Exercise Sheet 8: Expressivity of SPARQL

Maximilian Marx, Markus Krötzsch
Knowledge Graphs, 2019-12-10, Winter Term 2019/2020

Exercise 8.1. Which of the following graph patterns are expressible in SPARQL? Explain your answer by either giving a SPARQL query or by arguing why there is none.

1. Find nodes that are connected by an eg: edge path of length ≥ 100
2. Find nodes that are connected by an eg: edge path of length ≤ 100
3. Find nodes that are connected by an eg: edge path of length $\neq 100$
4. Find nodes that are not connected by an eg: edge path of length 100
5. In a graph with a eg: parent property, find nodes with a common ancestor
6. In a graph with a eg: parent property, find nodes that are cousins (of any degree)
7. Find nodes that are connected by eg: propA but not by eg: propB
8. Find nodes that are connected by an eg: propA path, but not by an eg:propB path
9. Find nodes that are connected by a path of nodes as in 7 .
10. Find nodes connected by an arbitrary path
11. Find nodes connected by an arbitrary path of even length
12. Check if the graph contains an even number of nodes

Exercise 8.2. Given a formula φ of propositional logic, show how to decide $\varphi \in$ SAT using a SPARQL query that does not contain any BGPs.

Exercise 8.3. Find a family of SPARQL queries that produce solutions where a variable name is mapped to a value that requires an exponential number of characters to write down (measured in the size of the query and RDF graph). What can you say about the growth of the result's size with respect to the size of the RDF graph when keeping the query fixed?

Exercise 8.4. Which of the following QBF are satisfiable? Why?/Why not?

1. $\exists p_{1} \cdot p_{1}$
2. $\forall p_{1} . p_{1}$
3. $\exists p_{1} \cdot \perp$
4. $\forall p_{1} \cdot \exists p_{2} \cdot p_{2} \rightarrow p_{1}$
5. $\forall p_{1} \cdot \exists p_{2} . \forall p_{3} .\left(p_{1} \vee p_{2}\right) \wedge p_{3}$
6. $\forall p_{1} . \forall p_{2} \cdot \exists p_{3} . \forall p_{4} .\left(p_{1} \wedge p_{2} \rightarrow p_{4}\right) \vee \neg p_{3}$
