph* of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.

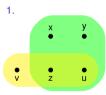
Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.



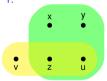
Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.



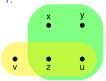
Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.



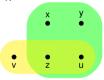
Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.



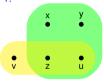
Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.



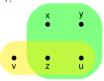
Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.



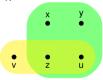
Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.



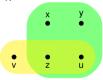
Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.



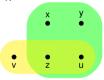
Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.



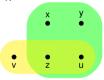
Exercise. Construct the query hypergraph and the primal graph for the following queries:

- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.



Exercise. Construct the query hypergraph and the primal graph for the following queries:

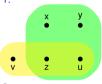
- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.

1.



2

Exercise. Construct the query hypergraph and the primal graph for the following queries:

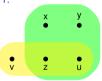
- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The *primal graph* of a hypergraph *G* is the undirected graph with the same vertices as *G*, and an edge connecting two vertices if there is some hyperedge in *G* that contains these two vertices.

Solution.

1.



2

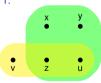
Exercise. Construct the guery hypergraph and the primal graph for the following gueries:

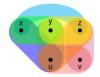
- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

The primal graph of a hypergraph G is the undirected graph with the same vertices as G, and an edge connecting two vertices if there is some hyperedge in G that contains these two vertices.

Solution.





Exercise. Construct the query hypergraph and the primal graph for the following queries:

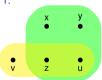
- 1. $\exists x, y, z, u, v. (r(x, y, z, u) \land s(z, u, v))$
- 2. $\exists x, y, z, u, v. (a(x, y) \land b(y, z) \land c(z, u) \land d(u, v) \land e(v, z) \land f(z, x) \land d(x, u) \land d(u, y))$

Definition (Lecture 6, Slide 23)

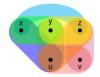
The *primal graph* of a hypergraph *G* is the undirected graph with the same vertices as *G*, and an edge connecting two vertices if there is some hyperedge in *G* that contains these two vertices.

Solution.

1.



2



Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.

1.

2.

3.

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.

1.

2.

3.

4.

Solution.

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.

1.

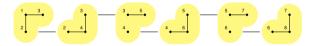
2.

3.

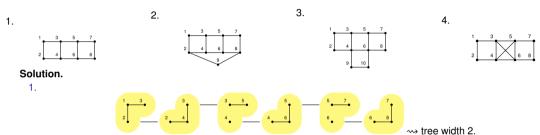
4.

Solution.

-1



Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.



Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.

1.

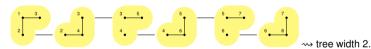
2.

3.

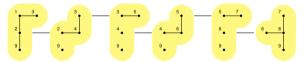
1

Solution.

- 1



2.



25/66

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.

3. 2. 1. Solution. tree width 2. 2.

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.

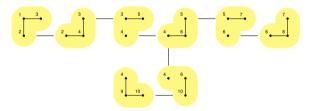
1.

2.

3.

4.

Solution.



Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.

3. 2. 4. 1. Solution. 3.

Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.

1.

1 3 5 7

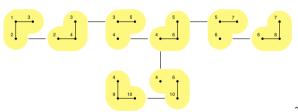
2.

3.

4.

Solution.

3.



Exercise. Determine the tree width of each of the following graphs and provide a suitable tree decomposition. Argue why there cannot be a tree decomposition of smaller width.

1.

1 3 5 7

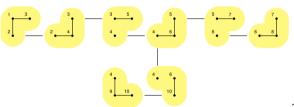
2.

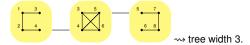
3.

4.

Solution.

3.





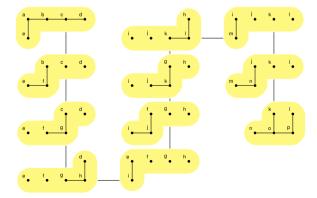
Exercise. Show that the $n \times n$ grid has a tree width $\leq n$ by finding a suitable tree decomposition of width n. For example, the following 4×4 grid has tree width 4:

Exercise. Show that the $n \times n$ grid has a tree width $\leq n$ by finding a suitable tree decomposition of width n. For example, the following 4×4 grid has tree width 4:

Solution.

Exercise. Show that the $n \times n$ grid has a tree width $\leq n$ by finding a suitable tree decomposition of width n. For example, the following 4×4 grid has tree width 4:

Solution.



Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G. Solution.

Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

Solution.

Consider an *n*-clique.

Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k - 1$ iff k cops have a winning strategy in the cops & robber game on G.

- Consider an *n*-clique.
- ► Clearly, *n* cops have a winning strategy: they can occupy every vertex.

Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

- Consider an *n*-clique.
- Clearly, n cops have a winning strategy: they can occupy every vertex.
- ▶ Thus, an n-clique has tree width at most n-1.

Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

- Consider an *n*-clique.
- Clearly, n cops have a winning strategy: they can occupy every vertex.
- ▶ Thus, an *n*-clique has tree width at most n-1.
- ightharpoonup Consider the cops & robber game with n-1 cops.

Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

- Consider an *n*-clique.
- Clearly, n cops have a winning strategy: they can occupy every vertex.
- ▶ Thus, an *n*-clique has tree width at most n-1.
- ightharpoonup Consider the cops & robber game with n-1 cops.
- ► Every vertex has *n* − 1 neighbours.

Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k - 1$ iff k cops have a winning strategy in the cops & robber game on G.

- Consider an n-clique.
- ► Clearly, *n* cops have a winning strategy: they can occupy every vertex.
- ▶ Thus, an n-clique has tree width at most n-1.
- ightharpoonup Consider the cops & robber game with n-1 cops.
- ► Every vertex has n 1 neighbours.
- While the cops can occupy all neighbouring vertices, they cannot catch the robber: if they move to the robbers position, one of the neighbouring vertices becomes free.

Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k - 1$ iff k cops have a winning strategy in the cops & robber game on G.

- Consider an n-clique.
- Clearly, n cops have a winning strategy: they can occupy every vertex.
- ▶ Thus, an *n*-clique has tree width at most n-1.
- ▶ Consider the cops & robber game with n-1 cops.
- ► Every vertex has n 1 neighbours.
- While the cops can occupy all neighbouring vertices, they cannot catch the robber: if they move to the robbers position, one of the neighbouring vertices becomes free.
- ▶ Thus, the robber wins if there are at most n-1 cops.

Exercise. Show that a clique (fully connected graph) of size n has tree width n-1.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

- Consider an n-clique.
- ► Clearly, *n* cops have a winning strategy: they can occupy every vertex.
- ▶ Thus, an n-clique has tree width at most n-1.
- ightharpoonup Consider the cops & robber game with n-1 cops.
- ► Every vertex has n 1 neighbours.
- While the cops can occupy all neighbouring vertices, they cannot catch the robber: if they move to the robbers position, one of the neighbouring vertices becomes free.
- ▶ Thus, the robber wins if there are at most n-1 cops.
- ▶ Hence the *n*-clique cannot have tree width $\leq n-2$.

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let C_3 be the set of all 3-colourable graphs. Are the graphs in C_3 of bounded or unbounded tree width? Explain your answer.

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let C_3 be the set of all 3-colourable graphs. Are the graphs in C_3 of bounded or unbounded tree width? Explain your answer. **Solution.**

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let C_3 be the set of all 3-colourable graphs. Are the graphs in C_3 of bounded or unbounded tree width? Explain your answer. **Solution.**

Any $n \times n$ grid is 2-colourable.

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let C_3 be the set of all 3-colourable graphs. Are the graphs in C_3 of bounded or unbounded tree width? Explain your answer. **Solution.**

Any $n \times n$ grid is 2-colourable.

► Hence, C₃ contains all grids.

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let C_3 be the set of all 3-colourable graphs. Are the graphs in C_3 of bounded or unbounded tree width? Explain your answer. **Solution.**

Any $n \times n$ grid is 2-colourable.

- ► Hence, C₃ contains all grids.
- Grids have unbounded tree width.

Exercise. Recall that a graph is 3-colourable if one can assign three colours to its vertices in such a way that neighbouring vertices never share the same colour. Let C_3 be the set of all 3-colourable graphs. Are the graphs in C_3 of bounded or unbounded tree width? Explain your answer.

Any $n \times n$ grid is 2-colourable.

- ► Hence, C₃ contains all grids.
- Grids have unbounded tree width.
- ▶ Thus, C_3 contains graphs of unbounded tree width.

Exercise. Decide whether the following claims are true or false. Explain your answer.

- 1. Deleting an edge from a graph may make the tree width smaller but never larger.
- 2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
- 3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
- Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

Exercise. Decide whether the following claims are true or false. Explain your answer.

- 1. Deleting an edge from a graph may make the tree width smaller but never larger.
- 2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
- 3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
- Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

Exercise. Decide whether the following claims are true or false. Explain your answer.

- 1. Deleting an edge from a graph may make the tree width smaller but never larger.
- 2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
- 3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
- Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width $\leq k$ iff k marshals have a winning strategy in the marshals & robber game on H.

Exercise. Decide whether the following claims are true or false. Explain your answer.

- 1. Deleting an edge from a graph may make the tree width smaller but never larger.
- 2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
- 3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
- Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width $\leq k$ iff k marshals have a winning strategy in the marshals & robber game on H. Solution.

Exercise. Decide whether the following claims are true or false. Explain your answer.

- 1. Deleting an edge from a graph may make the tree width smaller but never larger.
- 2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
- 3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
- Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width $\leq k$ iff k marshals have a winning strategy in the marshals & robber game on H. Solution.

1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.

Exercise. Decide whether the following claims are true or false. Explain your answer.

- 1. Deleting an edge from a graph may make the tree width smaller but never larger.
- 2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
- 3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
- Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width $\leq k$ iff k marshals have a winning strategy in the marshals & robber game on H. Solution.

-
- 1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.
- 2. True: analogous.

Exercise. Decide whether the following claims are true or false. Explain your answer.

- 1. Deleting an edge from a graph may make the tree width smaller but never larger.
- 2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
- 3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
- Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width $\leq k$ iff k marshals have a winning strategy in the marshals & robber game on H.

- 1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.
- 2. True: analogous.
- False: Consider a hypergraph that has a hyperedge containing all vertices. Then the hypergraph is acyclic (i.e., has hypertree width 1), but removing the hyperedge may result in a cyclic hypergraph (i.e., hypertree width > 1).

Exercise. Decide whether the following claims are true or false. Explain your answer.

- 1. Deleting an edge from a graph may make the tree width smaller but never larger.
- 2. Deleting a vertex from a graph (and removing all of its edges) may make the tree width smaller but never larger.
- 3. Deleting a hyperedge from a hypergraph may make the hypertree width smaller but never larger.
- Deleting a vertex from a hypergraph (and removing empty edges) may make the hypertree width smaller but never larger.

Theorem (Seymour and Thomas; Lecture 7, Slide 15)

A graph G is of tree width $\leq k-1$ iff k cops have a winning strategy in the cops & robber game on G.

Theorem (Lecture 8, Slide 17)

A hypergraph H is of hypertree width $\leq k$ iff k marshals have a winning strategy in the marshals & robber game on H.

- 1. True: cops don't walk along edges, so deleting edges does not invalidate winning strategies.
- 2. True: analogous.
- False: Consider a hypergraph that has a hyperedge containing all vertices. Then the hypergraph is acyclic (i.e., has hypertree width 1), but removing the hyperedge may result in a cyclic hypergraph (i.e., hypertree width > 1).
- 4. True: marshals don't occupy vertices, but hyperedges, so deleting vertices does not invalidate winning strategies.

Exercise. The following BCQ corresponds to graph (a) in Exercise 2:

$$\exists x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8. \ r(x_1, x_2) \land r(x_1, x_3) \land r(x_2, x_4) \land r(x_3, x_4) \land r(x_3, x_5) \land r(x_4, x_6) \land r(x_5, x_6) \land r(x_5, x_7) \land r(x_6, x_8) \land r(x_7, x_8)$$

According to the logical characterisation from the lecture, this query can be expressed in the \exists - \land -fragment of FO using only tree width+1 variables. Find such a formula.

Exercise. The following BCQ corresponds to graph (a) in Exercise 2:

$$\exists x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8. \ r(x_1, x_2) \land r(x_1, x_3) \land r(x_2, x_4) \land r(x_3, x_4) \land r(x_3, x_5) \land r(x_4, x_6) \land r(x_5, x_6) \land r(x_5, x_7) \land r(x_6, x_8) \land r(x_7, x_8)$$

According to the logical characterisation from the lecture, this query can be expressed in the ∃-∧-fragment of FO using only tree width+1 variables. Find such a formula.

$$\exists x, y, z. \ r(x, y) \land r(x, z) \land$$

$$(\exists x. \ r(y, x) \land r(z, x) \land$$

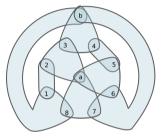
$$(\exists y. \ r(z, y) \land$$

$$(\exists z. \ r(x, z) \land r(y, z) \land$$

$$(\exists x. \ r(y, x) \land$$

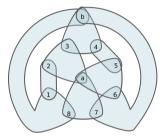
$$(\exists y. \ r(x, y) \land r(z, y))))))$$

Exercise. Consider *Adler's Hypergraph*:



- 1. Can one marshal catch the robber?
- 2. Can two marshals catch the robber?
- 3. Can three marshals catch the robber?
- 4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
- (*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

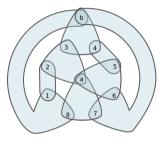
Exercise. Consider *Adler's Hypergraph*:



Solution.

- 1. Can one marshal catch the robber?
- 2. Can two marshals catch the robber?
- 3. Can three marshals catch the robber?
- 4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
- (*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

Exercise. Consider *Adler's Hypergraph*:

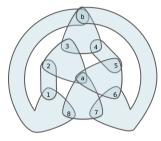


Solution.

1. No.

- 1. Can one marshal catch the robber?
- 2. Can two marshals catch the robber?
- 3. Can three marshals catch the robber?
- 4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
- (*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

Exercise. Consider *Adler's Hypergraph*:

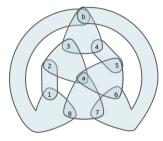


Solution.

- 1. No.
- 2. Yes, but only non-monotonically.

- 1. Can one marshal catch the robber?
- 2. Can two marshals catch the robber?
- 3. Can three marshals catch the robber?
- 4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
- (*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

Exercise. Consider *Adler's Hypergraph*:

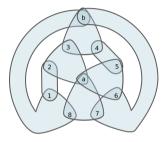


Solution.

- 1. No.
- 2. Yes, but only non-monotonically.
- 3. Yes, even when playing monotonically.

- 1. Can one marshal catch the robber?
- 2. Can two marshals catch the robber?
- 3. Can three marshals catch the robber?
- 4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
- (*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?

Exercise. Consider Adler's Hypergraph:



Solution.

- 1. No.
- 2. Yes, but only non-monotonically.
- 3. Yes, even when playing monotonically.
- (*) The graph has hypertree width 3, but generalised hypertree width 2.

- 1. Can one marshal catch the robber?
- 2. Can two marshals catch the robber?
- 3. Can three marshals catch the robber?
- 4. Adler et al. [Eur. J. Comb., 2007] proposed this graph as an example where fewer marshals can win if they are allowed to play non-monotonically, that is, if they are not required to shrink the remaining space in each turn. Can you confirm her findings?
- (*) Can you explain why non-monotone play is unavoidable in one of the above cases if the marshals want to win?