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Motivation of Conflict-driven ASP Solving
• Goal Approach to computing stable models of logic programs,

based on concepts from
– Constraint Processing (CP) and
– Satisfiability Testing (SAT)

• Idea View inferences in ASP as unit propagation on nogoods
• Benefits:

– A uniform constraint-based framework for different
kinds of inferences in ASP

– Advanced techniques from the areas of CP and SAT
– Highly competitive implementation
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Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

• Representation: 〈T, F〉, where
– T is the set of all true atoms and
– F is the set of all false atoms
– Truth of atoms in A \ (T ∪ F) is unknown

• Properties:
– 〈T, F〉 is conflicting if T ∩ F 6= ∅
– 〈T, F〉 is total if T ∪ F = A and T ∩ F = ∅

• Definition: For 〈T1, F1〉 and 〈T2, F2〉, define
– 〈T1, F1〉 v 〈T2, F2〉 iff T1 ⊆ T2 and F1 ⊆ F2
– 〈T1, F1〉 t 〈T2, F2〉 = 〈T1 ∪ T2, F1 ∪ F2〉
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Unfounded sets
Let P be a normal logic program,
and let 〈T, F〉 be a partial interpretation

• A set U ⊆ atom(P) is an unfounded set of P wrt 〈T, F〉
Intuitively, 〈T, F〉 is what we already know about P

• if we have for each rule r ∈ P such that head(r) ∈ U

either

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

• Rules satisfying Condition 1 are not usable for further derivations
• Condition 2 is the unfounded set condition treating cyclic derivations: All

rules still being usable to derive an atom in U require an(other) atom in U
to be true
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Example

P =

{
a ← b
b ← a

}

• ∅ is an unfounded set (by definition)

• {a} is not an unfounded set of P wrt 〈∅, ∅〉
• {a} is an unfounded set of P wrt 〈∅, {b}〉
• {a} is not an unfounded set of P wrt 〈{b}, ∅〉

• Analogously for {b}

• {a, b} is an unfounded set of P wrt 〈∅, ∅〉
• {a, b} is an unfounded set of P wrt any partial interpretation
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Assignments
• An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . ,σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

• Tv expresses that v is true and Fv that it is false

• The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

• A ◦ σ stands for the result of appending σ to A

• Given A = (σ1, . . . ,σk−1,σk, . . . ,σn), we let A[σk] = (σ1, . . . ,σk−1)

• We sometimes identify an assignment with the set of its literals
• Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}
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Nogoods, solutions, and unit propagation
• A nogood is a set {σ1, . . . ,σn} of signed literals,

expressing a constraint violated by any assignment
containing σ1, . . . ,σn

• An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

• For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

• For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no further
literal is unit-resulting for any nogood in ∆
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Nogoods from logic programs
via program completion

The completion of a logic program P can be defined as follows:

{vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an |
B ∈ body(P), B = {a1, . . . , am, not am+1, . . . , not an}}

∪ {a↔ vB1 ∨ · · · ∨ vBk | a ∈ atom(P), body(a) = {B1, . . . , Bk}} ,

where body(a) = {body(r) | r ∈ P, head(r) = a}
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Nogoods from logic programs
via program completion

• The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:
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via program completion

• The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

1 vB → a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

is equivalent to the conjunction of

¬vB ∨ a1, . . . , ¬vB ∨ am, ¬vB ∨ ¬am+1, . . . , ¬vB ∨ ¬an

and induces the set of nogoods

∆(B) = { {TB, Fa1}, . . . , {TB, Fam}, {TB, Tam+1}, . . . , {TB, Tan} }
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Nogoods from logic programs
via program completion

• The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

2 a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an → vB

gives rise to the nogood

δ(B) = {FB, Ta1, . . . , Tam, Fam+1, . . . , Fan}
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Nogoods from logic programs
via program completion

• Analogously, the (atom-oriented) equivalence

a↔ vB1 ∨ · · · ∨ vBk

yields the nogoods

1 ∆(a) = { {Fa, TB1}, . . . , {Fa, TBk} } and

2 δ(a) = {Ta, FB1, . . . , FBk}
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Nogoods from logic programs
atom-oriented nogoods

• For an atom a where body(a) = {B1, . . . , Bk}, we get

{Ta, FB1, . . . , FBk} and { {Fa, TB1}, . . . , {Fa, TBk} }

• Example Given Atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

{Tx, F{y}, F{not z}}
{ {Fx, T{y}}, {Fx, T{not z}} }

For nogood {Tx, F{y}, F{not z}}, the signed literal

– Fx is unit-resulting wrt assignment (F{y}, F{not z}) and
– T{not z} is unit-resulting wrt assignment (Tx, F{y})
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Nogoods from logic programs
body-oriented nogoods

• For a body B = {a1, . . . , am, not am+1, . . . , not an}, we get

{FB, Ta1, . . . , Tam, Fam+1, . . . , Fan}
{ {TB, Fa1}, . . . , {TB, Fam}, {TB, Tam+1}, . . . , {TB, Tan} }

• Example Given Body {x, not y}, we obtain

. . .← x, not y...

. . .← x, not y

{F{x, not y}, Tx, Fy}
{ {T{x, not y}, Fx}, {T{x, not y}, Ty} }

For nogood δ({x, not y}) = {F{x, not y}, Tx, Fy}, the signed literal
– T{x, not y} is unit-resulting wrt assignment (Tx, Fy) and
– Ty is unit-resulting wrt assignment (F{x, not y}, Tx)
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Characterization of stable models
for tight logic programs, ie. free of positive recursion

Let P be a logic program and

∆P = {δ(a) | a ∈ atom(P)} ∪ {δ ∈ ∆(a) | a ∈ atom(P)}
∪ {δ(B) | B ∈ body(P)} ∪ {δ ∈ ∆(B) | B ∈ body(P)}

Theorem
Let P be a tight logic program. Then,

X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P
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Summary
• Partial assignments
• Unfounded sets
• Unit resulting literals
• Unit propagation
• Nogoods via program completion
• Characterization of stable models of tight programs in terms of nogoods.
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• See also: http://potassco.sourceforge.net
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