Complexity Theory Exercise 8: Probabilistic Turing Machines and Complexity Classes

Exercise 8.1. Show that **MAJSAT** is in PP.

 $\mathbf{MaJSat} = \left\{ \varphi \middle| \begin{array}{c} \varphi \text{ is a propositional logic formula that is satisfied} \\ \text{by more than half of its assignments} \end{array} \right\}$

Exercise 8.2. Show BPP = COBPP.

* **Exercise 8.3.** Show $BPP^{BPP} = BPP$.

Exercise 8.4. Find the error in the following proof that shows PP = BPP: Let $L \in PP$. Then there is a poly-time bounded PTM accepting L with error probability smaller than $\frac{1}{2}$. Using error amplification, we can make this error arbitrarily small, and in particular smaller than $\frac{1}{3}$. Hence, $L \in BPP$.

Exercise 8.5. Let \mathcal{M} be a polynomial-time probabilistic Turing machine. We say that \mathcal{M} has *error probability smaller than* $\frac{1}{3}$ if and only if

$$\Pr[\mathcal{M} \text{ accepts } w] < \frac{1}{3} \quad \text{or} \quad \Pr[\mathcal{M} \text{ accepts } w] \ge \frac{2}{3}$$

for all inputs w. Show that the problem whether a polynomial-time probabilistic Turing machine has error probability smaller than $\frac{1}{3}$ is undecidable.

Exercise 8.6. Let $0 and let <math>(X_i | i \in \mathbb{N})$ be a sequence of independent random variables $X_i: \Omega_i \to \{0, 1\}$ such that $P(X_i = 1) = p$ for all $i \in \mathbb{N}$. Describe a way how to transform the sequence $(X_i | i \in \mathbb{N})$ into a sequence $(Y_i | i \in \mathbb{N})$ such that $P(Y_i = 1) = P(Y_i = 0) = 1/2$. The construction may have a zero probability to fail.

Exercise 8.7. Consider the following alternative definition of ZPP:

A language L is in ZPP if and only if there exists some polynomial time PTM \mathcal{M} that answers Accept (A), Reject (R), or Inconclusive (I), and all of the following hold.

- For all $w \in \mathbf{L}$, \mathcal{M} always returns A or I.
- For all $w \notin \mathbf{L}$, \mathcal{M} always returns R or I.
- For all $w \in \Sigma^*$, $\Pr\left[\mathcal{M}(w) = \mathsf{I}\right] < \frac{1}{2}$.

Exercise 8.8. Prove Theorem 17.26 (see slide 44 of lecture 17).