DEDUCTION SYSTEMS

Lecture 5 ASP Solving 1 *silides adapled fiom Torsten
 Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden, 18th June 2015

Conflict-driven ASP Solving: Overview

Outline

2) Preliminaries

3 Boolean constraints

4 Nogoods from logic programs

Motivation of Conflict-driven ASP Solving

- Goal Approach to computing stable models of logic programs, based on concepts from
- Constraint Processing (CP) and
- Satisfiability Testing (SAT)
- Idea View inferences in ASP as unit propagation on nogoods
- Benefits:
- A uniform constraint-based framework for different kinds of inferences in ASP
- Advanced techniques from the areas of CP and SAT
- Highly competitive implementation

Outline

(1) Motivation
(2) Preliminaries
3) Boolean constraints

4 Nogoods from logic programs

Outline

- Unfounded Sets

3 Boolean constraints

4 Nogoods from logic programs

- Nogoods from program completion

Partial interpretations

or: 3-valued interpretations
A partial interpretation maps atoms onto truth values true, false, and unknown

Partial interpretations

or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false, and unknown

- Representation: $\langle T, F\rangle$, where
- T is the set of all true atoms and
- F is the set of all false atoms
- Truth of atoms in $\mathcal{A} \backslash(T \cup F)$ is unknown

Partial interpretations

or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false, and unknown

- Representation: $\langle T, F\rangle$, where
- T is the set of all true atoms and
- F is the set of all false atoms
- Truth of atoms in $\mathcal{A} \backslash(T \cup F)$ is unknown
- Properties:
- $\langle T, F\rangle$ is conflicting if $T \cap F \neq \emptyset$
- $\langle T, F\rangle$ is total if $T \cup F=\mathcal{A}$ and $T \cap F=\emptyset$

Partial interpretations

or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false, and unknown

- Representation: $\langle T, F\rangle$, where
- T is the set of all true atoms and
- F is the set of all false atoms
- Truth of atoms in $\mathcal{A} \backslash(T \cup F)$ is unknown
- Properties:
- $\langle T, F\rangle$ is conflicting if $T \cap F \neq \emptyset$
- $\langle T, F\rangle$ is total if $T \cup F=\mathcal{A}$ and $T \cap F=\emptyset$
- Definition: For $\left\langle T_{1}, F_{1}\right\rangle$ and $\left\langle T_{2}, F_{2}\right\rangle$, define
$-\left\langle T_{1}, F_{1}\right\rangle \sqsubseteq\left\langle T_{2}, F_{2}\right\rangle$ iff $T_{1} \subseteq T_{2}$ and $F_{1} \subseteq F_{2}$
$-\left\langle T_{1}, F_{1}\right\rangle \sqcup\left\langle T_{2}, F_{2}\right\rangle=\left\langle T_{1} \cup T_{2}, F_{1} \cup F_{2}\right\rangle$

Outline

(2) Preliminaries

- Partial Interpretations
- Unfounded Sets
(3) Boolean constraints

4 Nogoods from logic programs

- Nogoods from program completion

Unfounded sets

Let P be a normal logic program, and let $\langle T, F\rangle$ be a partial interpretation

Unfounded sets

Let P be a normal logic program, and let $\langle T, F\rangle$ be a partial interpretation

- A set $U \subseteq \operatorname{atom}(P)$ is an unfounded set of P wrt $\langle T, F\rangle$

Unfounded sets

Let P be a normal logic program, and let $\langle T, F\rangle$ be a partial interpretation

- A set $U \subseteq \operatorname{atom}(P)$ is an unfounded set of P wrt $\langle T, F\rangle$ Intuitively, $\langle T, F\rangle$ is what we already know about P

Unfounded sets

Let P be a normal logic program, and let $\langle T, F\rangle$ be a partial interpretation

- A set $U \subseteq \operatorname{atom}(P)$ is an unfounded set of P wrt $\langle T, F\rangle$
- if we have for each rule $r \in P$ such that head $(r) \in U$

Unfounded sets

Let P be a normal logic program, and let $\langle T, F\rangle$ be a partial interpretation

- A set $U \subseteq \operatorname{atom}(P)$ is an unfounded set of P wrt $\langle T, F\rangle$
- if we have for each rule $r \in P$ such that head $(r) \in U$ either

Unfounded sets

Let P be a normal logic program, and let $\langle T, F\rangle$ be a partial interpretation

- A set $U \subseteq \operatorname{atom}(P)$ is an unfounded set of P wrt $\langle T, F\rangle$
- if we have for each rule $r \in P$ such that head $(r) \in U$ either
(1) $\operatorname{body}(r)^{+} \cap F \neq \emptyset$ or $\operatorname{body}(r)^{-} \cap T \neq \emptyset$ or

Unfounded sets

Let P be a normal logic program, and let $\langle T, F\rangle$ be a partial interpretation

- A set $U \subseteq \operatorname{atom}(P)$ is an unfounded set of P wrt $\langle T, F\rangle$
- if we have for each rule $r \in P$ such that head $(r) \in U$ either
(9) $\operatorname{body}(r)^{+} \cap F \neq \emptyset$ or $\operatorname{body}(r)^{-} \cap T \neq \emptyset$ or
(2) $\operatorname{body}(r)^{+} \cap U \neq \emptyset$

Unfounded sets

Let P be a normal logic program, and let $\langle T, F\rangle$ be a partial interpretation

- A set $U \subseteq \operatorname{atom}(P)$ is an unfounded set of P wrt $\langle T, F\rangle$
- if we have for each rule $r \in P$ such that head $(r) \in U$ either
(9) $\operatorname{body}(r)^{+} \cap F \neq \emptyset$ or $\operatorname{body}(r)^{-} \cap T \neq \emptyset$ or
(2) $\operatorname{body}(r)^{+} \cap U \neq \emptyset$
- Rules satisfying Condition 1 are not usable for further derivations

Unfounded sets

Let P be a normal logic program, and let $\langle T, F\rangle$ be a partial interpretation

- A set $U \subseteq \operatorname{atom}(P)$ is an unfounded set of P wrt $\langle T, F\rangle$
- if we have for each rule $r \in P$ such that head $(r) \in U$ either
(9) $\operatorname{body}(r)^{+} \cap F \neq \emptyset$ or $\operatorname{body}(r)^{-} \cap T \neq \emptyset$ or
(2) $\operatorname{body}(r)^{+} \cap U \neq \emptyset$
- Rules satisfying Condition 1 are not usable for further derivations
- Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in U require an(other) atom in U to be true

Example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
$$

Example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
$$

- \emptyset is an unfounded set (by definition)

Example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
$$

- \emptyset is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle\emptyset, \emptyset\rangle$

Example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
$$

- \emptyset is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle\emptyset, \emptyset\rangle$
- $\{a\}$ is an unfounded set of P wrt $\langle\emptyset,\{b\}\rangle$

Example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
$$

- \emptyset is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle\emptyset, \emptyset\rangle$
- $\{a\}$ is an unfounded set of P wrt $\langle\emptyset,\{b\}\rangle$
- $\{a\}$ is not an unfounded set of P wrt $\langle\{b\}, \emptyset\rangle$

Example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
$$

- \emptyset is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle\emptyset, \emptyset\rangle$
- $\{a\}$ is an unfounded set of P wrt $\langle\emptyset,\{b\}\rangle$
- $\{a\}$ is not an unfounded set of P wrt $\langle\{b\}, \emptyset\rangle$
- Analogously for $\{b\}$

Example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
$$

- \emptyset is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle\emptyset, \emptyset\rangle$
- $\{a\}$ is an unfounded set of P wrt $\langle\emptyset,\{b\}\rangle$
- $\{a\}$ is not an unfounded set of P wrt $\langle\{b\}, \emptyset\rangle$
- $\{a, b\}$ is an unfounded set of P wrt $\langle\emptyset, \emptyset\rangle$

Example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
$$

- \emptyset is an unfounded set (by definition)
- $\{a\}$ is not an unfounded set of P wrt $\langle\emptyset, \emptyset\rangle$
- $\{a\}$ is an unfounded set of P wrt $\langle\emptyset,\{b\}\rangle$
- $\{a\}$ is not an unfounded set of P wrt $\langle\{b\}, \emptyset\rangle$
- $\{a, b\}$ is an unfounded set of P wrt $\langle\emptyset, \emptyset\rangle$
- $\{a, b\}$ is an unfounded set of P wrt any partial interpretation

Outline

1 Motivation

2 Preliminaries
(3) Boolean constraints

4 Nogoods from logic programs

Assignments

- An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\boldsymbol{T v}$ or $\boldsymbol{F v}$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- $\boldsymbol{T} v$ expresses that v is true and $\boldsymbol{F} v$ that it is false

Assignments

- An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\boldsymbol{T v}$ or $\boldsymbol{F v}$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- $\boldsymbol{T} v$ expresses that v is true and $\boldsymbol{F} v$ that it is false
- The complement, $\bar{\sigma}$, of a literal σ is defined as $\overline{\boldsymbol{T} v}=\boldsymbol{F} v$ and $\overline{\boldsymbol{F} v}=\boldsymbol{T} v$

Assignments

- An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\boldsymbol{T v}$ or $\boldsymbol{F v}$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- $\boldsymbol{T} v$ expresses that v is true and $\boldsymbol{F} v$ that it is false
- The complement, $\bar{\sigma}$, of a literal σ is defined as $\overline{\boldsymbol{T} v}=\boldsymbol{F} v$ and $\overline{\boldsymbol{F} v}=\boldsymbol{T} v$
- $A \circ \sigma$ stands for the result of appending σ to A

Assignments

- An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\boldsymbol{T} v$ or $\boldsymbol{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- $\boldsymbol{T} v$ expresses that v is true and $\boldsymbol{F} v$ that it is false
- The complement, $\bar{\sigma}$, of a literal σ is defined as $\overline{\boldsymbol{T} v}=\boldsymbol{F} v$ and $\overline{\boldsymbol{F} v}=\boldsymbol{T} v$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)$, we let $A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)$

Assignments

- An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\boldsymbol{T} v$ or $\boldsymbol{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- $\boldsymbol{T} v$ expresses that v is true and $\boldsymbol{F} v$ that it is false
- The complement, $\bar{\sigma}$, of a literal σ is defined as $\overline{\boldsymbol{T} v}=\boldsymbol{F} v$ and $\overline{\boldsymbol{F} v}=\boldsymbol{T} v$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)$, we let $A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)$
- We sometimes identify an assignment with the set of its literals

Assignments

- An assignment A over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals σ_{i} of form $\boldsymbol{T} v$ or $\boldsymbol{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- $\boldsymbol{T} v$ expresses that v is true and $\boldsymbol{F} v$ that it is false
- The complement, $\bar{\sigma}$, of a literal σ is defined as $\overline{\boldsymbol{T} v}=\boldsymbol{F} v$ and $\overline{\boldsymbol{F} v}=\boldsymbol{T} v$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)$, we let $A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)$
- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in A via

$$
A^{\boldsymbol{T}}=\{v \in \operatorname{dom}(A) \mid \boldsymbol{T} v \in A\} \text { and } A^{\boldsymbol{F}}=\{v \in \operatorname{dom}(A) \mid \boldsymbol{F} v \in A\}
$$

Nogoods, solutions, and unit propagation

- A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$

Nogoods, solutions, and unit propagation

- A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$
- An assignment A such that $A^{T} \cup A^{F}=\operatorname{dom}(A)$ and $A^{T} \cap A^{F}=\emptyset$ is a solution for a set Δ of nogoods, if $\delta \nsubseteq A$ for all $\delta \in \Delta$

Nogoods, solutions, and unit propagation

- A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$
- An assignment A such that $A^{T} \cup A^{F}=\operatorname{dom}(A)$ and $A^{T} \cap A^{F}=\emptyset$ is a solution for a set Δ of nogoods, if $\delta \nsubseteq A$ for all $\delta \in \Delta$
- For a nogood δ, a literal $\sigma \in \delta$, and an assignment A, we say that $\bar{\sigma}$ is unit-resulting for δ wrt A, if
(1) $\delta \backslash A=\{\sigma\}$ and
(2) $\bar{\sigma} \notin A$

Nogoods, solutions, and unit propagation

- A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$
- An assignment A such that $A^{T} \cup A^{F}=\operatorname{dom}(A)$ and $A^{T} \cap A^{F}=\emptyset$ is a solution for a set Δ of nogoods, if $\delta \nsubseteq A$ for all $\delta \in \Delta$
- For a nogood δ, a literal $\sigma \in \delta$, and an assignment A, we say that $\bar{\sigma}$ is unit-resulting for δ wrt A, if
(1) $\delta \backslash A=\{\sigma\}$ and
(2) $\bar{\sigma} \notin A$
- For a set Δ of nogoods and an assignment A, unit propagation is the iterated process of extending A with unit-resulting literals until no further literal is unit-resulting for any nogood in Δ

Outline

2 Preliminaries

3 Boolean constraints
(4) Nogoods from logic programs

Outline

2 Preliminaries

- Partial Interpretations
- Unfounded Sets

3 Boolean constraints
(4) Nogoods from logic programs

- Nogoods from program completion

Nogoods from logic programs via program completion

The completion of a logic program P can be defined as follows:

$$
\begin{aligned}
\left\{v_{B} \leftrightarrow\right. & a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n} \mid \\
& \left.B \in \operatorname{body}(P), B=\left\{a_{1}, \ldots, a_{m}, \operatorname{not} a_{m+1}, \ldots, \operatorname{not} a_{n}\right\}\right\} \\
\cup \quad\{a \leftrightarrow & \left.v_{B_{1}} \vee \cdots \vee v_{B_{k}} \mid a \in \operatorname{atom}(P), \operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\right\},
\end{aligned}
$$

where $\operatorname{body}(a)=\{\operatorname{body}(r) \mid r \in P, \operatorname{head}(r)=a\}$

Nogoods from logic programs via program completion

- The (body-oriented) equivalence

$$
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
$$

can be decomposed into two implications:

Nogoods from logic programs via program completion

- The (body-oriented) equivalence

$$
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
$$

can be decomposed into two implications:
(1) $v_{B} \rightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}$
is equivalent to the conjunction of

$$
\neg v_{B} \vee a_{1}, \ldots, \neg v_{B} \vee a_{m}, \neg v_{B} \vee \neg a_{m+1}, \ldots, \neg v_{B} \vee \neg a_{n}
$$

and induces the set of nogoods

$$
\Delta(B)=\left\{\left\{\boldsymbol{T} B, \boldsymbol{F} a_{1}\right\}, \ldots,\left\{\boldsymbol{T} B, \boldsymbol{F} a_{m}\right\},\left\{\boldsymbol{T} B, \boldsymbol{T} a_{m+1}\right\}, \ldots,\left\{\boldsymbol{T} B, \boldsymbol{T} a_{n}\right\}\right\}
$$

Nogoods from logic programs via program completion

- The (body-oriented) equivalence

$$
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
$$

can be decomposed into two implications:
(2) $a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n} \rightarrow v_{B}$
gives rise to the nogood

$$
\delta(B)=\left\{\boldsymbol{F} B, \boldsymbol{T} a_{1}, \ldots, \boldsymbol{T} a_{m}, \boldsymbol{F} a_{m+1}, \ldots, \boldsymbol{F} a_{n}\right\}
$$

Nogoods from logic programs via program completion

- Analogously, the (atom-oriented) equivalence

$$
a \leftrightarrow v_{B_{1}} \vee \cdots \vee v_{B_{k}}
$$

yields the nogoods
(1) $\Delta(a)=\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}$ and
(2) $\delta(a)=\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\}$

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$
$\{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{$ not $z\}\}\}$

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

$$
\begin{array}{|lll|}
\hline x & \leftarrow & y \\
x & \leftarrow & \text { not } z
\end{array} \quad\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\},
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

- $\boldsymbol{F} x$ is unit-resulting wrt assignment $(\boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\})$ and

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

- $\boldsymbol{F} x$ is unit-resulting wrt assignment $(\boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\})$ and

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

- $\boldsymbol{F} x$ is unit-resulting wrt assignment $(\boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\})$ and

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

- $\boldsymbol{F} x$ is unit-resulting wrt assignment $(\boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\})$ and

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

- $\boldsymbol{F} x$ is unit-resulting wrt assignment $(\boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\})$ and

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

- $\boldsymbol{T}\{$ not $z\}$ is unit-resulting wrt assignment ($\boldsymbol{T} x, \boldsymbol{F}\{y\}$)

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

- $\boldsymbol{T}\{$ not $z\}$ is unit-resulting wrt assignment ($\boldsymbol{T} x, \boldsymbol{F}\{y\}$)

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

- $\boldsymbol{T}\{$ not $z\}$ is unit-resulting wrt assignment ($\boldsymbol{T} x, \boldsymbol{F}\{y\}$)

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

- $\boldsymbol{T}\{$ not $z\}$ is unit-resulting wrt assignment $(\boldsymbol{T} x, \boldsymbol{F}\{y\})$

Nogoods from logic programs atom-oriented nogoods

- For an atom a where $\operatorname{body}(a)=\left\{B_{1}, \ldots, B_{k}\right\}$, we get

$$
\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}
$$

- Example Given Atom x with $\operatorname{body}(x)=\{\{y\}$, $\{$ not $z\}\}$, we obtain

x	\leftarrow	y
x	\leftarrow	not z

$$
\begin{aligned}
& \{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{\text { not } z\}\} \\
& \{\{\boldsymbol{F} x, \boldsymbol{T}\{y\}\},\{\boldsymbol{F} x, \boldsymbol{T}\{\text { not } z\}\}\}
\end{aligned}
$$

For nogood $\{\boldsymbol{T} x, \boldsymbol{F}\{y\}, \boldsymbol{F}\{$ not $z\}\}$, the signed literal

- $\boldsymbol{T}\{$ not $z\}$ is unit-resulting wrt assignment $(\boldsymbol{T} x, \boldsymbol{F}\{y\})$

Nogoods from logic programs body-oriented nogoods

- For a body $B=\left\{a_{1}, \ldots, a_{m}\right.$, not a_{m+1}, \ldots, not $\left.a_{n}\right\}$, we get

$$
\begin{aligned}
& \left\{\boldsymbol{F} B, \boldsymbol{T} a_{1}, \ldots, \boldsymbol{T} a_{m}, \boldsymbol{F} a_{m+1}, \ldots, \boldsymbol{F} a_{n}\right\} \\
& \left\{\left\{\boldsymbol{T} B, \boldsymbol{F} a_{1}\right\}, \ldots,\left\{\boldsymbol{T} B, \boldsymbol{F} a_{m}\right\},\left\{\boldsymbol{T} B, \boldsymbol{T} a_{m+1}\right\}, \ldots,\left\{\boldsymbol{T} B, \boldsymbol{T} a_{n}\right\}\right\}
\end{aligned}
$$

Nogoods from logic programs body-oriented nogoods

- For a body $B=\left\{a_{1}, \ldots, a_{m}\right.$, not a_{m+1}, \ldots, not $\left.a_{n}\right\}$, we get

$$
\begin{aligned}
& \left\{\boldsymbol{F} B, \boldsymbol{T} a_{1}, \ldots, \boldsymbol{T} a_{m}, \boldsymbol{F} a_{m+1}, \ldots, \boldsymbol{F} a_{n}\right\} \\
& \left\{\left\{\boldsymbol{T} B, \boldsymbol{F} a_{1}\right\}, \ldots,\left\{\boldsymbol{T} B, \boldsymbol{F} a_{m}\right\},\left\{\boldsymbol{T} B, \boldsymbol{T} a_{m+1}\right\}, \ldots,\left\{\boldsymbol{T} B, \boldsymbol{T} a_{n}\right\}\right\}
\end{aligned}
$$

- Example Given Body $\{x$, not $y\}$, we obtain

$$
\begin{gathered}
\ldots \leftarrow x, \operatorname{not} y \\
\vdots \\
\ldots \leftarrow x, \operatorname{not} y
\end{gathered}
$$

$$
\begin{aligned}
& \{\boldsymbol{F}\{x, \text { not } y\}, \boldsymbol{T} x, \boldsymbol{F} y\} \\
& \{\{\boldsymbol{T}\{x, \text { not } y\}, \boldsymbol{F} x\},\{\boldsymbol{T}\{x, \text { not } y\}, \boldsymbol{T} y\}\}
\end{aligned}
$$

Nogoods from logic programs body-oriented nogoods

- For a body $B=\left\{a_{1}, \ldots, a_{m}\right.$, not a_{m+1}, \ldots, not $\left.a_{n}\right\}$, we get

$$
\begin{aligned}
& \left\{\boldsymbol{F} B, \boldsymbol{T} a_{1}, \ldots, \boldsymbol{T} a_{m}, \boldsymbol{F} a_{m+1}, \ldots, \boldsymbol{F} a_{n}\right\} \\
& \left\{\left\{\boldsymbol{T} B, \boldsymbol{F} a_{1}\right\}, \ldots,\left\{\boldsymbol{T} B, \boldsymbol{F} a_{m}\right\},\left\{\boldsymbol{T} B, \boldsymbol{T} a_{m+1}\right\}, \ldots,\left\{\boldsymbol{T} B, \boldsymbol{T} a_{n}\right\}\right\}
\end{aligned}
$$

- Example Given Body $\{x$, not $y\}$, we obtain

$$
\begin{aligned}
& \{\boldsymbol{F}\{x, \text { not } y\}, \boldsymbol{T} x, \boldsymbol{F} y\} \\
& \{\{\boldsymbol{T}\{x, \text { not } y\}, \boldsymbol{F} x\},\{\boldsymbol{T}\{x, \text { not } y\}, \boldsymbol{T} y\}\}
\end{aligned}
$$

For nogood $\delta(\{x$, not $y\})=\{\boldsymbol{F}\{x$, not $y\}, \boldsymbol{T} x, \boldsymbol{F} y\}$, the signed literal

- $\boldsymbol{T}\{x$, not $y\}$ is unit-resulting wrt assignment ($\boldsymbol{T} x, \boldsymbol{F} y$) and
- $\boldsymbol{T} y$ is unit-resulting wrt assignment $(\boldsymbol{F}\{x$, not $y\}, \boldsymbol{T} x)$

Characterization of stable models

for tight logic programs, ie. free of positive recursion

Let P be a logic program and

$$
\begin{aligned}
\Delta_{P} & =\{\delta(a) \mid a \in \operatorname{atom}(P)\} \cup\{\delta \in \Delta(a) \mid a \in \operatorname{atom}(P)\} \\
& \cup\{\delta(B) \mid B \in \operatorname{body}(P)\} \cup\{\delta \in \Delta(B) \mid B \in \operatorname{body}(P)\}
\end{aligned}
$$

Characterization of stable models

for tight logic programs, ie. free of positive recursion

Let P be a logic program and

$$
\begin{aligned}
\Delta_{P} & =\{\delta(a) \mid a \in \operatorname{atom}(P)\} \cup\{\delta \in \Delta(a) \mid a \in \operatorname{atom}(P)\} \\
& \cup\{\delta(B) \mid B \in \operatorname{body}(P)\} \cup\{\delta \in \Delta(B) \mid B \in \operatorname{body}(P)\}
\end{aligned}
$$

Theorem

Let P be a tight logic program. Then, $X \subseteq \operatorname{atom}(P)$ is a stable model of P iff $X=A^{T} \cap \operatorname{atom}(P)$ for a (unique) solution A for Δ_{P}

Summary

- Partial assignments
- Unfounded sets
- Unit resulting literals
- Unit propagation
- Nogoods via program completion
- Characterization of stable models of tight programs in terms of nogoods.

References

Torin Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012. doi=10.2200/S00457ED1V01Y201211AIM019.

- See also: http://potassco.sourceforge.net

