

Artificial Intelligence, Computational Logic

DEDUCTION SYSTEMS

Lecture 5 ASP Solving I *slides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden, 18th June 2015

Conflict-driven ASP Solving: Overview

Outline

Motivation of Conflict-driven ASP Solving

- Goal Approach to computing stable models of logic programs, based on concepts from
 - Constraint Processing (CP) and
 - Satisfiability Testing (SAT)
- Idea View inferences in ASP as unit propagation on nogoods
- Benefits:
 - A uniform constraint-based framework for different kinds of inferences in ASP
 - Advanced techniques from the areas of CP and SAT
 - Highly competitive implementation

Outline

Outline

1 Motivation

Boolean constraints

Nogoods from logic programs
Nogoods from program completion

or: 3-valued interpretations

or: 3-valued interpretations

- Representation: $\langle T, F \rangle$, where
 - T is the set of all *true* atoms and
 - F is the set of all false atoms
 - Truth of atoms in $\mathcal{A} \setminus (T \cup F)$ is *unknown*

or: 3-valued interpretations

- Representation: $\langle T, F \rangle$, where
 - T is the set of all true atoms and
 - F is the set of all false atoms
 - Truth of atoms in $\mathcal{A} \setminus (T \cup F)$ is *unknown*
- Properties:
 - $-\langle T, F \rangle$ is conflicting if $T \cap F \neq \emptyset$
 - $-\langle T,F\rangle$ is total if $T\cup F=\mathcal{A}$ and $T\cap F=\emptyset$

or: 3-valued interpretations

- Representation: $\langle T, F \rangle$, where
 - T is the set of all true atoms and
 - F is the set of all false atoms
 - Truth of atoms in $\mathcal{A} \setminus (T \cup F)$ is *unknown*
- Properties:
 - $-\langle T, F \rangle$ is conflicting if $T \cap F \neq \emptyset$
 - $-\langle T,F\rangle$ is total if $T\cup F=\mathcal{A}$ and $T\cap F=\emptyset$
- Definition: For $\langle T_1, F_1 \rangle$ and $\langle T_2, F_2 \rangle$, define
 - $-\langle T_1, F_1 \rangle \sqsubseteq \langle T_2, F_2 \rangle$ iff $T_1 \subseteq T_2$ and $F_1 \subseteq F_2$
 - $\langle T_1, F_1 \rangle \sqcup \langle T_2, F_2 \rangle = \langle T_1 \cup T_2, F_1 \cup F_2 \rangle$

Outline

1 Motivation

PreliminariesPartial InterpretationsUnfounded Sets

Boolean constraints

Nogoods from logic programs
Nogoods from program completion

Let *P* be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

Let *P* be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

• A set $U \subseteq atom(P)$ is an unfounded set of P wrt $\langle T, F \rangle$

Let *P* be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

 A set U ⊆ atom(P) is an unfounded set of P wrt ⟨T, F⟩ Intuitively, ⟨T, F⟩ is what we already know about P

Let *P* be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

- A set $U \subseteq atom(P)$ is an unfounded set of P wrt $\langle T, F \rangle$
- if we have for each rule $r \in P$ such that $head(r) \in U$

Let *P* be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

- A set $U \subseteq atom(P)$ is an unfounded set of P wrt $\langle T, F \rangle$
- if we have for each rule r ∈ P such that head(r) ∈ U either

Let *P* be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

- A set $U \subseteq atom(P)$ is an unfounded set of P wrt $\langle T, F \rangle$
- if we have for each rule r ∈ P such that head(r) ∈ U either

1 $body(r)^+ \cap F \neq \emptyset$ or $body(r)^- \cap T \neq \emptyset$ or

Let *P* be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

- A set $U \subseteq atom(P)$ is an unfounded set of P wrt $\langle T, F \rangle$
- if we have for each rule r ∈ P such that head(r) ∈ U either
 - 1 $body(r)^+ \cap F \neq \emptyset$ or $body(r)^- \cap T \neq \emptyset$ or 2 $body(r)^+ \cap U \neq \emptyset$

Let *P* be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

- A set $U \subseteq atom(P)$ is an unfounded set of P wrt $\langle T, F \rangle$
- if we have for each rule r ∈ P such that head(r) ∈ U either

1 $body(r)^+ \cap F \neq \emptyset$ or $body(r)^- \cap T \neq \emptyset$ or 2 $body(r)^+ \cap U \neq \emptyset$

• Rules satisfying Condition 1 are not usable for further derivations

Let *P* be a normal logic program, and let $\langle T, F \rangle$ be a partial interpretation

- A set $U \subseteq atom(P)$ is an unfounded set of P wrt $\langle T, F \rangle$
- if we have for each rule r ∈ P such that head(r) ∈ U either

1 $body(r)^+ \cap F \neq \emptyset$ or $body(r)^- \cap T \neq \emptyset$ or 2 $body(r)^+ \cap U \neq \emptyset$

- Rules satisfying Condition 1 are not usable for further derivations
- Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in *U* require an(other) atom in *U* to be true

$$P = \left\{ \begin{array}{rrr} a & \leftarrow & b \\ b & \leftarrow & a \end{array} \right\}$$

$$P = \left\{ \begin{array}{rrr} a & \leftarrow & b \\ b & \leftarrow & a \end{array} \right\}$$

• \emptyset is an unfounded set (by definition)

$$P = \left\{ \begin{array}{rrr} a & \leftarrow & b \\ b & \leftarrow & a \end{array} \right\}$$

- \emptyset is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle \emptyset, \emptyset \rangle$

$$P = \left\{ \begin{array}{rrr} a & \leftarrow & b \\ b & \leftarrow & a \end{array} \right\}$$

- \emptyset is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle \emptyset, \emptyset \rangle$
- $\{a\}$ is an unfounded set of P wrt $\langle \emptyset, \{b\} \rangle$

$$P = \left\{ \begin{array}{rrr} a & \leftarrow & b \\ b & \leftarrow & a \end{array} \right\}$$

- Ø is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle \emptyset, \emptyset \rangle$
- $\{a\}$ is an unfounded set of P wrt $\langle \emptyset, \{b\} \rangle$
- $\{a\}$ is not an unfounded set of P wrt $\langle \{b\}, \emptyset \rangle$

$$P = \left\{ \begin{array}{rrr} a & \leftarrow & b \\ b & \leftarrow & a \end{array} \right\}$$

- \emptyset is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle \emptyset, \emptyset \rangle$
- $\{a\}$ is an unfounded set of *P* wrt $\langle \emptyset, \{b\} \rangle$
- $\{a\}$ is not an unfounded set of P wrt $\langle \{b\}, \emptyset \rangle$
- Analogously for {b}

$$P = \left\{ \begin{array}{rrr} a & \leftarrow & b \\ b & \leftarrow & a \end{array} \right\}$$

- Ø is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle \emptyset, \emptyset \rangle$
- $\{a\}$ is an unfounded set of P wrt $\langle \emptyset, \{b\} \rangle$
- $\{a\}$ is not an unfounded set of P wrt $\langle \{b\}, \emptyset \rangle$
- $\{a, b\}$ is an unfounded set of *P* wrt $\langle \emptyset, \emptyset \rangle$

$$P = \left\{ \begin{array}{rrr} a & \leftarrow & b \\ b & \leftarrow & a \end{array} \right\}$$

- Ø is an unfounded set (by definition)
- {a} is not an unfounded set of P wrt ⟨∅, ∅⟩
- $\{a\}$ is an unfounded set of *P* wrt $\langle \emptyset, \{b\} \rangle$
- $\{a\}$ is not an unfounded set of P wrt $\langle \{b\}, \emptyset \rangle$
- $\{a, b\}$ is an unfounded set of *P* wrt $\langle \emptyset, \emptyset \rangle$
- $\{a, b\}$ is an unfounded set of *P* wrt any partial interpretation

Outline

• An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence

 $(\sigma_1,\ldots,\sigma_n)$

of signed literals σ_i of form Tv or Fv for $v \in dom(A)$ and $1 \le i \le n$

• Tv expresses that v is true and Fv that it is false

• An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence

 $(\sigma_1,\ldots,\sigma_n)$

- Tv expresses that v is true and Fv that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$

• An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence

 $(\sigma_1,\ldots,\sigma_n)$

- Tv expresses that v is true and Fv that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A

• An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence

 $(\sigma_1,\ldots,\sigma_n)$

- Tv expresses that v is true and Fv that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$

• An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence

 $(\sigma_1,\ldots,\sigma_n)$

- Tv expresses that v is true and Fv that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$
- · We sometimes identify an assignment with the set of its literals

• An assignment A over $dom(A) = atom(P) \cup body(P)$ is a sequence

 $(\sigma_1,\ldots,\sigma_n)$

- Tv expresses that v is true and Fv that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$
- · We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in A via

$$A^{T} = \{v \in dom(A) \mid Tv \in A\} \text{ and } A^{F} = \{v \in dom(A) \mid Fv \in A\}$$

 A nogood is a set {σ₁,..., σ_n} of signed literals, expressing a constraint violated by any assignment containing σ₁,..., σ_n

- A nogood is a set {σ₁,...,σ_n} of signed literals, expressing a constraint violated by any assignment containing σ₁,...,σ_n
- An assignment A such that A^T ∪ A^F = dom(A) and A^T ∩ A^F = Ø is a solution for a set Δ of nogoods, if δ ⊈ A for all δ ∈ Δ

- A nogood is a set {σ₁,..., σ_n} of signed literals, expressing a constraint violated by any assignment containing σ₁,..., σ_n
- An assignment A such that A^T ∪ A^F = dom(A) and A^T ∩ A^F = Ø is a solution for a set Δ of nogoods, if δ ⊈ A for all δ ∈ Δ
- For a nogood δ , a literal $\sigma \in \delta$, and an assignment *A*, we say that $\overline{\sigma}$ is unit-resulting for δ wrt *A*, if

1
$$\delta \setminus A = \{\sigma\}$$
 and
2 $\overline{\sigma} \notin A$

- A nogood is a set {σ₁,..., σ_n} of signed literals, expressing a constraint violated by any assignment containing σ₁,..., σ_n
- An assignment A such that A^T ∪ A^F = dom(A) and A^T ∩ A^F = Ø is a solution for a set Δ of nogoods, if δ ⊈ A for all δ ∈ Δ
- For a nogood δ , a literal $\sigma \in \delta$, and an assignment A, we say that $\overline{\sigma}$ is unit-resulting for δ wrt A, if

1
$$\delta \setminus A = \{\sigma\}$$
 and
2 $\overline{\sigma} \notin A$

 For a set Δ of nogoods and an assignment A, unit propagation is the iterated process of extending A with unit-resulting literals until no further literal is unit-resulting for any nogood in Δ

Outline

Outline

1 Motivation

PreliminariesPartial InterpretationsUnfounded Sets

Nogoods from logic programsNogoods from program completion

The completion of a logic program *P* can be defined as follows:

$$\{v_B \leftrightarrow a_1 \wedge \dots \wedge a_m \wedge \neg a_{m+1} \wedge \dots \wedge \neg a_n \mid B \in body(P), B = \{a_1, \dots, a_m, not \ a_{m+1}, \dots, not \ a_n\}\}$$
$$\cup \quad \{a \leftrightarrow v_{B_1} \vee \dots \vee v_{B_k} \mid a \in atom(P), body(a) = \{B_1, \dots, B_k\}\},$$
where $body(a) = \{body(r) \mid r \in P, head(r) = a\}$

• The (body-oriented) equivalence

 $v_B \leftrightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$

can be decomposed into two implications:

• The (body-oriented) equivalence

 $v_B \leftrightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$

can be decomposed into two implications:

• $v_B \rightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$ is equivalent to the conjunction of

 $\neg v_B \lor a_1, \ldots, \neg v_B \lor a_m, \neg v_B \lor \neg a_{m+1}, \ldots, \neg v_B \lor \neg a_n$

and induces the set of nogoods

 $\Delta(B) = \{ \{TB, Fa_1\}, \dots, \{TB, Fa_m\}, \{TB, Ta_{m+1}\}, \dots, \{TB, Ta_n\} \}$

• The (body-oriented) equivalence

 $v_B \leftrightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$

can be decomposed into two implications:

 $\delta(B) = \{FB, Ta_1, \ldots, Ta_m, Fa_{m+1}, \ldots, Fa_n\}$

• Analogously, the (atom-oriented) equivalence

 $a \leftrightarrow v_{B_1} \vee \cdots \vee v_{B_k}$

yields the nogoods

1
$$\Delta(a) = \{ \{Fa, TB_1\}, \dots, \{Fa, TB_k\} \}$$
 and

$$2 \delta(a) = \{ Ta, FB_1, \ldots, FB_k \}$$

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у
x	\leftarrow	not z

 $\{Tx, F\{y\}, F\{not z\}\}$ $\{\{Fx, T\{y\}\}, \{Fx, T\{not z\}\}\}$

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у	$\{Tx, F\{y\}, F\{not z\}\}$
x	\leftarrow	not z	$\{ \{Fx, T\{y\}\}, \{Fx, T\{not z\}\} \}$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

х	\leftarrow	у
x	\leftarrow	not z

 $\{Tx, F\{y\}, F\{not z\} \}$ $\{ \{Fx, T\{y\}\}, \{Fx, T\{not z\}\} \}$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у
x	\leftarrow	not z

 ${Tx, F{y}, F{not z}}$ ${ {Fx, T{y}}, {Fx, T{not z}} }$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у
x	\leftarrow	not z

 ${Tx, F{y}, F{not z}}$ ${Fx, T{y}, {Fx, T{not z}}}$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у
x	\leftarrow	not z

 ${Tx, F{y}, F{not z}}$ ${ {Fx, T{y}}, {Fx, T{not z}} }$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у
x	\leftarrow	not z

 ${Tx, F{y}, F{not z}}$ ${ {Fx, T{y}}, {Fx, T{not z}} }$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у
x	\leftarrow	not z

 ${Tx, F{y}, F{not z}}$ ${Fx, T{y}, {Fx, T{not z}}}$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у	$\{Tx, F\{y\}, F\{not z\}\}$
x	\leftarrow	not z	$\{ \{Fx, T\{y\}\}, \{Fx, T\{not z\}\} \}$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у	{ <i>T</i>
x	\leftarrow	not z	{ {

 ${Tx, F{y}, F{not z}}$ ${ {Fx, T{y}}, {Fx, T{not z}}$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

 ${Tx, F{y}, F{not z}}$ ${Fx, T{y}, {Fx, T{not z}}}$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у
x	\leftarrow	not z

 ${Tx, F{y}, F{not z}}$ ${ {Fx, T{y}}, {Fx, T{not z}} }$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For an atom *a* where $body(a) = \{B_1, \ldots, B_k\}$, we get

 $\{Ta, FB_1, \ldots, FB_k\}$ and $\{\{Fa, TB_1\}, \ldots, \{Fa, TB_k\}\}$

• Example Given Atom x with $body(x) = \{\{y\}, \{not \ z\}\}$, we obtain

x	\leftarrow	у
x	\leftarrow	not z

 ${Tx, F{y}, F{not z}}$ ${Fx, T{y}, {Fx, T{not z}}}$

For nogood $\{Tx, F\{y\}, F\{not z\}\}$, the signed literal

• For a body $B = \{a_1, \ldots, a_m, not \ a_{m+1}, \ldots, not \ a_n\}$, we get

 ${FB, Ta_1, \ldots, Ta_m, Fa_{m+1}, \ldots, Fa_n}$ ${ {TB, Fa_1}, \ldots, {TB, Fa_m}, {TB, Ta_{m+1}}, \ldots, {TB, Ta_n} }$

• For a body $B = \{a_1, \ldots, a_m, not \ a_{m+1}, \ldots, not \ a_n\}$, we get

 ${FB, Ta_1, \ldots, Ta_m, Fa_{m+1}, \ldots, Fa_n}$ ${TB, Fa_1}, \ldots, {TB, Fa_m}, {TB, Ta_{m+1}}, \ldots, {TB, Ta_n}$

• Example Given Body {*x*, *not y*}, we obtain

$\ldots \leftarrow x, not y$	
•	
$\ldots \leftarrow x, not y$	

 $\{F\{x, not y\}, Tx, Fy\} \\ \{\{T\{x, not y\}, Fx\}, \{T\{x, not y\}, Ty\}\} \}$

• For a body $B = \{a_1, \ldots, a_m, not \ a_{m+1}, \ldots, not \ a_n\}$, we get

 $\{FB, Ta_1, \ldots, Ta_m, Fa_{m+1}, \ldots, Fa_n\}$ $\{\{TB, Fa_1\}, \ldots, \{TB, Fa_m\}, \{TB, Ta_{m+1}\}, \ldots, \{TB, Ta_n\}\}$

• Example Given Body {*x*, *not y*}, we obtain

$$\begin{array}{c|c} \dots \leftarrow x, not \ y \\ \vdots \\ \dots \leftarrow x, not \ y \end{array} & \{F\{x, not \ y\}, Tx, Fy\} \\ \{T\{x, not \ y\}, Fx\}, \{T\{x, not \ y\}, Ty\}\} \end{array}$$

For nogood $\delta(\{x, not y\}) = \{F\{x, not y\}, Tx, Fy\}$, the signed literal

- $T{x, not y}$ is unit-resulting wrt assignment (Tx, Fy) and
- Ty is unit-resulting wrt assignment ($F{x, not y}, Tx$)

Characterization of stable models for tight logic programs, ie. free of positive recursion

Let P be a logic program and

$$\Delta_P = \{\delta(a) \mid a \in atom(P)\} \cup \{\delta \in \Delta(a) \mid a \in atom(P)\} \\ \cup \{\delta(B) \mid B \in body(P)\} \cup \{\delta \in \Delta(B) \mid B \in body(P)\}$$

Characterization of stable models for tight logic programs, ie. free of positive recursion

Let P be a logic program and

$$\Delta_P = \{\delta(a) \mid a \in atom(P)\} \cup \{\delta \in \Delta(a) \mid a \in atom(P)\} \\ \cup \{\delta(B) \mid B \in body(P)\} \cup \{\delta \in \Delta(B) \mid B \in body(P)\}$$

Theorem

Let *P* be a tight logic program. Then, $X \subseteq atom(P)$ is a stable model of *P* iff $X = A^T \cap atom(P)$ for a (unique) solution *A* for Δ_P

Summary

- Partial assignments
- Unfounded sets
- Unit resulting literals
- Unit propagation
- Nogoods via program completion
- Characterization of stable models of tight programs in terms of nogoods.

References

Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub. Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012. doi=10.2200/S00457ED1V01Y201211AIM019.

• See also: http://potassco.sourceforge.net