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Abstract

Several different approaches of logic programming semantics have been proposed
during the last two decades. These semantics varied in many aspects and it was diffi-
cult to find the exact relationships between them. Hitzler and Wendt proposed a new
method, based on level mappings, which allows to provide uniform characterizations
of different semantics for logic programs. They gave new characterizations of different
semantics, like the well-founded semantics or the Fitting semantics. We will apply
this method to other classes of logic programs, namely quantitative logic programs
and disjunctive logic programs. There are also different approaches of semantics for
both classes and we will provide characterizations for some of them. In fact, we will
consider a quantitative semantics due to van Emden and a specialization of a se-
mantics due to Mateis where real numbers, respectively intervals of real numbers,
are used as measures of uncertainty. Furthermore, we will provide a level mapping
characterization of the minimal model semantics for disjunctive logic programs and a
characterization for the combination of these two classes, i.e. quantitative disjunctive
logic programs.
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1 Introduction

A variety of different approaches to fixed-point semantics have been proposed in the field of
logic programming and nonmonotonic reasoning. The different approaches were compared
several times (for example the stable model semantics by Gelfond and Lifschitz [3] and
the well founded semantics by van Gelder, Ross and Schlipf [17] in [16] and [17]) but no
comparison covered all concepts of semantics because the rationales behind some of these
semantics differ in too many aspects.
In [5] and [6], Hitzler and Wendt introduced level mappings as a tool to characterize logic
programming semantics. These mappings from elements of the Herbrand base to ordinals
induces an ordering on the set of all ground atoms while preventing the occurence of
infinite descending chains. In [6], the focus was set on negation in logic programming, and
the least model semantics for definite programs, the stable model semantics, the Fitting
semantics [2], the well-founded semantics and the weakly perfect model semantics [13] were
characterized by level mappings. These level mapping characterizations are comparable
and so it is also possible to compare the corresponding semantics. Furthermore, Hitzler and
Wendt stated that level mapping characterizations should be applicable to many semantics
which are based on an operator with a least fixpoint, respectively an extension of the stable
model semantics.
Quantitative logic programs were introduced because in some cases it seemed to be more
useful to have probabilities or other measures of uncertainty instead of the truth values true
and false. So no truth values are assigned to the atoms of a quantitative logic program but
values of uncertainty and quantitative clauses assign values to the head depending on the
values of the atoms in the bodies of the clauses. Several different quantitative approaches
have been proposed but we will focus on the approaches by van Emden [15] and Mateis
[10]. In one of the most relevant earlier works in the field of quantitative logic programs,
van Emden used real numbers between 0 and 1 as measures of uncertainty and no negation
occured in his programs. Furthermore, he defined a unique uncertainty calculus for applying
the values to the single atoms of the program. Mateis considered negation, used intervals of
real numbers between 0 and 1 as measures of uncertainty and Triangular norms (T-norms)
as a class of calculi for proposing values through the clauses where the calculus defined by
van Emden [15] is a special case. We will define level mappings for quantitative programs of
both approaches and we will distinguish between programs with and without negation. We
will therefore restrict the T-norms of Mateis’ approach to the special case of van Emden’s
uncertainty calculus and we will then be able to show that intervals and real numbers as
measures of uncertainty and the operators which are defined for these programs are closely
related.
Another extension of normal logic programs are disjunctive logic programs. The difference
to normal logic programs is that more than one atom may occur in the heads of the clauses.
This allows to express incomplete knowledge in the sense that a disjunction of statements
is a logical consequence of a statement but it is impossible to say which of these statements
exactly are true. Among all proposed semantics for disjunctive logic programs, the most
widely recognized is the minimal model semantics [9]. The concept of minimal models
means, roughly spoken, to make as few as possible atoms true in each head of a disjunctive
clause. This can also be understood as an exclusive interpretation of disjunctions. Because
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the minimal model semantics was defined for disjunctive programs without negation, this
concept was extended to programs including negation which was done by Przymusinski in
[14] when proposing the disjunctive stable model semantics. We will define level mappings
for the minimal model semantics and the disjunctive stable model semantics and we will not
use a special operator for disjunctive programs but a restricted form of normal derivatives
[4] and apply the results of definite programs, respectively (normal) ones.
In [10] Mateis extended his approach to quantitative disjunctive logic programs, i.e. pro-
grams including quantitativity and disjunctions in the head of the clauses. The combination
of these two concepts results in quantitative minimal models and quantitative disjunctive
stable models and the level mappings for the corresponding programs will also be a combi-
nation of the level mappings for quantitative, respectively disjunctive, logic programs. We
will restrict the aspect of quantitativity to real numbers as uncertainty measures and omit
intervals because the results would be very similar but much more difficult to read in the
case of intervals.
The paper will unfold according to the following structure. In Section 2, the general syntax
of all different kinds of logic programs is explained. Section 3 contains quantitative logic
programs, Section 4 deals with disjunctive logic programs and quantitative disjunctive
programs are discussed in Section 5. Each of these three sections is divided into a first part
where the semantics of the considered kind of programs are developed and a second part
which include the level mappings for the corresponding programs. We close with conclusions
and a consideration of further work in Section 6.
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2 Syntax

A (normal) logic program consists of finitely many universally quantified clauses of the
form

H ← A1 ∧ · · · ∧ An ∧ ¬B1 ∧ · · · ∧ ¬Bm,

usually written as
H ← A1, . . . , An,¬B1, . . . ,¬Bm,

where H, Ai and Bj, for i = 1, . . . , n and j = 1, . . . ,m, are atoms of a first order language.
An atom is of the form p(t1, . . . , tm), where p is a predicate symbol of arity m and the ti,
for i = 1, . . . ,m and m ≥ 0, are terms. A term is a constant, a variable or f(t1, . . . , tn)
where f is an n-nary function symbol which takes again n terms as arguments and is, for
n = 0, equivalent to a constant. Predicate symbols, function symbols and constants all
belong to a given first order language.
A clause can be divided into the head H and the body A1 ∧ . . .∧An ∧¬B1 ∧ · · · ∧ ¬Bm. If
the body is empty, the clause is called a fact. We also use the notion literal and distinguish
between positive literals and negative literals, if it is an atom, respectively a negated one.
In a definite clause no negative literals occur and we call a program consisting only of
definite clauses a definite logic program.
A quantitative logic program is a logic program extended by adding an interval [x, y] to
each clause with 0 < x ≤ y ≤ 1. Such a quantitative clause is written as

H
[x,y]←− A1, . . . , An,¬B1, . . . ,¬Bm,

where x, y are components with x being the lower component and y the upper component.
Note that there also exist quantitative definite logic programs just if there is no negative
literal in any rule and that we call a program qualitative if it is not a quantitative one.
We further extend these programs by allowing disjunctions to occur in the heads of the
clauses and call them quantitative disjunctive logic programs, or just disjunctive, respec-
tively definite disjunctive, depending on the occurence of intervals, respectively negative
literals. A quantitative disjunctive clause is of the form

H1 ∨ · · · ∨Hl
[x,y]←− A1, . . . , An,¬B1, . . . ,¬Bm

where, for k = 1, . . . , l, all Hk are also atoms of the first order language.
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3 Quantitative logic programming

3.1 Semantics of quantitative programs

We will start with the semantics of quantitative logic programs and deal with disjunctions in
a later section. But before, we will introduce some notions which are used for all programs.
The Herbrand base BP of a given quantitative disjunctive logic program P (and all included
special cases) is the set of all ground atoms which can be formed with the symbols of P ,
i.e. the constants, predicates and function symbols. The set of all ground instances of a
program P with respect to BP is called ground(P ). Note that the Herbrand base and
ground(P ) are usually not finite because of the possible occurence of function symbols.
For qualitative logic programs a (Herbrand) interpretation I is a mapping BP →
{false, true}, commonly written as a subset of BP , consisting only of those A ∈ BP

mapping to true. In the quantitative case according to [10], a quantitative (Herbrand) in-
terpretation I maps elements of BP to an interval [x, y] ⊆ [0, 1] of real numbers and can
therefore be written as a set of pairs (A, [x, y]) with A ∈ BP and [x, y] = I(A).
For defining a semantics of quantitative programs we need to operate on intervals. In [10]
Mateis proposed a way of doing this based on triangular norms and we will follow his
approach.

3.1.1 Definition Let T be a, possibly infix, operator on intervals [a1, b1], . . . , [an, bn]. We
define

T ([a1, b1], . . . , [an, bn]) = [T (a1, . . . , an), T (b1, . . . , bn)].

3.1.2 Example Let × be multiplication:
×([0.5, 0.5], [0.6, 0.8], [0.8, 0.9]) = [×(0.5, 0.6, 0.8),×(0.5, 0.8, 0.9)] = [0.24, 0.36]

Given a quantitative program P , there are infinitely many quantitative interpretations
since the intervals consist of real numbers. So it is useful to define an order relation on
quantitative interpretations and for this purpose a relation on intervals also taken from
Mateis [10].

3.1.3 Definition The relation � is defined on intervals such that [a, b] � [c, d] if and only
if a ≤ c and b ≤ d.

3.1.4 Definition The relation v is defined on quantitative interpretations such that I1 v
I2 if and only if I1(A) � I2(A) for all A ∈ BP and some quantitative interpretations I1, I2.

For the time being we restrict our programs to being definite and can now turn to the
question when a clause is true in a given interpretation I. Starting with the qualitative
case, the body of a clause H ← A1, . . . , An is true in I if and only if, for all i = 1, . . . , n,
all Ai are true in I, i.e. all Ai occur in I. A clause H ← body is true in I, if and only if
body is false or body and H are both true. There also exists a quantitative version.

3.1.5 Definition A quantitative clause of the form H
[x,y]←− A1, . . . , An is evaluated to true

in I, if and only if
I(H) � [x, y]× inf{I(Ai) | i = 1, . . . , n}
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where inf ∅ is set to [1, 1].

For any program P we call a (Herbrand) interpretation I a (Herbrand) model of P if every
clause, i.e. every element of ground(P ), is true in I. We also use the notion of two-valued
model for models of definite programs and quantitative model for quantitative ones.
In [15] van Emden proposed many results for definite quantitative programming which we
will apply. The only difference is that he used factors, real numbers r between 0 and 1,
instead of intervals of real numbers, for his quantitative clauses written as

H
r←− A1, . . . , An.

To distinguish the two different types of quantitative programs we will call programs with
factors also scalar (quantitative) programs consisting of scalar clauses. So scalar interpre-
tations are sets of pairs (A, f) with A ∈ BP and f = I(A).

3.1.6 Definition For some scalar interpretations I1, I2 the relation v becomes I1 v I2 if
and only if I1(A) ≤ I2(A) for all A ∈ BP .

The evaluation of a scalar clause is very similar to that of a quantitative one.

3.1.7 Definition A scalar clause H
x←− A1, . . . , An is evaluated to true, if and only if

I(H) ≥ x×min{I(Ai) | i = 1, . . . , n}

where min ∅ is set to 1.

Note that a quantitative clause of the form H
[x,x]←− A1, . . . , An corresponds to a scalar clause

H
x←− A1, . . . , An and a quantitative program consisting only of such quantitative clauses

corresponds to a scalar program.
We want to define a connection between the two kinds of quantitative programs, so that
afterwards it is easier to show the following results. For this purpose, we divide quantitative
clauses, quantitative programs and quantitative interpretations.

3.1.8 Definition A quantitative clause c with an interval [x, y] can be divided into two
scalar clauses, such that the quantitative clause is duplicated and the interval [x, y] is
replaced by x at the lower scalar clause c↓ and by y at the upper scalar clause c↑.

3.1.9 Definition A quantitative program P can be divided into two scalar programs P↑,
P↓, such that each clause c is divided into two scalar clauses and P↑ consists of all upper
clauses c↑ and P↓ of all lower clauses c↓.

3.1.10 Definition A quantitative interpretation I can be divided into two scalar inter-
pretations I↑, I↓, such that, for each A ∈ BP , the pair (A, [x, y]) occuring in I is replaced
by (A, x) in I↓ and by (A, y) in I↑.

3.1.11 Example

a
[0.5,1]←−

b
[0.8,0.9]←− a
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This program P with an interpretation I = {(a, [0.5, 1]), (b, [0.4, 0.9])}, which is also a

model, can be divided into two scalar programs (with scalar clauses): P↓ = {a 0.5←−, b
0.8←− a},

and P↑ = {a 1←−, b
0.9←− a} with the corresponding scalar interpretations, respectively

models, I↓ = {(a, 0.5), (b, 0.4)} and I↑ = {(a, 1), (b, 0.9)}.

Now we can turn towards van Emden’s results.

3.1.12 Definition (A, r) is true in a scalar model I if r ≤ I(A).

3.1.13 Definition For all programs P , all A ∈ BP and all r ∈ [0, 1], P |= (A, r) holds if
and only if (A, r) is true in every Herbrand model M of P .

In [15] van Emden also stated that P |= (A, r) implies P |= (A, r1) for any r1 ≤ r so that
it is the aim to make r as large as possible which in the qualitative case corresponds to
r = 1. This is also applicable to quantitative programs with intervals.

3.1.14 Definition (A, [x, y]) is true in a quantitative model I if [x, y] � I(A).

3.1.15 Definition For all programs P , all A ∈ BP and all intervals [x, y] ⊆ [0, 1], P |=
(A, [x, y]) holds if and only if (A, [x, y]) is true in every Herbrand model M of P .

Here also P |= (A, [x, y]) implies P |= (A, [x1, y1]) for any interval [x1, y1] � [x, y]. Returning
to van Emden’s approach he defines the least Herbrand model M of P :

3.1.16 Definition The least Herbrand model M of P , denoted MP , on scalar interpreta-
tions is determined by

MP (A) = sup{r | P |= (A, r)} for each A ∈ BP

where sup denotes the least upper bound.

The least Herbrand model of quantitative programs can be obtained in a similar way
but this will be easier to show by means of the theorem below which connect scalar and
quantitative models.
With each program P we can associate an operator T mapping from interpretations to
interpretations where the fixpoints of T are models of P . Following this method, we recall
the operator for scalar quantitative programs taken from van Emden [15].

3.1.17 Definition Let P be a scalar program. The operator SP on scalar quantitative
interpretations is, for every A ∈ BP , defined as

SP (I)(A) = sup{x×min{I(Ai) | i = 1, . . . , n} | A x←− A1, . . . , An ∈ ground(P )}

where sup is the least upper bound with respect to ≤.

As the properties of this operator are already shown in [15] they will just be recalled.
But before that we will define an operator for quantitative programs with intervals as a
specialization of the operator proposed by Mateis [10].
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3.1.18 Definition Let P be a quantitative program. The operator TP on quantitative
interpretations is, for every A ∈ BP , defined as

TP (I)(A) = sup{[x, y]× inf{I(Ai) | i = 1, . . . , n} | A [x,y]←− A1, . . . , An ∈ ground(P )}

where sup is the least upper bound with respect to �.

Now that we have defined operators for two different kinds of quantitative programs and a
way to divide quantitative programs into scalar ones, we can show the connection between
these two operators.

3.1.19 Theorem Let P be a quantitative program and P↑, P↓ the scalar programs ob-
tained from dividing P . The operator TP is characterized by the operators of these scalar
programs, for all A ∈ BP , by

TP (I)(A) = [SP↓(I↓)(A), SP↑(I↑)(A)].

Proof: The operator TP for the quantitative program P is, by Definition 3.1.18, defined

as TP (I)(A) = sup{[x, y] × inf{I(Ai) | i = 1, . . . , n} | A
[x,y]←− A1, . . . , An ∈ ground(P )}.

Having divided the program P , the interpretation I can also be divided into I↑, I↓ because
only the upper components are necessary for P↑, respectively the lower components for P↓.
If we apply the function inf to quantitative interpretations then we have to calculate for
each A ∈ BP the smallest interval on � which is done separately for each component. So
we calculate for every A ∈ BP for each component the smallest number.

TP (I)(A) = sup{[x, y]× [min{I↓(Ai) | i = 1, . . . , n}, min{I↑(Ai) | i = 1, . . . , n}] |
A

x←− A1, . . . , An ∈ ground(P↓), A
y←− A1, . . . , An ∈ ground(P↑), }

Applying Definition 3.1.1 leads to

TP (I)(A) = sup{[x×min{I↓(Ai) | i = 1, . . . , n}, y ×min{I↑(Ai) | i = 1, . . . , n}] |
A

x←− A1, . . . , An ∈ ground(P↓), A
y←− A1, . . . , An ∈ ground(P↑), }

and the supremum is also obtained separately for each component.

TP (I)(A) = [sup{x×min{I↓(Ai) | i = 1, . . . , n} | A x←− A1, . . . , An ∈ ground(P↓)},
sup{y ×min{I↑(Ai) | i = 1, . . . , n} | A y←− A1, . . . , An ∈ ground(P↑}]

So SP↓(I↓)(A) = sup{x × min{I↓(Ai) | i = 1, . . . , n} | A
x←− A1, . . . , An ∈ ground(P↓)}

and SP↑(I↑)(A) = sup{y ×min{I↑(Ai) | i = 1, . . . , n} | A y←− A1, . . . , An ∈ ground(P↑)} by
Definition 3.1.17 and because we consider all clauses occuring in ground(P↓), respectively
ground(P↑). �

This result is very useful since it simplifies the proofs for monotonicity and continuity, as
we show later, of the operator TP defined for quantitative programs. We are now able to
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divide the program and apply to each of the resulting scalar programs the operator SP

defined on scalar programs and combine the results afterwards.
Now we recall the properties of the operator SP for scalar programs from [15]. The operator
SP is monotonic, i.e. I1 v I2 implies SP (I1) v SP (I2), which in turn implies the existence
of the least fixed point lfp(SP ) of SP by the Knaster-Tarski fixed-point theorem. This
fixed point can be obtained by defining, for each monotonic operator T , that T ↑ 0 = ∅,
T ↑ (α + 1) = T (T ↑ α) for any ordinal α, T ↑ β =

⊔
γ<β T ↑ γ for any limit ordinal

β and T ↑ α as the least fixed point of T for some ordinal α. Moreover, this operator
is continuous [15] and for every program P and every interpretation I it follows that P
is true in I if and only if SP (I) v I. Furthermore, van Emden showed in [15] that this
operator is finite, in the sense that, for all A ∈ BP , there exists a natural number n such
that MP (A) = (SP ↑ n)(A). The consequence is that the operator always reaches, for each
A ∈ BP , the highest value MP (A), hence MP = lfp(SP ) = SP ↑ ω.
There is a special property of scalar programs which will be helpful when defining level
mappings for them.

3.1.20 Lemma Let P be a scalar program. If M is the least scalar model of P then
for each H ∈ M with M(H) > 0 exists a clause H

x←− A1 . . . , An in ground(P ) with
M(H) = x×min{M(Ai) | i = 1, . . . , n}.

Proof: If M is the least scalar model of P and M(H) > 0 then H has to occur somewhere
in ground(P ) since otherwise M1 with M1(H) = 0 and M1(A) = M(A) for all other A ∈ BP

is also a model of P and M is not the least one. If H occurs only in the bodies of some
clauses then M1 is again a model of these clauses hence a model for the whole program
and M is not the least one. So for all H ∈ M with M(H) > 0 there is at least one scalar
clause in ground(P ) with H as the head. Because M is a model for P , all these clauses
with H in the head are true in M and M(H) ≥ x×min{M(Ai) | i = 1, . . . , n} is satisfied
for all clauses H

x←− A1 . . . , An, by Definition 3.1.7. Then M(H) ≥ sup{x×min{M(Ai) |
i = 1, . . . , n} | H

x←− A1 . . . , An} is true. M(A) = MP (A) = SP ↑ ω(A) holds for all
A ∈ BP because M is the least model and for all A ∈ BP and some natural number m
also MP (A) = SP ↑ m(A) is satisfied by finiteness of SP . So there is a maximal value
(x × min{M(Ai) | i = 1, . . . , n}) for all clauses H

x←− A1 . . . , An and we can conclude
M(H) ≥ max{x × min{M(Ai) | i = 1, . . . , n} | H x←− A1 . . . , An}. If M(H) > max{x ×
min{M(Ai) | i = 1, . . . , n} | H x←− A1 . . . , An} then M is not the least model of P hence
M(H) = max{x×min{M(Ai) | i = 1, . . . , n} | H x←− A1 . . . , An}. �

With the help of the following definitions we are able to show even a stronger version of
this lemma.

3.1.21 Definition Let P be a scalar program. A chain A
x← A1, . . . , An of ground(P ) is

defined inductively:
1. A clause A

x← A1, . . . , An in ground(P ) is a chain.

2. If A
y← B1, . . . , Bm is a chain of ground(P ) and Bj

z← A1, . . . , An a clause in ground(P ),

for 1 ≤ j ≤ m and x = y × z, then A
x← A1, . . . , An is a chain.
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3.1.22 Definition A scalar program P is cycle-free if there exists no chain of ground(P )
where an atom A occurs in the head and in the body.

Now we are able to select a subset of any scalar program with a least scalar model such
that this subset is cycle-free.

3.1.23 Lemma If P is a scalar program and M is the least scalar model of P then a cycle-
free subset Pcf of P exists such that for each H ∈ M with M(H) > 0 exists exactly one

scalar clause H
x←− A1 . . . , An in ground(Pcf ) with M(H) = x×min{M(Ai) | i = 1, . . . , n}.

Proof: If M is the least scalar model of P then for each H ∈ M with M(H) > 0 exists a
clause H

x←− A1 . . . , An with M(H) = x × min{M(Ai) | i = 1, . . . , n} by Lemma 3.1.20.
So there is indeed at least one such clause and we only have to select exactly one of them
for each H ∈ M with M(H) > 0 and to show that the so defined subset of ground(P ) is
cycle-free. We choose the clauses according to the following conditions:
If H ∈ M with M(H) > 0 and there is a clause H

x←− with M(H) = x then we choose
this fact.
If H ∈ M with M(H) > 0 and there is no fact H

x←− with M(H) = x then there are
clauses H

x←− A1 . . . , An with M(H) = x × min{M(Ai) | i = 1, . . . , n} and n ≥ 1. M(H)
is greater than 0, so x × min{M(Ai) | i = 1, . . . , n} > 0 is also true and x as well as
min{M(Ai) | i = 1, . . . , n} have to be greater than 0. Then M(Ai) > 0 for all i = 1, . . . , n
and there is at least one Al, 1 ≤ l ≤ n, in each such clause with M(Al) = min{M(Ai) |
i = 1, . . . , n} and M(H) = x ×M(Al). So we select in each clause among all the Al with
minimal value M(Al) one Al∗ with a minimal value k such that SP ↑ ω(Al∗) = SP ↑ (k)(Al∗)
and SP ↑ k(Ai) ≥ SP ↑ k(Al∗), for all i = 1, . . . , n and 1 ≤ l∗ ≤ n , where H

x←− A1 . . . , An

is the corresponding clause with M(H) = x ×M(Al∗). Because M(Ai) ≥ M(Al∗) for all
i = 1, . . . , n and, for all A ∈ M and a natural number m, also SP ↑ ω(A) = SP ↑ m(A) is
true by finiteness of SP , this minimal value k has to exist for each of these clauses. So we
can select one corresponding clause with an Al∗ with a minimal value k∗ among all values
k for the Al∗ of the corresponding clauses.
Now there is exactly one scalar clause H

x←− A1 . . . , An in ground(Pcf ) for each H ∈ M
with M(H) > 0 where M(H) = x×min{M(Ai) | i = 1, . . . , n} and additionally M is the
least scalar model of Pcf . So we only have to show that Pcf is cycle-free.
Assume that Pcf is not cycle-free. Then there exists a chain of ground(Pcf ) such that an
atom H occurs in the head and in the body of this chain. If there is a chain with the head H
then there is a clause H

x←− A1 . . . , An in ground(Pcf ) with M(H) = x×min{M(Ai) | i =

1, . . . , n}. This clause cannot be a fact H
x←− because facts have an empty body. So there

is one Al∗, 1 ≤ l∗ ≤ n, in this clause with minimal value k such that M(Ai) ≥ M(Al∗)
and SP ↑ k(Ai) ≥ SP ↑ k(Al∗) for all i = 1, . . . , n, SP ↑ ω(Al∗) = SP ↑ k(Al∗) and
M(H) = x × M(Al∗). If k is minimal and M(H) = x × M(Al∗) and M(Al∗) = SP ↑
ω(Al∗) = SP ↑ k(Al∗) then SP ↑ (k + 1)(H) = SP ↑ ω(H) = M(H) = x× SP ↑ k(Al∗) and
SP ↑ ω(H) > SP ↑ k(H) by definition of SP . If SP ↑ ω(H) = SP ↑ k(H) would be satisfied
then SP ↑ k(H) = M(H) = x × SP ↑ k1(Al∗), for k1 < k and another minimal Al∗, and k
would not be minimal.
But H or the atom which is the connection to that H in the body of the chain equals one Ai,
1 ≤ i ≤ n, and SP ↑ k(Ai) ≥ SP ↑ k(Al∗) is satisfied for this Ai. If H = Ai, 1 ≤ i ≤ n, then
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SP ↑ k(H) ≥ SP ↑ k(Al∗). If Ai, 1 ≤ i ≤ n, is the atom which connects the clause to that H
in the body of the chain and SP ↑ k(Ai) ≥ SP ↑ k(Al∗) then also SP ↑ k(H) ≥ SP ↑ k(Al∗)
because x ∈ [0, 1] for all factors x and M(H) = x × min{M(Ai) | i = 1, . . . , n} for each
clause H

x←− A1 . . . , An in ground(Pcf ).
If SP ↑ k(H) ≥ SP ↑ k(Al∗) then SP ↑ (k + 1)(H) ≥ SP ↑ k(Al∗) by monotonicity of
SP . Since SP ↑ (k + 1)(H) = x × SP ↑ k(Al∗) and x ∈ [0, 1] we conclude that SP ↑
(k + 1)(H) > SP ↑ k(Al∗) is impossible because the multiplication of SP ↑ k(Al∗) with a
value less then 1 cannot be greater than SP ↑ k(Al∗) and SP ↑ (k + 1)(H) = SP ↑ k(Al∗)
has to hold. If SP ↑ k(H) ≥ SP ↑ k(Al∗) and SP ↑ (k + 1)(H) = SP ↑ k(Al∗) then
SP ↑ k(H) = SP ↑ k(Al∗) by monotonicity of SP . Therefore SP ↑ (k + 1)(H) = SP ↑ k(H)
and because SP ↑ ω(H) = SP ↑ (k + 1)(H) also SP ↑ ω(H) = SP ↑ k(H). We conclude by
contradiction that Pcf is cycle-free. �

3.1.24 Example Let P be a scalar program consisting of the following clauses:

q
0.5←−

r
0.5←−

w
0.6←−

z
1←−

p
1←− p, q

p
1←− w, r

r
0.5←− z

w
0.8←− z

The least scalar model is obtained as {(p, 0.5), (q, 0.5), (r, 0.5), (w, 0.8), (z, 1)} and Pcf con-
sists of the following clauses.

q
0.5←−

r
0.5←−

z
1←−

p
1←− w, r

w
0.8←− z

Note that SP ↑ 1(q) = SP ↑ ω(q) but SP ↑ 1(p) < SP ↑ 1(q) so that the clause p
1←− p, q

cannot be chosen because SP ↑ 1(r) = SP ↑ ω(r) and SP ↑ 1(w) > SP ↑ 1(r).

We are now able to define least models of quantitative programs and to show the properties
of the operator TP for quantitative programs.

3.1.25 Theorem The operator TP is monotonic, i.e. I1 v I2 implies TP (I1) v TP (I2), for
quantitative interpretations I1, I2.
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Proof: Suppose I1 v I2 then I1(A) � I2(A) for all A ∈ BP by Definition 3.1.4 and in turn
I1↓(A) ≤ I2↓(A) and I1↑(A) ≤ I2↑(A) for all A ∈ BP by Definition 3.1.3. Then also I1↓ v I2↓
and I1↑ v I2↑ by Definition 3.1.6. We already know that SP is monotonic, so SP↓(I1↓) v
SP↓(I2↓) and SP↑(I1↑) v SP↑(I2↑). By Definition 3.1.6, we obtain SP↓(I1↓)(A) ≤ SP↓(I2↓)(A)
and SP↑(I1↑)(A) ≤ SP↑(I2↑)(A) for all A ∈ BP . Therefore, we conclude by Definition 3.1.1
and 3.1.3 that

[SP↓(I1↓)(A), SP↑(I1↑)(A)] � [SP↓(I2↓)(A), SP↑(I2↑)(A)].

Using the characterization of TP (Theorem 3.1.19) we deduce TP (I1)(A) � TP (I2)(A) for
all A ∈ BP hence TP (I1) v TP (I2) by Definition 3.1.4. �

Again, the monotonicity implies the existence of a least fixed point lfp(TP ) of TP .

3.1.26 Theorem The least Herbrand model M of a quantitative program P , denoted MP ,
on quantitative interpretations is determined by

MP (A) = sup{[x, y] | P |= (A, [x, y])} for each A ∈ BP

where sup denotes the least upper bound with respect to � for intervals.

Proof: If P is a quantitative program, then we can divide P into the scalar programs P↓,
P↑. By Definition 3.1.16, we have MP↓(A) = sup{x | P↓ |= (A, x)} and MP↑(A) = sup{y |
P↑ |= (A, y)} for each A ∈ BP . By Theorem 3.1.19 TP (I)(A) = [SP↓(I↓)(A), SP↑(I↑)(A)]
holds for all A ∈ BP . Then also TP ↑ ω(A) = [SP↓ ↑ ω(A), SP↑ ↑ ω(A)] and MP (A) =
[MP↓(A), MP↑(A)] for all A ∈ BP . We can substitute MP↓(A) and MP↑(A) and obtain
MP (A) = [sup{x | P↓ |= (A, x)}, sup{y | P↑ |= (A, y)}] for all A ∈ BP .
The supremum is also applicable to intervals in the ordering � and this leads to MP (A) =
sup{[x, y] | P |= (A, [x, y])}. �

3.1.27 Theorem The operator TP is continuous, i.e. it is monotonic and for every directed
set of interpretations I, we have

⊔
TP (I) = TP (

⊔
I).

Proof: We have already shown in Theorem 3.1.25 that TP is monotonic, so we have only
to show that

⊔
TP (I) = TP (

⊔
I) is true. P↓ and P↑ are obtained from dividing P and we

can divide the quantitative interpretations. S is applicable to this programs and because
we know that S is a continuous operator,

⊔
SP↓(I↓) = SP↓(

⊔
I↓) and

⊔
SP↑(I↑) = SP↑(

⊔
I↑)

are true. So we have
⊔

SP↓(I↓)(A) = SP↓(
⊔

I↓)(A) and
⊔

SP↑(I↑)(A) = SP↑(
⊔

I↑)(A) for
all A ∈ BP . We combine the two operators SP↓ and SP↑ and obtain[⊔

SP↓(I↓)(A),
⊔

SP↑(I↑)(A)
]

=
[
SP↓

(⊔
I↓

)
(A), SP↑

(⊔
I↑

)
(A)

]
for all A ∈ BP . Applying Definition 3.1.1 to the left part of the equation leads to⊔

[SP↓(I↓)(A), SP↑(I↑)(A)] =
[
SP↓

(⊔
I↓

)
(A), SP↑

(⊔
I↑

)
(A)

]
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for all A ∈ BP . By Theorem 3.1.19, we conclude
⊔

TP (I)(A) = TP (
⊔

I)(A) for all A ∈ BP

and therefore
⊔

TP (I) = TP (
⊔

I). �

So TP is monotonic and continuous and for every definite quantitative program P and
every interpretation I this program P is true in I if and only if TP (I) v I. We follow the
method used for SP and show now that the operator TP is finite.

3.1.28 Theorem The operator TP is finite, i.e., for all A ∈ BP , there exists a natural
number n such that MP (A) = (TP ↑ n)(A).

Proof: We can divide the model (interpretation) MP and the associated program P and
apply Theorem 3.1.19 to the right part of the equation:

[MP↓(A), MP↑(A)] = [(SP↓ ↑ n1)(A), (SP↑ ↑ n2)(A)]

We have to distinguish n1, n2 because they are not necessarily equal. We know that SP is
finite, i.e. MP↓(A) = (SP↓ ↑ n1)(A) and MP↑(A) = (SP↑ ↑ n2)(A), for some natural numbers
n1, n2. But either n1 = n2 is true or one of the two ni is greater as the other one, so that the
operator TP reaches the highest value MP (A) = (TP ↑ n1)(A) for n1 ≥ n2 and otherwise
MP (A) = (TP ↑ n2)(A). �

The operator also reaches the highest value MP (A) for each A ∈ BP , so that we conclude
MP = lfp(TP ) = TP ↑ ω.

3.1.29 Example Let P be a quantitative program consisting of the following clauses.

a
[0.8,0.9]←−

b
[0.3,0.9]←− a

c
[0.7,0.8]←− a

b
[0.6,0.7]←− c

c
[0.5,1]←− b

If we apply the operator TP we obtain the following results:

TP ↑ 0 = ∅
TP ↑ 1 = {(a, [0.8, 0.9]), (b, [0, 0]), (c, [0, 0])}
TP ↑ 2 = {(a, [0.8, 0.9]), (b, [0.24, 0.81]), (c, [0.56, 0.72])}
TP ↑ 3 = {(a, [0.8, 0.9]), (b, [0.336, 0.81]), (c, [0.56, 0.81])}
TP ↑ 4 = {(a, [0.8, 0.9]), (b, [0.336, 0.81]), (c, [0.56, 0.81])}

The least model MP is obtained as TP ↑ 3.

Now we return to programs where also negation is allowed. At first, we have to define how
to evaluate intervals in the case of negative literals.

3.1.30 Definition Let I(A) = [x, y], then I(¬A) = [1− y, 1− x].
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Like in the definite case we can turn to the question when a clause is true in a given
interpretation I and we start again with the qualitative case. The body of a clause H ←
A1, . . . , An,¬B1, . . . ,¬Bn is true in I if and only if, for all i = 1, . . . , n and all j = 1, . . . ,m,
all Ai are true in I and all Bj are false, i.e. all Ai but no Bj occur in I. A clause H ← body

is true in I, if and only if body is false or body and H are both true. This definition is
similar to the corresponding definite one and this holds also for the following definition:

3.1.31 Definition A quantitative clause of the form H
[x,y]←− A1, . . . , An,¬B1, . . . ,¬Bm is

evaluated to true in I, if and only if

I(H) � [x, y]× inf({I(Ai) | i = 1, . . . , n} ∪ {I(¬Bj) | j = 1, . . . ,m})

where min ∅ is set to [1, 1].

Several different logic programming semantics for programs containing negation have been
proposed, many of them for three-valued logic. But the stable model semantics due to
Gelfond and Lifschitz [3] is defined on two-valued logic and we will use it because it is also
well applicable to quantitative programs with negation. We will now repeat the concept of
the stable model semantics in the qualitatitve case as it was proposed in [3]. For a normal
program P and a set of atoms M with M ⊆ BP , we define P/M to be the subprogram
of ground(P ) where all clauses H ← A1, . . . , An,¬B1, . . . ,¬Bn with, for j = 1, . . . ,m, at
least one Bj ∈ M are removed. The negative literals in the remaining clauses are also
removed. Obviously, the resulting program P/M contains no negation and has therefore
a least two-valued model TP/M ↑ ω. We define for any two-valued interpretation I the
operator GLP (I) = TP/I ↑ ω and call M a stable model of P if it is a fixed point of the
operator GLP , i.e. if M = GLP (M) = TP/M ↑ ω.

3.1.32 Example Let P be the program consisting of the following clauses:

p ← q,¬r

q ← ¬s,¬r

r ← ¬p,¬r

Let M = {p, q}. The resulting program P/M consists only of the clauses

p ← q

q ←

and has M as its least two-valued model. Otherwise, if M = {q, s} then P/M consists of
the clauses

p ← q

r ←

and has {r} as its least two-valued model, so that M = {q, s} is not stable.
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As already mentioned, we will use this concept also for quantitative programs. So we
define the quantitative stable model semantics in the way it has been done by Mateis in
[10]. Therefore, we need extended quantitative programs.

3.1.33 Definition An extended quantitative program is a definite quantitative program
Pe where subintervals of the unit interval [0, 1] may occur as body atoms in the rules
of Pe and, though not contained in BP , are treated like normal atoms. Furthermore, for
every quantitative interpretation I of Pe, each atom [x, y] occuring in the body of a rule is
evaluated as I([x, y]) = [x, y].

With the help of extended quantitative programs it is now possible to recall the definition
of the quantitative stable model semantics from [10].

3.1.34 Definition For a quantitative program P and a quantitative interpretation M
we define P/M to be that extended quantitative program where, for all j = 1, . . . ,m,

each occuring negative literal ¬Bj in a given clause A
[x,y]←− A1, . . . , An,¬B1, . . . ,¬Bm in

ground(P ) is substituted by the interval M(¬Bj). The operator TP is applicable to P/M
and M is a quantitative stable model if and only if M is the least quantitative model
TP/M ↑ ω of P/M .

We now want to emphasize a special property of stable models which holds also for quan-
titative stable models.

3.1.35 Theorem If M is the least quantitative model for the extended quantitative pro-
gram P/M then M is also a quantitative model for P .

Proof: If M is the least quantitative model of P/M then every clause in P/M is true in
M . We have obtained P/M from P by substituting all negative literals ¬Bj in each clause

A
[x,y]←− A1, . . . , An,¬B1, . . . ,¬Bm ∈ ground(P ) by the intervals M(¬Bj) for all j = 1, . . . ,m.

Consider two cases:
a) There are no negative literals in the clause in ground(P ). Then this clause occurs also
in ground(P/M) and M is a model of this clause.
b) There is at least one negative literal in the clause in ground(P ). We substitute all
negative literals ¬Bj by intervals M(¬Bj) and the obtained clause is true in M . According
to Definition 3.1.7, if this clause H ← A1, . . . , An, An+1, . . . , Am is true in M then M(H) �
[x, y]× inf{M(Ak) | k = 1, . . . ,m} and each Ai is a positive literal and each Aj an interval
representing M(¬Bj) for i = 1, . . . , n and j = n + 1, . . . ,m. Then also M(H) � [x, y] ×
inf({M(Ai) | i = 1, . . . , n} ∪ {M(Aj) | j = n + 1, . . . ,m}) is true. By M(Aj) = M(¬Bj)
we conclude M(H) � [x, y]× inf({M(Ai) | i = 1, . . . , n} ∪ {M(¬Bj) | j = 1, . . . ,m}) and,
by Definition 3.1.31 that the original clause is true in M . �

3.1.36 Example Let P be the quantitative program consisting of the following clauses

a
[0.5,0.8]←−

b
[0.8,0.9]←− a,¬c

c
[0.5,0.8]←− ¬a
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and M be the interpretation {(a, [0.5, 0.8]), (b, [0.4, 0.72]), (c, [0.1, 0.3])} so that P/M con-
sists of the clauses

a
[0.5,0.8]←−

b
[0.8,0.9]←− a, [0.7, 0.9]

c
[0.5,0.8]←− [0.2, 0.5]

and TP/M ↑ ω = M .

3.2 Level mappings for quantitative programs

In [6] Hitzler and Wendt used level-mappings to characterize different semantics for logic
programs to make them comparable to each other. For our purposes, we only need total
level mappings, recalled in the following. For an interpretation I and a program P a (total)
level mapping for P is a total mapping l : BP → α for some ordinal α. We start by recalling
the result for definite logic programs from [6].

3.2.1 Theorem Let P be a definite program. Then there is a unique two-valued model
M of P for which there exists a (total) level mapping l : BP → α such that for each atom
A ∈ M there exists a clause A← A1, . . . , An in ground(P ) with Ai ∈ M and l(A) > l(Ai)
for all i = 1, . . . , n. Furthermore, M is the least two-valued model of P .

We will continue with scalar programs, because the result will later simplify the proof in
the case of level mappings for definite quantitative programs.

3.2.2 Theorem Let P be a scalar program. Then there is a unique scalar model M
of P , consisting of pairs (A, M(A)), A ∈ BP , M(A) ∈ [0, 1], for which there exists a
total level mapping l : BP → α such that for each A ∈ M with M(A) > 0 exists a
clause A

x←− A1, . . . , An in ground(P ) with M(A) = x × min{M(Ai) | i = 1, . . . , n} and
l(A) > l(Ai) for all i = 1, . . . , n. Furthermore, M is the least scalar model of P .

Proof: If M is the least scalar model SP ↑ ω of P then, by Lemma 3.1.23, there exists a
cycle-free subset Pcf of P such that for each A ∈ M with M(A) > 0 there is exactly one

scalar clause A
x←− A1 . . . , An in Pcf with A as the head and M(A) = x × min{M(Ai) |

i = 1, . . . , n}. Because there is only one clause for each A ∈ M and M(A) > 0 also x > 0
holds all factors x and all the Ai in each clause of Pcf satisfy M(Ai) > 0. So it does not
matter which values x > 0 occur as factors for the clauses. All A are contained in M with
M(A) > 0 and the factors only influence the exact values M(A) for all A ∈ M . Thus we
can define P+

cf consisting of all clauses occuring in Pcf where all factors are set to 1 and

M+ = {(A, 1) | A ∈ M and M(A) > 0} is the least scalar model of P+
cf . If we ignore all

factors then P+
cf is a definite program and M+ where we ignore the values M(A) = 1 for all

A is the least model of P+
cf . Now we can apply Theorem 3.2.1 so that there exists a (total)

level mapping l : BP → α such that for each atom A ∈M+ exists a clause A← A1, . . . , An

in ground(P+
cf ) with Ai ∈ M+ and l(A) > l(Ai) for all i = 1, . . . , n. This level mapping

exists also for the corresponding scalar clauses in Pcf thus for clauses in ground(P ).
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Conversely, if M is a scalar model for P which satisfies the given condition for some mapping
l : BP → α, then we can show by induction on l(A) that A ∈ M with M(A) > 0 implies
M(A) = SP ↑ (l(A) + 1)(A).
If l(A) = 0 we have to show that A ∈ M with M(A) > 0 implies M(A) = SP ↑ 1(A).
If A ∈ M with M(A) > 0 then there exists a clause A

x←− A1, . . . , An ∈ ground(P ) with
M(A) = x×min{M(Ai) | i = 1, . . . , n} and l(A) > l(Ai) for all i = 1, . . . , n, according to
the hypothesis. Since l(A) = 0 and there is no ordinal less than 0, this clause has to be a
fact and M(A) = x. This implies directly that M(A) = SP ↑ 1(A).
Suppose for all i = 1, . . . , n that l(Ai) = ki and Ai ∈M with M(Ai) > 0 implies M(Ai) =
SP ↑ (ki + 1)(Ai). Let l(A) = k + 1, then we have to show that A ∈ M with M(A) > 0
implies M(A) = SP ↑ ((k + 1) + 1)(A). If A ∈ M with M(A) > 0 then there exists
a clause A

x←− A1, . . . , An ∈ ground(P ) with M(A) = x × min{M(Ai) | i = 1, . . . , n}
and l(A) > l(Ai) for all i = 1, . . . , n according to the condition. If l(A) > l(Ai) for all
i = 1, . . . , n then l(Ai) ≤ k and M(Ai) = SP ↑ (k + 1)(A). Consequently, the M(Ai) will
not grow further and the calculation of the next step of SP , i.e. SP ↑ ((k + 1) + 1), leads
to M(A) = x×min{M(Ai) | i = 1, . . . , n} = SP ↑ ((k + 1) + 1)(A). �

3.2.3 Example Recalling the program from Example 3.1.24, we obtain the following level
mapping: l(q) = l(r) = l(z) = 0, l(w) = 1 and l(p) = 2. Furthermore, we can see that if
we take Pcf and obtain P+

cf by cancelling all factors then the application of T+
P results in

M+ = {p, q, r, w, z}.

As we can see, the clause p
1←− w, r is the only clause in Pcf with p as the head. The

interesting thing is that the level is no longer equivalent to the least number k such that
M(p) = SP ↑ (k + 1)(p) because in this example we can see that M(p) = SP ↑ (1 + 1) but
l(p) = 2.
We can formulate a similar result for definite quantitative programs using the result for
scalar programs.

3.2.4 Theorem Let P be a definite quantitative program. Then there is a unique quanti-
tative model M of P , consisting of pairs (A, M(A)), A ∈ BP , M(A) ⊆ [0, 1] for which there
exist two total level mappings l1, l2 : BP → α such that for each A with M↓(A) > 0 exists

a clause A
[x,y]←− A1, . . . , An in ground(P ) with M↓(A) = x × min{M↓(Ai) | i = 1, . . . , n}

and l1(A) > l1(Ai) for all i = 1, . . . , n, and a clause A
[u,v]←− C1, . . . , Cp in ground(P ) with

M↑(A) = v ×min{M↑(Ah) | h = 1, . . . , p} and l2(A) > l2(Ch) for all h = 1, . . . , p. Further-
more, M is the least quantitative model of P .

Proof: Let M be the least quantitative model of P then M = MP = TP ↑ ω and M(A) =
TP ↑ ω(A) for each A ∈ BP . Then TP ↑ ω(A) = [SP↓ ↑ ω(A), SP↑ ↑ ω(A)] for each A ∈ BP

by Theorem 3.1.19 and M(A) = [M↓(A), M↑(A)] for each A ∈ BP . Then M↓ = SP↓ ↑ ω
and M↑ = SP↑ ↑ ω, i.e. M↓ is the least scalar model of P↓ and M↑ is the least scalar model
of P↑. Thus we can apply Theorem 3.2.2 to P↓ and P↑ and obtain exactly the two desired
level mappings for clauses in ground(P↓), respectively ground(P↑). If we add the missing
components again to the clauses in ground(P↓) and ground(P↑) then we obtain the clauses
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in ground(P ) and the level mappings exist also for them thus for M as the least quantitative
model of P .
Conversely, let M be a quantitative model of P which satisfies the given condition for
some mappings l1, l2. Then we can divide the definite quantitative program P and obtain
two scalar programs P↓, P↑. The quantitative model M of P can also be divided into
M↓ and M↑ so that M↓ is a model of P↓ and M↑ is a model of P↑. M↓ consists of pairs
(A, M↓(A)) and M↑ consists of pairs (A, M↑(A)) with M↓, M↑ ∈ [0, 1]. We can also divide

the clauses A
[x,y]←− A1, . . . , An and A

[u,v]←− C1, . . . , Cp and conclude that there exist clauses

A
x←− A1, . . . , An in ground(P↓) and A

v←− C1, . . . , Cp in ground(P↑). Now we have two
scalar quantitative programs P↓, P↑ and for each one a scalar quantitative model and a
total level mapping which satisfies the conditions. We can apply Theorem 3.2.2 to each
scalar program and thereby conclude that M↓ is the least scalar model of P↓ and M↑ is
the least scalar model for P↑, i.e. M↓(A) = SP↓ ↑ ω(A) and M↑(A) = SP↑ ↑ ω(A) for each
A ∈ BP . Then by Theorem 3.1.19 M(A) = TP ↑ ω(A) = [SP↓ ↑ ω(A), SP↓ ↑ ω(A)] for all
A ∈ BP hence M is the least quantitative model. �

3.2.5 Example Recall the program from Example 3.1.29. We obtain the following two
level mappings. l1(a) = 0, l1(b) = 2 and l1(c) = 1 and l2(a) = 0, l2(b) = 1 and l2(c) = 2.

The question might arise, whether it is possible to combine the two level mappings, so
that we can compare the result more easily with all the other level mappings proposed for
many logic programming semantics. If we take a closer look at the simple example above,
it seems to be a bit difficult. By l1(b) = 2, l2(b) = 1, l1(c) = 1 and l2(c) = 2 it becomes
obvious that the dependencies are different for each level mapping as l1(b) < l1(c) and
l2(b) > l2(c) which is in general caused by the two scalar operators which are independent
from each other. It is therefore not surprising that any attempt to combine these two level
mappings results in a loss of structure, i.e. the dependencies become invisible, no matter
if we use the maximum, the minimum, the sum or anything similar.
We end this section with a proposal for (normal) quantitative programs, i.e. including
negation, and start therefore by recalling the qualitative version due to Fages [1].

3.2.6 Theorem Let P be normal. Then a two-valued model M ⊆ BP of P is a stable
model of P if and only if there exists a (total) level mapping l : BP → α such that for each
A ∈ M there exists a clause A ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P ) with Ai ∈ M ,
Bj 6∈M and l(A) > l(Ai) for all i = 1, . . . , n and j = 1, . . . ,m.

We now take Theorem 3.2.4 and can extend the level mapping for definite quantitative
programs in a similar way to quantitative programs including negation.

3.2.7 Theorem Let P be a (normal) quantitative logic program. Then a quantitative
model M of P consisting of pairs (A, M(A)), A ∈ BP , M(A) ⊆ [0, 1] is a quantitative
stable model of P if and only if there exist two total level mappings l1, l2 : BP → α

such that for each A with M↓(A) > 0 exists a clause A
[x,y]←− A1, . . . , An,¬B1, . . . ,¬Bm in

ground(P ) with M↓(A) = x × min({M↓(Ai) | i = 1, . . . , n} ∪ {M↓(¬Bj) | j = 1, . . . ,m})
and l1(A) > l1(Ai), for all i = 1, . . . , n, and a clause A

[u,v]←− C1, . . . , Cp,¬D1, . . . ,¬Dq in

20



ground(P ) with M↑(A) = v × min({M↑(Ch) | h = 1, . . . , p} ∪ {M↑(¬Dg) | g = 1, . . . , q})
and l2(A) > l2(Ch) for all h = 1, . . . , p.

Proof: Let M be a quantitative stable model of P , i.e. TP/M ↑ ω = M . Then M is
the least quantitative model for P/M and also a model for P according Theorem 3.1.35.
P/M is an extended quantitative program and therefore a definite quantitative program.
If P/M is a definite quantitative program and M the least quantitative model of P/M
we can apply Theorem 3.2.4 and so there exist two level mappings such that for each

A with M↓(A) > 0 exists a clause A
[x,y]←− A1, . . . , An, An+1 . . . , Am in ground(P/M) with

M↓(A) = x × min{M↓(Af ) | f = 1, . . . ,m} and l1(A) > l1(Af ) for all f = 1, . . . ,m, and

a clause A
[u,v]←− C1, . . . , Cp, Cp+1, . . . , Cq in ground(P/M) with M↑(A) = v × min{M↑(Cz) |

z = 1, . . . , q} and l2(A) > l2(Cz) for all z = 1, . . . , q. Note that the levels of the intervals
An+1, . . . , Am, Cp+1, . . . , Cq do not matter and are therefore considered to be 0. Then we
can conclude directly l1(A) > l1(Ai) and l2(A) > l2(Ch) for all i = 1, . . . , n and all h =
1, . . . , p. Furthermore, the intervals in these clauses represented by the Af and Cz for
f = n + 1, . . . ,m and z = p + 1, . . . , q are equal to M↓(¬Bj)}, respectively M↑(¬Dg)} and
M↓(A) = x × min({M↓(Ai) | i = 1, . . . , n} ∪ {M↓(¬Bj) | j = 1, . . . ,m}) and M↑(A) =
v ×min({M↑(Ch) | h = 1, . . . , p} ∪ {M↑(¬Dg) | g = 1, . . . , q}).
Conversely, let M be a model which satisfies the required condition. Then for every
A ∈ BP there exist two total level mappings l1, l2 : BP → α such that for each A

with M↓(A) > 0 exists a clause A
[x,y]←− A1, . . . , An,¬B1, . . . ,¬Bm in ground(P ) with

M↓(A) = x × min({M↓(Ai) | i = 1, . . . , n} ∪ {M↓(¬Bj) | j = 1, . . . ,m}) and l1(A) >

l1(Ai) for all i = 1, . . . , n, and a clause A
[u,v]←− C1, . . . , Cp,¬D1, . . . ,¬Dq in ground(P )

with M↑(A) = v × min({M↑(Ch) | h = 1, . . . , p} ∪ {M↑(¬Dg) | g = 1, . . . q}) and
l2(A) > l2(Ch) for all h = 1, . . . , p. But then, for every A ∈ BP , there are also clauses

A
[x,y]←− A1, . . . , An, An+1, . . . , Am and A

[u,v]←− C1, . . . , Cp, Cp+1, . . . , Cq in ground(P/M)
with l1(A) > l1(Af ) and l2(A) > l2(Cz) for all f = 1, . . . ,m and z = 1, . . . , q and
M↓(A) = x × min{M↓(Af ) | f = 1, . . . ,m} and M↑(A) = v × min{M↑(Cz) | z = 1, . . . , q}
where the levels of intervals An+1, . . . , Am, Cp+1, . . . , Cq do not matter and are therefore
considered to be 0. By Theorem 3.2.4, M is the least model for P/M , i.e. M = TP/M ↑ ω,
and therefore a quantitative stable model of P . �

3.2.8 Example Recalling the program of Example 3.1.36, we obtain the following two
level mappings. l1(a) = l2(a) = 0, l1(b) = l2(b) = 1 and l1(c) = l2(c) = 0.

If a quantitative program P consists of clauses such that for each clause the lower compo-
nent equals the upper component then we can substitute the intervals in all clauses by the
lower component and obtain a (normal) scalar program.

3.2.9 Corollary Let P be a (normal) scalar logic program. Then a scalar model M of
P consisting of pairs (A, M(A)), A ∈ BP , M(A) ∈ [0, 1] is a scalar stable model of P
if and only if there exists a total level mapping l : BP → α such that for each A with
M(A) > 0 exists a clause A

x←− A1, . . . , An,¬B1, . . . ,¬Bm in ground(P ) with M(A) =
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x × min({M(Ai) | i = 1, . . . n} ∪ {M(¬Bj) | j = 1, . . . ,m}) and l1(A) > l1(Ai), for all
i = 1, . . . , n.

This result is an immidiate consequence of the proof of Theorem 3.2.7 where the two level
mappings are just equal.
We will now conclude the section with another example to emphasize that these results
are really applicable in the case of programs with an infinite Herbrand base.

3.2.10 Example Let P be the program

p(a)
[0.7,0.8]←−

p(s(X))
[1,1]←− ¬p(X)

and M = {(p(sn(a)), [0.7, 0.8]) | n ≥ 0 and n even } ∪ {(p(sn(a)), [0.2, 0.3]) | n ≥ 0 and n
uneven}. We consequently obtain the level mappings l1(p(sn(a))) = l2(p(sn(a))) = 0 for all
natural numbers n.
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4 Disjunctive logic programming

4.1 Semantics of disjunctive programs

Now we turn to disjunctive logic programs, restricted in this section to the qualitative case.
We thereby follow the structure of the previous section und start by recalling the concepts
which are also used for disjunctive programs. We usually distinguish between disjunctive
programs Π and (normal) programs P .
The Herbrand base BΠ and ground(Π) of a disjunctive logic program Π are defined in the
same way as for a quantitative program and have the same properties. As already stated
for qualitative logic programs a (Herbrand) interpretation I is a subset of BΠ consisting
only of those atoms A ∈ BΠ which are mapped to true. The body of a disjunctive clause of
the form H1∨· · ·∨Hl ← A1, . . . , An,¬B1, . . . ,¬Bm is evaluated to true in an interpretation
I if and only if, for all i = 1, . . . , n and all j = 1, . . . ,m, all Ai are true in I and all Bj are
false in I. The whole clause H1 ∨ · · · ∨Hl ← body is true in I if and only if body is false
or body and at least one Hk, 1 ≤ k ≤ l, are true in I.
Like in section 3, for any disjunctive program Π the interpretation I is a (Herbrand) model
M of Π if every clause in ground(Π) is true in I. But there are different opinions about
the intended meaning of a disjunction in the head of a clause. Most widely preferred is the
approach proposed by Minker [11] where in a model for a clause H1 ∨ · · · ∨Hl ← body the
disjunction should be exlcusive, i.e. as few as possible of the Hk, for k = 1, . . . , l, should
be true. This concept is therefore called minimal model semantics and we will recall it in
the following, restricted to definite disjunctive programs.

4.1.1 Definition Given a definite disjunctive program Π, a model I of Π is a minimal
model if there is no model I1 of Π with I1 ⊂ I. The set of all minimal models of Π is
denoted byMMΠ.

If there is one unique minimal model it corresponds to the known least Herbrand model.
Such defined minimal models have an important property and we will show this property
in the following.

4.1.2 Theorem If M is a minimal model of a definite disjunctive program Π then for
each A ∈M exists a clause A∨H1 ∨ · · · ∨Hl ← A1, . . . , An in ground(Π) with Ai ∈M and
Hk 6∈M for all i = 1, . . . , n and all k = 1, . . . , l.

Proof: If M is a minimal model then any A ∈M has to occur somewhere in the program,
i.e. in ground(Π). Suppose A occurs only in the bodies of some clauses. Then these clauses
are also true in a model M1 = M\{A} and M is no minimal model in contradiction to
the hypothesis. So A has to occur in the head of at least one clause A ∨H1 ∨ · · · ∨Hk ←
A1, . . . , An. If one of the Ai , i = 1, . . . , n, in each of these clauses is false in M then M1

is again a model for these clauses leading to the same contradiction, so all Ai have to be
true in M for at least one such clause. Suppose there is no such clause with A as the only
true atom in the head, i.e. at least one Hk, for 1 ≤ k ≤ l, is true. But then A does not
need not to be true to make these clauses true, i.e. there exists again a model M1 of Π
with M1 = M\{A} and M1 ⊂ M , so M is no minimal model which is a contradiction to
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the hypothesis. �

The opposite does in general not hold: If Π is the simple program a∨ b← a and M = {a}
a model of Π then the condition is satisfied but M is obviously not a minimal model of Π.

4.1.3 Example Let Π be the following program:

a ∨ b ←
b ∨ c ←

We obtain MMΠ = {{a, c}, {b}}, so there is no least model of Π. By Definition 4.1.2 it
is now easy to see that neither {a, b} nor {b, c} can be minimal models of Π, also because
{b} is a subset of each of them.

We now want to apply the minimal model semantics also to disjunctive programs including
negation and introduce the disjunctive stable model semantics proposed by Przymusinski
[14].

4.1.4 Definition Let Π be a (normal) disjunctive program. A model I of Π is a disjunctive
stable model if it coincides with a minimal model of the definite disjunctive program Π/I.
The set of all stable models of Π is denoted by ST Π.

Of course, Π/I is obtained by cancelling all negative literals in the way we mentioned in
the section before. There is also a comparable result of Theorem 4.1.2 for disjunctive logic
programs:

4.1.5 Theorem If Π is a disjunctive program and M a disjunctive stable model of Π then
for each A ∈M exists a clause A∨H1∨· · ·∨Hl ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
with Ai ∈M and Bj, Hk 6∈M for all i = 1, . . . , n, all j = 1, . . . ,m and all k = 1, . . . , l.

Proof: If M is a disjunctive stable model of Π, then M is also a minimal model of the
definite disjunctive program Π/M by Definition 4.1.4 and for each A ∈ M exists a clause
A ∨ H1 ∨ · · · ∨ Hl ← A1, . . . , An in ground(Π/M) with Ai ∈ M and Hk 6∈ M for all
i = 1, . . . , n and all k = 1, . . . , l, by Theorem 4.1.2. If A∨H1∨· · ·∨Hl ← A1, . . . , An occur
in Π/M all Bj have to be false since otherwise we would have cancelled the whole clause
in Π/M and not only the Bj. �

Again, the opposite does not hold since a definite disjunctive program is also a disjunctive
one, so that the little example above is also a counterexample in this case.

4.1.6 Example Let Π be the following disjunctive program:

a ∨ b ←
b ← a

c ← ¬a
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We obtain ST Π = {{b, c}} as the set of all disjunctive stable models of Π. Note that a
occurs only in the head of the first clause so that a and b cannot be in the same disjunctive
stable model. Together with the fact that c occurs only in the third clause so that a and
c cannot be in the same disjunctive stable model either, this is a helpful restriction to the
search space for possible disjunctive stable models.

If we follow the structure of the previous section then we have to define a monotonic and
continuous operator for disjunctive programs with a least fixed point like it has been done
for example by Minker and Rajasekar in [12], but we choose another way. We will try to
separate the information given in the disjunctions and then use the well known operator
T+

P for definite programs1, respectively the stable model semantics [3]. Therefore, we recall
at first the properties of the operator T+

P for definite logic programs from [6]. The operator
T+

P maps interpretations, i.e. subsets of BP , to interpretations and is monotonic on the set
of all subsets of BP , with respect to subset inclusion. It is Scott-continuous [8] and achieves
its least fixed point as the supremum of the iterates T+

P ↑ n. So M = lfp(T+
P ) = T+

P ↑ ω is
the least two-valued model of a definite program P .
Now the notion of a normal derivative is introduced, which is in general taken from [4]
where it has also been used in the context of disjunctive logic programs and offers a way to
split the disjunctive information contained in disjunctive programs. We only have to make
an aditional restriction and change some notions.

4.1.7 Definition Suppose that Π is a disjunctive logic program.
A normal derivative P of Π is defined to be a (ground) normal logic program P consisting
of possibly infinitely many clauses which satisfies the following conditions.
(a) For every clause H ← body in Π exists exactly one clause A← body in P such that A
belongs to H.
(b) For every clause A← body in P there is a clause H ← body in Π such that A belongs
to H.
The set of all normal derivatives {P1, . . . , Pn} of Π is denoted SΠ.

So we obtain a set of normal logic programs, respectively definite logic programs if there are
no negative literals in Π, and we can apply the stable model semantics to these programs,
respectively the operator T+

P .
Now we only need a connection between the minimal model semantics, the disjunctive
stable model semantics respectively, and these normal derivatives to use this concept when
defining level mappings for different disjunctive logic programs.

4.1.8 Lemma If M is a model of a normal derivative of a definite disjunctive program Π
then it is also a model for Π.

Proof: The definite normal derivative consists of clauses of the form A← A1, . . . , An. So if
M is a model for all of these clauses then we have to show that it also models the original
disjunctive clauses. We have to consider two cases:

1In [6], Hitzler and Wendt used this special notion of T+
P to distinguish between the operator TP for

normal logic programs and T+
P for definite programs. In our case, we distinguish between the operator TP

for definite quantitative programs and T+
P for definite qualitative programs.
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a) Suppose at least one Ai, 1 ≤ i ≤ n, is false in M then the whole body of the clause is
false in M and so it does not matter of which atoms the disjunctive head of the original
clause consists, the clause is always true in M .
b) If all Ai. i = 1, . . . , n, are true in M then the head A has also to be true in M since
M is a model of the normal derivative. Then the head of the original disjunctive clause
is also true in M , independently from the truth values of the other atoms in the original
disjunctive head. �

With the help of Lemma 4.1.8 we are now able to show the following theorem.

4.1.9 Theorem Let Π be a definite disjunctive program and M be a minimal model of
Π, i.e. M ∈MMΠ. Then there exists a corresponding normal derivative P ∈ SΠ for which
M is the least two-valued model.

Proof: If M is a minimal model of the definite disjunctive program Π then according to
Theorem 4.1.2 for each A ∈M exists a clause A∨H1∨ · · ·∨Hl ← A1, . . . , An in ground(Π)
with Ai ∈ M and Hk 6∈ M for all i = 1, . . . , n and all k = 1, . . . , l. If all the Hk are false
in M we can cancel them in each such clause without changing the semantics and obtain
definite clauses A ← A1, . . . , An which are also true in M . The set of normal derivatives
SΠ consists of all normal derivatives obtained from Π. So there has to exist at least one
normal derivative P where exactly these obtained clauses are included in ground(P ). For
the rest of the definite disjunctive clauses of ground(Π) consider the two cases:
a) If the disjunctive head is false in M then all atoms in the head are false in M and one
of the atoms in the body has to be false in M because M is a model of Π. So it does not
matter which atom in the head we select because the clause is still true in M .
b) If the disjunctive head is true in M then at least one atom in the head has to be true
and we choose just that normal derivative with an atom in the head of the clause which is
true in M , so that the resulting definite clause is also true in M .
So M is a model for P and we only have to show that it is the least model. Assume that
M is not the least model for P , i.e. there exists a model M1 of P with M1 ⊂ M . If M1 is
a model of a normal derivative then, by Lemma 4.1.8, it is also a model of Π and M is no
minimal model of Π and we conclude by contradiction that M is the least model of P . �

Note that the opposite does in general not hold, i.e. there may be least models of nor-
mal derivatives which are not contained in MMΠ. But with a certain restriction we can
formulate a statement which works in both directions.

4.1.10 Theorem Let Π be a definite disjunctive program. Then a model M of Π is min-
imal if and only if it is minimal in the set of the least models of all normal derivatives of
Π.

Proof: If M is a minimal model of Π then, by Theorem 4.1.9, there exists a corresponding
normal derivative for which M is the least model. Hence M is contained in the set of the
least models of all normal derivatives of Π. Assume there is a model M1 which is smaller
than M , i.e. M1 ⊂ M . Then, by Lemma 4.1.8, M1 is also a model for Π. But if M1 ⊂ M
is a model of Π then M is no minimal model of Π which contradicts the hypothesis.
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Conversely, suppose M is minimal in the set of the least models of all normal derivatives
of Π, i.e. M is a model of a normal derivative and there is no other least model in this set
which is smaller than M . According to Lemma 4.1.8, M is also a model of Π. If M is a
model of Π and not minimal then a model M1 has to exist which is smaller than M , i.e.
M1 ⊂M and M1 or a model which is even smaller than M1 has to be minimal. Then M1 or
the model smaller than M1 is also contained in the set of the least models as we just have
shown and M cannot be minimal in the set of the least models of all normal derivatives of
Π. By contradiction we conclude that M is a minimal model of Π. �

4.1.11 Example Recall the program from Example 4.1.3. The set of normal derivatives
SΠ consists of these four normal derivatives with the corresponding least models:

P1 : {a←, b←} MP1 = {a, b}
P2 : {b←, b←} MP2 = {b}
P3 : {a←, c←} MP3 = {a, c}
P4 : {b←, c←} MP4 = {b, c}

As already stated in Example 4.1.3,MMΠ consists of the two minimal models {a, c} and
{b}. So P3 is the corresponding normal derivative for {a, c} and P2 for {b} and the least
models of P1 and P4 are not equal to any minimal model of P , also because they are not
minimal in the set of all least models of the normal derivatives.

There is also a connection between normal derivatives and disjunctive stable models.

4.1.12 Theorem Let Π be a disjunctive program and M be a disjunctive stable model of
Π, i.e. M ∈ ST Π. Then there exists a corresponding normal derivative P ∈ SΠ for which
M is a stable model.

Proof: If M is a disjunctive stable model of Π then it is also a minimal model of the defi-
nite disjunctive program Π/M . Consequently, by Theorem 4.1.9, there is a corresponding
definite normal derivative P/M for which M is the least two-valued model, hence M is a
stable model for the corresponding program P . �

This is not true for the other direction, but we can formulate a similar weaker version as
we have done for the definite case.

4.1.13 Lemma If M is a stable model for a normal derivative of P then it is also a model
for Π.

Proof: The normal derivative consists of clauses A ← A1, . . . , An,¬B1, . . . ,¬Bm. So if
M is a model for all these clauses then we have to show that it also models the original
disjunctive clauses. We have to consider two cases:
a) Suppose at least one Ai is false in M or one Bj is true in I then the whole body of the
clause is false in M and so it does not matter of which atoms the disjunctive head of the
original clause consists, the clause is always true in M .
b) If all Ai are true in M and all Bj are false in M then the head A has also to be true in
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M since M is a model of the normal derivative. Then the head of the original disjunctive
clause is also true in M , independently from the truth values of the other atoms in the
original disjunctive head. �

The proof is very similar to the one for definite disjunctive programs but we are at present
not in the position to define also a connection for programs including negation that works
in both directions. The following example can be used as an example for that.

4.1.14 Example Recall the program Π from Example 4.1.6. The set of normal derivatives
SΠ consists of two normal derivatives with the following stable models:

P1 : {a←, b← a, c← ¬a} M = {a, b}
P2 : {b←, b← a, c← ¬a} M = {b, c}

Both stable models are minimal in the set of the models of all normal derivatives but
only {b, c} is a disjunctive stable model so that ST Π = {b, c} and P1 is the corresponding
normal derivative.

4.2 Level mappings for disjunctive programs

We want to apply level mappings to disjunctive programs by means of the level map-
ping characterization for definite programs and we restrict at first to definite disjunctive
programs.

4.2.1 Theorem Let Π be a definite disjunctive program. Then a model M of Π is a
minimal model of Π if and only if there exists a total level mapping l : BΠ → α such that
for each A ∈M exists a clause A∨H1 ∨ · · · ∨Hl ← A1, . . . , An in ground(Π) with Ai ∈M ,
Hk 6∈M and l(A) > l(Ai) for all i = 1, . . . , n and all k = 1, . . . , l.

Proof: Let M be a minimal model of Π. Then, by Theorem 4.1.2, for each A ∈ M exists
a clause A ∨ H1 ∨ · · · ∨ Hl ← A1, . . . , An in ground(Π) with Ai ∈ M and Hk 6∈ M for all
i = 1, . . . , n and all k = 1, . . . , l. Furthermore, by Theorem 4.1.9, there exists a normal
derivative P ∈ SΠ for which M is the least two-valued model. Because all the Hk are false
in these clauses for each A ∈ M the clause A ← A1, . . . , An has to occur in ground(P ).
So we now have for each A ∈ M a clause A ∨ H1 ∨ · · · ∨ Hl ← A1, . . . , An in ground(Π)
and a clause A ← A1, . . . , An in ground(P ) with Ai ∈ M and Hk 6∈ M for all i = 1, . . . , n
and all k = 1, . . . , l and M is the least model of P and a minimal model of Π. If M is the
least model for the definite program P then, by Theorem 3.2.1, there exists a (total) level
mapping l : BP → α such that for each atom A ∈ M exists a clause A ← A1, . . . , An in
ground(P ) with Ai ∈ M and l(A) > l(Ai) for all i = 1, . . . , n and a corresponding clause
A ∨H1 ∨ · · · ∨Hl ← A1, . . . , An in ground(Π) with Ai ∈ M , Hk 6∈ M and l(A) > l(Ai) for
all i = 1, . . . , n and all k = 1, . . . , l.
Conversely, let M be a model of Π that satisfies the given condition then we have to show
that M is also a minimal model of Π. Assume that there is a model M1 of Π with M1 ⊂M .
Therefore, we show by induction on l(A) that there is no A ∈M which is not in M1.
Suppose l(A) = 0. Then according to the condition there exists a clause A∨H1∨· · ·∨Hl ←
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A1, . . . , An in ground(Π) with Ai ∈ M , Hl 6∈ M and l(A) > l(Ai) for all i = 1, . . . , n and
all k = 1, . . . , l. Because l(A) = 0 and there is no ordinal smaller than 0 this clause has to
be the fact A∨H1∨ · · · ∨Hk ←. If M1 ⊂M then all Hk also have to be false in M1. Hence
A has to be true in M1 since otherwise M1 would be no model of Π.
Suppose for all Ai ∈M with l(Ai) ≤ k, i = 1, . . . , n, that they are contained in M1 and let
l(A) be k + 1.
Then according to the hypothesis there exists a clause A ∨H1 ∨ · · · ∨Hl ← A1, . . . , An in
ground(Π) with Ai ∈M , Hl 6∈M and l(A) > l(Ai) for all i = 1, . . . , n and all k = 1, . . . , l.
Again, all Hk, k = 1, . . . , l, have to be false in M1 because otherwise M1 could be smaller
than M . So A has to be true also in M1 since all Ai, i = 1, . . . , n, are true in M1.
Altogether, there is no smaller model of Π than M , so it is a minimal model of Π. �

4.2.2 Example Consider the definite disjunctive program Π:

a ∨ b ←
c ←

a ∨ e ← c

d ← e

Then we can obtain four normal derivatives each one with a least model:

P1 = {a←, c←, a← c, d← e} MP1 = {a, c}
P2 = {b←, c←, a← c, d← e} MP2 = {a, b, c}
P3 = {a←, c←, e← c, d← e} MP3 = {a, c, d, e}
P4 = {b←, c←, e← c, d← e} MP4 = {b, c, d, e}

MP1 is a subset of MP2 and MP3 so that these two least models cannot be minimal models
of Π. So we obtain MMΠ = {{a, c}, {b, c, d, e}} and the level mappings l(a) = l(b) =
l(c) = l(d) = l(e) = 0 for {a, c} and l(a) = l(b) = l(c) = 0, l(e) = 1 and l(d) = 2 for
{b, c, d, e}.

Like in the non-disjunctive and the quantitative case, there is also a result for disjunctive
programs containing negation.

4.2.3 Theorem Let Π be a disjunctive program. Then a model M of Π is a disjunctive
stable model of Π if and only if there exists a total level mapping l : BΠ → α such that for
each A ∈ M exists a clause A ∨ H1 ∨ · · · ∨ Hl ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
with Ai ∈ M , Bj, Hl 6∈ M and l(A) > l(Ai) for all i = 1, . . . , n, all j = 1, . . . ,m and all
k = 1, . . . , l.

Proof: Let M be a disjunctive stable model of Π. Then, by Definition 4.1.4, M is a
minimal model of the definite disjunctive program Π/M . According to Theorem 4.2.1,
there exists a total level mapping l : BΠ → α such that for each A ∈ M exists a clause
A ∨H1 ∨ · · · ∨Hl ← A1, . . . , An in ground(Π/M) with Ai ∈ M , Hl 6∈ M and l(A) > l(Ai)
for all i = 1, . . . , n and all k = 1, . . . , l. All Bj, j = 1, . . . ,m, in each such original
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disjunctive clause have to be false in M because otherwise these clauses could not occur in
ground(Π/M) - they would have been cancelled completely. So there exists for each A ∈M
such a clause A ∨ H1 ∨ · · · ∨ Hl ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) satisfying the
condition.
Conversely, let M be a model of Π which satisfies the given condition. Then there exists a
total level mapping l : BΠ → α such that for each A ∈M exists a clause A∨H1∨· · ·∨Hl ←
A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) with Ai ∈M , Bj, Hl 6∈M and l(A) > l(Ai) for all
i = 1, . . . , n, all j = 1, . . . ,m and all k = 1, . . . , l. If all Bj in these clauses are false then
there exists also a total level mapping l : BΠ → α such that for each A ∈M exists a clause
A ∨H1 ∨ · · · ∨Hl ← A1, . . . , An in ground(Π/M) with Ai ∈ M , Hl 6∈ M and l(A) > l(Ai)
for all i = 1, . . . , n and all k = 1, . . . , l. Then M is a minimal model of Π/M by Theorem
4.2.1 and therefore a disjunctive stable model of Π by Definition 4.1.4. �

We conclude this section with an example of level mappings for disjunctive programs.

4.2.4 Example Let Π be the following disjunctive program:

a ∨ b ← ¬c

c ← ¬a,¬b

d ∨ e ← a

f ← d,¬e

We obtain the following four normal derivatives and for each program one or more stable
models:

P1 = {a← ¬c, c← ¬a ∧ ¬b, d← a, f ← d ∧ ¬e} MP1 = {{c}, {a, d, f}}
P2 = {a← ¬c, c← ¬a ∧ ¬b, e← a, f ← d ∧ ¬e} MP2 = {{b}, {a, e}}
P3 = {b← ¬c, c← ¬a ∧ ¬b, d← a, f ← d ∧ ¬e} MP3 = {b}
P4 = {b← ¬c, c← ¬a ∧ ¬b, e← a, f ← d ∧ ¬e} MP4 = {b}

Surprisingly all these models are disjunctive stable models and the level mappings are
l(a) = l(b) = l(c) = l(d) = l(e) = l(f) = 0 for {b} and {c}, l(a) = l(b) = l(c) = l(e) = 0,
l(d) = 1 and l(f) = 2 for {a, d, f} and l(a) = l(b) = l(c) = l(d) = l(f) = 0 and l(e) = 1 for
{a, e}.
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5 Quantitative disjunctive logic programming

5.1 Semantics of quantitative disjunctive programs

In this section we want to combine the results of the last two sections, i.e. we will deal with
quantitative disjunctive logic programs. In section 3 we detected that quantitative pro-
grams are just the combination of two scalar programs and that all results for quantitative
programs can easily be obtained from the results for scalar programs. In order to make the
following section more readable we restrict quantitative disjunctive programs to the special
case of scalar disjunctive programs. So the following section deals with scalar disjunctive
logic programs as an extension of scalar programs defined in section 3, i.e. quantitative
disjunctive logic programs where the intervals are substituted by factors.
Since we have already defined a lot of notions and properties for scalar and disjunctive
programs, most of them need only to be recalled. We use the notion Π for any disjunctive
program and the Herbrand base BΠ and ground(Π) remain unchanged. We again consider
scalar interpretations which map elements of BΠ to factors written as sets of pairs (A, I(A))
for each A ∈ BP .

5.1.1 Definition Let Π be a (normal) scalar disjunctive program and I an interpretation
for Π then I(¬A) = 1− I(A).

Now we can define when a scalar quantitative clause is true.

5.1.2 Definition A scalar disjunctive clause H1 ∨ · · · ∨Hl
x←− A1, . . . , An,¬B1, . . . ,¬Bm

is evaluated to true in an interpretation I if and only if

max{I(Hk) | k = 1, . . . , l} ≥ x×min({I(Ai) | i = 1, . . . , n} ∪ {I(¬Bj) | j = 1, . . . ,m}

where min ∅ is set to 1.

This is a specialization of the definition for T -norms taken from [10]. A model of a program
is an interpretation which makes all the clauses of the program true and we call it a scalar
disjunctive model if the program is a scalar disjunctive program. Now we will follow the
same structure as in the previous section and define a semantics for scalar disjunctive
programs which follows the same concept of minimality as in section 4 and it is called
scalar minimal model semantics.

5.1.3 Definition Given a (definite) scalar disjunctive program Π a model I of Π is a
scalar minimal model if there is no model I1 of Π with I1 < I, i.e. for all A ∈ I holds not
I(A) > I1(A). The set of scalar minimal models of Π is denoted by SMMΠ.

The relation v, respectively < as a special case, can be found in Definition 3.1.6. If there is
only one element in SMMΠ then this is the known least scalar model. Like in the previous
section, there is a property of these minimal models which will be important later on.

5.1.4 Theorem If M is a scalar minimal model of a scalar disjunctive program Π then for
each A ∈M with M(A) > 0 exists a clause A∨H1 ∨ · · · ∨Hl

x←− A1, . . . , An in ground(Π)
with M(A) = x×min{M(Ai) | i = 1, . . . , n} and M(A) > M(Hk) for all k = 1, . . . , l.
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Proof: If M is a model of Π then any clause in ground(Π) is true in M . If M(A) > 0 for some
A then A has to occur somewhere in the program, i.e. in ground(Π). Suppose A occurs only
in the bodies of some clauses. Then these clauses are also true in a model M1 with M1(A) =
0 and M1(B) = M(B) for all other B ∈ BP and M is not minimal. So A has to occur in the
head of at least one clause A∨H1∨· · ·∨Hl

x←− A1, . . . , An. If for each such clause M(Hk) >
M(A) for some k, 1 ≤ k ≤ l, then M1 is also a model for Π and M is not minimal. So there
is at least one such clause with M(A) > M(Hk) for all k = 1, . . . , l. By Definition 5.1.2, the
maximal value M(H) among all atoms H in the head of such a clause, i.e. M(A), satisfies
the following property: M(A) ≥ x×min{M(Ai) | i = 1, . . . , n}. There is a maximum among
all these values x × min{M(Ai) | i = 1, . . . , n} which satisifies the property for each such
clause, so M(A) ≥ max{x × min{I(Ai) | i = 1, . . . , n} | A ∨H1 ∨ · · · ∨Hl

x←− A1, . . . , An

in ground(Π) with M(A) = x × min{M(Ai) | i = 1, . . . , n} and M(A) > M(Hk) for all
k = 1, . . . , l}. If M(A) > max{x × min{I(Ai) | i = 1, . . . , n}} then there is a model M1

with M1(A) < M(A) such that M1(A) ≥ max{x × min{I(Ai) | i = 1, . . . , n}} for all such
clauses and M is not minimal which contradicts the hypothesis. Hence there is at least one
clause with M(A) = x×min{M(Ai) | i = 1, . . . , n}. �

5.1.5 Example Let P be the following scalar disjunctive program.

p ∨ q
0.8←−

r
0.9←−

p
0.6←− r

w
0.6←− q

w
0.7←− p, r

The set of scalar minimal models consists of two models
M1 = {(p, 0.8), (q, 0), (r, 0.9), (w, 0.72)} and M2 = {(p, 0.54), (q, 0.8), (r, 0.9), (w, 0.54)}. We
can see that in model M2 to both atoms in the head of the only real disjunctive clause is
assigned a value greater 0.

There is a quantitative analogue to the disjunctive stable model semantics proposed by
Mateis [10] and we specialize it to scalar programs.

5.1.6 Definition Let Π be a (normal) scalar disjunctive program. A model I of Π is a
scalar disjunctive stable model if it coincides with a scalar minimal model of the (definite)
scalar disjunctive program Π/I. The set of all scalar stable models of Π is denoted by
SST Π.

5.1.7 Example The (normal) scalar disjunctive program consists of the following clauses.

a ∨ b
0.7←−

c
0.8←− ¬a, d

d
0.9←−

e
0.1←− ¬d, c
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The set of scalar disjunctive stable models consists of the following two disjunctive stable
models. The two models are M1 = {(a, 0), (b, 0.7), (c, 0.72), (d, 0.9), (e, 0.1)} and M2 =
{(a, 0.7), (b, 0), (c, 0.56), (d, 0.9), (e, 0.1)}.

The definition of normal derivatives is also applicable to scalar disjunctive programs so that
we obtain a set of scalar disjunctive programs SΠ and we can apply the operator SP to
these programs. Therefore, we also need a connection between scalar disjunctive programs
and the normal derivatives.

5.1.8 Lemma If M is a model of a normal derivative P of a (definite) scalar disjunctive
program Π then it is also a model for Π.

Proof: The scalar normal derivative consists of clauses of the form A
x←− A1, . . . , An. If

M is a model for these clauses then we have to show that it also models the original scalar
disjunctive clauses. We consider two cases:
a) Suppose M(Ai) = 0 for at least one Ai with i = 1, . . . , n, then min{I(Ai) | i =
1, . . . , n} = 0 and it does not matter of which atoms the disjunctive head of the origi-
nal clause consists, the clause is always true in M .
b) If M(Ai) > 0 for all i = 1, . . . , n then M(A) ≥ x×min{I(Ai) | i = 1, . . . , n} because M
is a model for P . But then also max{M(Hk) | k = 1, . . . , l} ≥ x×min{M(Ai) | i = 1, . . . , n}
for the original scalar disjunctive clause H1 ∨ · · · ∨Hl

x←− A1, . . . , An because A is one of
the Hk and max{M(Hk) | k = 1, . . . , l} ≥M(A). �

By means of this lemma the following theorem is easy to show.

5.1.9 Theorem Let Π be a scalar disjunctive program and M be a scalar minimal model
of Π, i.e. M ∈ SMMΠ. Then there exists a corresponding normal derivative P ∈ SΠ for
which M is the least scalar model.

Proof: If M is a minimal model of the scalar disjunctive program Π then according to
Theorem 5.1.4 for each A ∈ M with M(A) > 0 exists a clause A ∨ H1 ∨ · · · ∨ Hl

x←−
A1, . . . , An in ground(Π) with M(A) = x×min{M(Ai) | i = 1, . . . , n} and M(A) > M(Hk)
for all k = 1, . . . , l. If M(A) > M(Hk) then we can cancel all Hk in each such clause
and obtain scalar clauses A

x←− A1, . . . , An which are also true in M . The set of normal
derivatives SΠ consists of all normal derivatives obtained from Π. So there has to exist
at least one normal derivative P where exactly these obtained clauses are included in
ground(P ). For the rest of the scalar disjunctive clauses H1 ∨ · · · ∨ Hl

x←− A1, . . . , An

consider two cases:
a) If max{M(Hk) | k = 1, . . . , l} = 0 then M(Hk) = 0 for all k = 1, . . . , l and it does not
matter which Hk occur in P because x × min{M(Ai) | i = 1, . . . , n} has to be also 0 and
the clause in P is true in M .
b) If max{M(Hk) | k = 1, . . . , l} > 0 then there is at least one Hk, 1 ≤ k ≤ l with
M(Hk) = max{M(Hk) | k = 1, . . . , l}. Then there is a normal derivative in SΠ with one
such Hk in the head of this clause and the clause is true in M .
So M is a model for P and we only have to show that it is the least scalar model. Assume
there is a model M1 of P which is smaller than M , ie. M1 < M . If M1 is a model of P then
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it is also a model of Π by Lemma 5.1.8. Thus M is no scalar minimal model of Π which
contradicts the hypothesis and we conclude that M is the least model of P . �

5.2 Level mappings for quantitative disjunctive programs

We start again with that programs containing no negation, i.e. scalar disjunctive programs.

5.2.1 Theorem Let Π be a (definite) scalar disjunctive program. Then a model M of Π,
consisting of pairs (A, M(A)), A ∈ BΠ, M(A) ∈ [0, 1] is a scalar minimal model of Π if and
only if there exists a total level mapping l : BΠ → α such that for each A with M(A) > 0
exists a clause A∨H1∨· · ·∨Hl

x←− A1, . . . , An in ground(Π) with M(A) = x×min{M(Ai) |
i = 1, . . . , n}, M(A) > M(Hk) and l(A) > l(Ai) for all i = 1, . . . , n and all k = 1, . . . , l.

Proof: Let M be a scalar minimal model of Π. Then, by Theorem 5.1.4, for each A ∈ M
with M(A) > 0 exists a clause A∨H1∨· · ·∨Hl

x←− A1, . . . , An in ground(Π) with M(A) =
x × min{M(Ai) | i = 1, . . . , n} and M(A) > M(Hk) for all k = 1, . . . , l. Furthermore,
by Theorem 5.1.9, there exists a normal derivative P ∈ SΠ for which M is the least
scalar model. If M(A) = x × min{M(Ai) | i = 1, . . . , n} and M(A) > M(Hk) for all
k = 1, . . . , l in these clauses then A

x←− A1, . . . , An has to occur in ground(P ). So we
now have for each A ∈ M a clause A ∨H1 ∨ · · · ∨Hl

x←− A1, . . . , An in ground(Π) and a
clause A

x←− A1, . . . , An in ground(P ) with M(A) = x × min{M(Ai) | i = 1, . . . , n} and
M(A) > M(Hk) for all k = 1, . . . , l and M is the least scalar model of P and a minimal
model of Π. If M is the least scalar model for the scalar program P then, by Theorem
3.2.2, there exists a total level mapping l : BP → α such that for each A ∈ M exists a
clause A

x←− A1, . . . , An with M(A) = x×min{M(Ai) | i = 1, . . . , n} and l(A) > l(Ai) for
all i = 1, . . . , n and therefore a corresponding clause A ∨H1 ∨ · · · ∨Hl

x←− A1, . . . , An in
ground(Π) with M(A) = x×min{M(Ai) | i = 1, . . . , n}, M(A) > M(Hk) and l(A) > l(Ai)
for all i = 1, . . . , n and all k = 1, . . . , l.
Conversely, let M be a scalar model of Π which satisfies the given condition. Assume that
M1 < M and we show by induction on l(A) that M1 = M , i.e. there is no A ∈ M with
M(A) > M1(A).
Suppose l(A) = 0. Then according to the condition there exists a clause A∨H1∨· · ·∨Hl

x←−
A1, . . . , An in ground(Π) with M(A) = x × min{M(Ai) | i = 1, . . . , n}, M(A) > M(Hk)
and l(A) > l(Ai) for all i = 1, . . . , n and all k = 1, . . . , l. Since l(A) = 0 and there is no
ordinal smaller than 0 this clause has to be the fact A∨H1∨· · ·∨Hl

x←− and M(A) = x. If
M1 < M then M1(Hk) ≤ M(Hk) for all k = 1, . . . , l and by M(A) > M(Hk) we conclude
M(A) > M1(Hk) and x > M1(Hk) for all k = 1, . . . , l hence M1(A) = x by Definition 5.1.2.
Suppose for all Ai ∈ M with l(Ai) ≤ m that M(Ai) = M1(Ai) and let l(A) be m + 1.
Then according to the hypothesis there exists a clause A∨H1 ∨ · · · ∨Hl

x←− A1, . . . , An in
ground(Π) with M(A) = x×min{M(Ai) | i = 1, . . . , n}, M(A) > M(Hk) and l(A) > l(Ai)
for all i = 1, . . . , n and all k = 1, . . . , l. If M1 < M then M1(Hk) ≤ M(Hk) for all
k = 1, . . . , l and by M(A) > M(Hk) we conclude M(A) > M1(Hk) hence M1(Hk) <
x×min{M1(Ai) | i = 1, . . . , n} and M1(A) = x×min{M(Ai) | i = 1, . . . , n} by Definition
5.1.2. �
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5.2.2 Example Recall the program from Example 5.1.5 and the two minimal models. The
level mapping for M1 is the following: l(p) = l(q) = l(r) = 0 and l(w) = 1 and for M2 we
obtain l(q) = l(r) = 0 and l(p) = l(w) = 1.

The definition of level mappings for scalar disjunctive programs including negation follow
the same proceedings as in the previous sections. We apply a stable model semantics, obtain
a negation-free program and can apply the result of programs containing no negation.

5.2.3 Theorem Let Π be a (normal) scalar disjunctive program. Then a model M of Π,
consisting of pairs (A, M(A)), A ∈ BΠ, M(A) ∈ [0, 1] is a scalar disjunctive stable model
of Π if and only if there exists a total level mapping l : BΠ → α such that for each A with
M(A) > 0 exists a clause A ∨ H1 ∨ · · · ∨ Hl

x←− A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π)
with M(A) = x×min({M(Ai) | i = 1, . . . , n}∪{M(¬Bj) | j = 1, . . . ,m}), M(A) > M(Hk)
and l(A) > l(Ai) for all i = 1, . . . , n and all k = 1, . . . , l.

Proof: Let M be a scalar disjunctive stable model of Π. Then, by Definition 5.1.3 , M
is a scalar minimal model of the scalar disjunctive program Π/M . According to Theorem
5.2.1 there exists a total level mapping l : BΠ → α such that for each A with M(A) > 0
exists a clause A ∨ H1 ∨ · · · ∨ Hl

x←− A1, . . . , An, An+1, . . . , Am in ground(Π/M) with
M(A) = x × min{M(Aj) | j = 1, . . . ,m}, M(A) > M(Hk) and l(A) > l(Aj) for all
j = 1, . . . ,m and all k = 1, . . . , l. If l(A) > l(Aj) for all j = 1, . . . , n, n + 1, . . . ,m where
the l(An+1), . . . , l(Am) of the values are considered to be 0 then also l(A) > l(Ai) for all
i = 1, . . . , n. Furthermore, as the An+1, . . . , Am are real numbers representing the M(¬Bj),
we can conclude M(A) = x × min({M(Ai) | i = 1, . . . , n} ∪ {M(Aj) | j = n + 1, . . . ,m})
and M(A) = x×min({M(Ai) | i = 1, . . . , n} ∪ {M(¬Bj) | j = 1, . . . ,m})..
Conversely, let M be a model of Π which satisfies the given condition. Then there exists
a total level mapping l : BΠ → α such that for each A with M(A) > 0 exists a clause
A∨H1∨· · ·∨Hl

x←− A1, . . . , An,¬B1, . . . ,¬Bm in ground(Π) with M(A) = x×min({M(Ai) |
i = 1, . . . , n} ∪ {M(¬Bj) | j = 1, . . . ,m}), M(A) > M(Hk) and l(A) > l(Ai) for all
i = 1, . . . , n and all k = 1, . . . , l. If we substitute all Bj in each clause by the real numbers
M(¬Bj) then there exists also a total level mapping l : BΠ → α such that for each A with

M(A) > 0 exists a clause A ∨ H1 ∨ · · · ∨ Hl
x←− A1, . . . , An, An+1, . . . , Am in ground(Π)

with M(A) = x × min{M(Aj) | j = 1, . . . ,m}, M(A) > M(Hk) and l(A) > l(Aj) for
all j = 1, . . . ,m and all k = 1, . . . , l where the levels of the values An+1, . . . , Am equal 0.
Therefore, M is a scalar minimal model of Π/M by Theorem 5.2.1 and therefore a scalar
disjunctive stable model of Π by Definition 5.1.3. �

5.2.4 Example Recall the program from Example 5.1.7. The obtained level mappings are
the following: In both cases we get l(a) = l(b) = l(d) = 0, l(c) = 1 and l(e) = 2. Note that
the values M(e) and M(c) in particular depend on the values of negative literals but the
level mappings are only results of the dependencies between positive literals.
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6 Conclusions

We have characterized quantitative logic programs, disjunctive logic programs and quan-
titative disjunctive logic programs by means of level mappings and thereby enlarged the
applicability of these alternative characterizations for logic programming semantics from
[6]. But we have not covered all possible approaches in each case, so a lot of work still
needs to be done.
If we compare the proof of level mappings for definite programs [6] and for scalar programs,
i.e. quantitative programs based on van Emdens approach [15], then it becomes obvious
that the effort necessary to show the result for scalar programs is much higher although
both characterizations apart from some quantitative specialities are really similar. This is
due to the different behavior of the operators defined for definite programs, respectively
scalar programs. We can avoid the difficulties in case of quantitative programs by using
an operator which for example multiplies the values of all body atoms of a clause and
assigns the product to the atom in the head. A so defined operator represents another
special case of triangular norms and should be part of the further studies concerning level
mappings for quantitative programs where besides T -norms other quantitative operators
shall be discussed. The obtained characterization for quantitative programs using intervals
as uncertainty measures depends strongly on the characterization for scalar programs. In
fact, such a quantitative program consists of two scalar programs so that all results for scalar
programs are also applicable to quantitative programs. Further studies will reveal whether
this also holds for other operators so that we maybe can reject the idea of representing
uncertainty in logic programs by intervals altogether. By applying the quantitative stable
model semantics we have defined a level mapping characterization for (normal) quantitative
logic programs similar to the one defined for (normal) qualitative programs. In both cases
the levels depend only on positive literals; but in a quantitative interpretation the value
of an atom depends equally on the values of positive and negative literals while in the
qualitative case the negative literals have to be false in the corresponding model.
The concept of minimality is illustrated by the level mapping characterization for disjunc-
tive programs, respectively the minimal model semantics, because for each atom occuring
in a minimal model there is a clause in which only this atom is true in the head. Apart from
this disjunctive part there is no difference to the level mapping characterization for defi-
nite logic programs. Besides the level mapping characterization we have investigated some
restrictions to the search space of minimal models for a given disjunctive logic program
by means of normal derivatives. Further studies should include alternative approaches of
disjunctive programming semantics, for example the possible model semantics by Sakama
and Inoue [7] where also inclusive interpretations of disjunctions are possible.
We have combined quantitative logic programs and disjunctive logic programs to quan-
titative disjunctive logic programs and assigned level mapping characterizations to this
combinations of programs. Thereby, we have seen that the level mapping characterizations
for quantitative disjunctive programs are also just a combination of the characterizations
of the two basic programs. Further studies will have to show whether this property remains
valid when semantic approaches different from the ones used in this paper are applied.
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