
COMPLEXITY THEORY

Lecture 2: Turing Machines and Languages

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 21th Oct 2019

A Model for Computation

Clear
To understand computational problems we need to have a formal understanding of what
an algorithm is.

Example 2.1 (Hilbert’s Tenth Problem):
“Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To devise
a process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.”
(→ Wikipedia)

Question
How can we model the notion of an algorithm?

Answer
With Turing machines.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 2 of 26

Turing Machines

Let us fix a blank symbol �.

Definition 2.2: A (deterministic) Turing Machine M = 〈Q, Σ, Γ, δ, q0, qaccept, qreject〉
consists of

• a finite set Q of states,

• an input alphabet Σ not containing �,

• a tape alphabet Γ such that Γ ⊇ Σ ∪ { � }.
• a transition function δ : Q × Γ→ Q × Γ × { L, R }
• an initial state q0 ∈ Q,

• an accepting state qaccept ∈ Q, and

• an rejecting state qreject ∈ Q such that qaccept , qreject.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 3 of 26

Turing Machines

Example 2.3:

bba c �

q1

. . .

δ(q1, a) = (q2, b, L)

• The tape is bounded on the left, but unbounded on the right; the content of the tape
is a finite word over Γ, followed by an infinite sequence of �.

• The head of the machine is at exactly one position of the tape

• The head can read only one symbol at a time

• The head moves and writes according to the transition function δ; the current state
also changes accordingly

• The head will stay put when attempting to cross the left tape end

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 4 of 26

Configurations

Observation: to describe the current step of a computation of a TM it is enough to know

• the content of the tape,

• the current state, and

• the position of the head

Definition 2.4: A configuration of a TM M is a word uqv such that

• q ∈ Q,

• uv ∈ Γ∗

Some special configurations:

• The start configuration for some input word w ∈ Σ∗ is the configuration q0w

• A configuration uqv is accepting if q = qaccept.

• A configuration uqv is rejecting if q = qreject.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 5 of 26

Computation

We write

• C `M C′ only if C′ can be reached from C by one computation step ofM;

• C `∗M C′ only if C′ can be reached from C in a finite number of computation steps of
M.

We say thatM halts on input w if and only if there is a finite sequence of configurations

C0 `M C1 `M · · · `M C`

such that C0 is the start configuration ofM on input w and C` is an accepting or
rejecting configuration. OtherwiseM loops on input w.

We say thatM accepts the input w only ifM halts on input w with an accepting
configuration.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 6 of 26

Recognisability and Decidability

Definition 2.5: Let M be a Turing machine with input alphabet Σ. The language
accepted by M is the set

L(M) B {w ∈ Σ∗ | M accepts w }.

A language L ⊆ Σ∗ is called Turing-recognisable (recursively enumerable) if and
only if there exists a Turing machine M with input alphabet Σ such that L = L(M).
In this case we say that M recognises L.

A language L ⊆ Σ∗ is called Turing-decidable (decidable, recursive) if and only if
there exists a Turing machine M such that L = L(M) and M halts on every input.
In this case we say that M decides L.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 7 of 26

Example

Claim 2.6: The language L B { a2n | n ≥ 0 } is decidable.

Proof: A Turing machineM that decides L is

M B On input w, where w is a string

• Go from left to right over the tape and cross off every other a

• If in the first step the tape contained a single a, accept

• If in the first step the number of a’s on the tape was odd, reject

• Return the head the beginning of the tape

• Go to the first step

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 8 of 26

Example (cont’d)
Formally,M = (Q, Σ, Γ, δ, q1, qaccept, qreject), where
• Q = { q1, q2, q3, q4, q5, qaccept, qreject }
• Σ = { a }, Γ = { a, x, � }

and δ is given by

q1 q2

q5

q3

q4qacceptqreject

� 7→ R
x 7→ R

a 7→ �, R

x 7→ R

� 7→
R

a 7→ x, R

a 7→ L
x 7→ L

� 7→ L
x 7→ R

a 7→ R a 7→ x, R

x 7→ R
� 7→ R

� 7→ R

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 9 of 26

Problems as Languages

Observation
• Languages can be used to model computational problems.

• For this, a suitable encoding is necessary

• TMs must be able to decode the encoding

Example 2.7 (Graph-Connectedness): The question whether a graph is con-
nected or not can be seen as the word problem of the following language

GCONN B { 〈G〉 | G is a connected graph },

where 〈G〉 is (for example) the adjacency matrix encoded in binary.

Notation 2.8: The encoding of objects O1, . . . ,On we denote by 〈O1, . . . ,On〉.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 10 of 26

The Church-Turing Thesis

It turns out that Turing-machines are equivalent to a number of formalisations of the
intuitive notion of an algorithm

• λ-calculus

• while-programs

• µ-recursive functions

• Random-Access Machines

• . . .

Because of this it is believed that Turing-machines completely capture the intuitive
notion of an algorithm. { Church-Turing Thesis:

“A function on the natural numbers is intuitively computable if and only if it can
be computed by a Turing machine.”

(→Wikipedia: Church-Turing Thesis)

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 11 of 26

Variations of Turing-Machines

It has also been shown that deterministic, single-tape Turing machines are equivalent to
a wide range of other forms of Turing machines:

• Multi-tape Turing machines

• Nondeterministic Turing machines

• Turing machines with doubly-infinite tape

• Multi-head Turing machines

• Two-dimensional Turing machines

• Write-once Turing machines

• Two-stack machines

• Two-counter machines

• . . .

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 12 of 26

Multi-Tape Turing Machines

k-tape Turing machines are a variant of Turing machines that have k tapes.

q

. . .

. . .

. . .

a a b � �

a c b c �

c b � � �

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 13 of 26

Multi-Tape Turing Machines

Definition 2.9: Let k ∈ N. Then a (deterministic) k-tape Turing machine is a
tuple M = (Q, Σ, Γ, δ, q0, qaccept, qreject), where

• Q, Σ, Γ, q0, qaccept, qreject are as for TMs

• δ is a transition function for k tapes, i.e.,

δ : Q × Γk → Q × Γk × { L, R, N }k

RunningM on input w ∈ Σ∗ means to startM with the content of the first tape being w
and all other tapes blank.

The notions of a configuration and of the language accepted byM are defined
analogously to the single-tape case.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 14 of 26

Multi-Tape Turing Machines

Theorem 2.10: Every multi-tape Turing machine has an equivalent single-tape
Turing machine.

Proof: LetM be a k-tape Turing machine. SimulateM with a single-tape TM S by

• keeping the content of all k tapes on a single tape, separated by #

• marking the positions of the individual heads using special symbols

q . . .

. . .

. . .

a a �

a c b

c � �

p

. . .# a a •� # a •c b # •c

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 15 of 26

Multi-Tape Turing Machines

S B On input w = w1 . . .wn

• Format the tape to contain the word

•w1w2 . . .wn# •�# •�# . . .

• Scan the tape from the first # to the (k + 1)-th # to determine the symbols
below the markers.

• Update all tapes according toM’s transition function with a second pass
over the tape; if any head ofM moves to some previously unread portion
of its tape, insert a blank symbol at the corresponding position and shift
the right tape contents by one cell

• Repeat until the accepting or rejecting state is reached.

�

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 16 of 26

Nondeterministic Turing Machines

Goal
Allow transitions to be nondeterministic.

Approach
Change transition function from

δ : Q × Γ→ Q × Γ × { L, R }

to
δ : Q × Γ→ 2Q×Γ×{ L,R }

.

The notions of accepting and rejecting computations are defined accordingly.
Note: there may be more than one or no computation of a nondeterministic TM on a
given input.
A nondeterministic TMM accepts an input w if and only if there exists some accepting
computation ofM on input w.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 17 of 26

Nondeterministic Turing Machines

Theorem 2.11: Every nondeterministic TM has an equivalent deterministic TM.

Proof: Let N be a nondeterministic TM. We construct a deterministic TM D that is
equivalent to N, i.e., L(N) = L(D).

Idea
• D deterministically traverses in breath-first order the tree of configuration of N,

where each branch represents a different possibility for N to continue.

• For this, successively try out all possible choices of transitions allowed by N.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 18 of 26

Nondeterministic Turing Machines

Sketch of D:

q . . .

. . .

. . .

a a b b c

a c b � �

1 3 2 3 2

input tape

simulation tape

address tape

Let b be the maximal number of choices in δ, i.e.,

b B max
{ |δ(q, x)|

∣∣∣ q ∈ Q, x ∈ Γ
}
.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 19 of 26

Nondeterministic Turing Machines

D works as follows:

(1) Start: input tape contains input w, simulation and address tape empty

(2) Initialise the address tape with 0.

(3) Copy w to the simulation tape.

(4) Simulate one finite computation of N on w on the simulation tape.
– Interpret the address tape as a list of choices to make during this

computation.
– If a choice is invalid, abort simulation.
– If an accepting configuration is reached at the end of the simulation, accept.

(5) Increment the content of the address tape, considered as a number in base b, by 1.
Go to step 3.

�

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 20 of 26

Enumerators

Definition 2.12: A multi-tape Turing machine M is an enumerator if

• M has a designated write-only output-tape on which a symbol, once written,
can never be changed and where the head can never move left;

• M has a marker symbol # separating words on the output tape.

We define the language generated by M to be the set G(M) of all words that
eventually appear between two consecutive # on the output tape of M when
started on the empty word as input.

q

working tape(s)

� � output tape

.

.

read/write

write-only

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 21 of 26

Enumerators

Theorem 2.13: A language L is Turing-recognisable if and only if there exists
some enumerator E such that G(E) = L.

Proof: Let E be an enumerator for L. Then the following TM accepts L:

M B On input w

• Simulate E on the empty input. Compare every string output by E with w

• If w appears in the output of E, accept

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 22 of 26

Enumerators

Let L = L(M) for some TMM, and let s1, s2, . . . be an enumeration of Σ∗.
Then the following enumerator E enumerates L:

E B Ignore the input.

• Print the first # to initialise the output.
• Repeat for i = 1, 2, 3, . . .

– RunM for i steps on each input s1, s2, . . . , si

– If any computation accepts, print the corresponding sj followed by #

�

Theorem 2.14: If L is Turing-recognisable, then there exists an enumerator for L
that prints each word of L exactly once.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 23 of 26

Enumerators

Theorem 2.15: A language L is decidable if and only if there exists an enumer-
ator for L that outputs exactly the words of L in some order of non-decreasing
length.

Proof: Suppose L to be decidable, and letM be a TM that decides L.

• Define a TMM′ that generates, on some scratch tape, all words over Σ in some
order of non-decreasing length. (Exercise!)

• An enumerator E works as follows:
(1) Print the first # to initialise the output.
(2) RunM′ (enumerating words), followed byM (to check if the current word is

accepted). IfM accepts w, then print w followed by #.

Then E enumerates exactly the words of L in some order of non-decreasing length.

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 24 of 26

Enumerators

Now suppose L can be enumerated by some TM E in some order of non-decreasing
length.

• If L is finite, then L is accepted by a finite automaton.

• If L is infinite, then we define a deciderM for it as follows.

M B On input w
– Simulate E until it either outputs w or some word longer than w
– If E outputs w, then accept, else reject.

Observation: since L is infinite, for each w ∈ Σ∗ the TM E will eventually generate
w or some word longer than w. Therefore,M always halts and thus decides L.

�

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 25 of 26

Summary and Outlook

Turing Machines are a simple model of computation

Recognisable (semi-decidable) = recursively enumerable

Decidable = computable = recursive

Many variants of TMs exist – they normally recognise/decide the same languages

What’s next?

• A short look into undecidability

• Recursion and self-referentiality

• Actual complexity classes

Markus Krötzsch, 21th Oct 2019 Complexity Theory slide 26 of 26

