
PRACTICAL USES OF EXISTENTIAL RULES IN
KNOWLEDGE REPRESENTATION

Part 3: Applications of Rules in AI

David Carral,1 Markus Krötzsch,1 and Jacopo Urbani2

1. TU Dresden

2. Vrije Universiteit Amsterdam

KR 2020, September 13, 2020

https://iccl.inf.tu-dresden.de/web/David_Carral/en
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://www.jacopourbani.it/
https://tu-dresden.de/
https://www.vu.nl/en/

Outline

Goal
Show some example where either rules or related ideas were crucial to achieve the
state of the art

• Horn-ALC reasoning

• PLP

• Data integration

• Stream reasoning

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 2 of 39

Outline

Goal
Show some example where either rules or related ideas were crucial to achieve the
state of the art

• Horn-ALC reasoning

• PLP

• Data integration

• Stream reasoning

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 3 of 39

Take-home message

1. Rules can be used also in uncertain scenarios

2. A declarative approach is (often) intuitive and decreases the development time

3. Robust and scalable reasoning tools are crucial

4. AI communities should talk to each other!

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 4 of 39

2nd Scenario: Probabilistic Logic Programming

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 5 of 39

PLP

How can we perform logic-based reasoning in an uncertain domain?

PLP
Probabilistic Logic Programming (PLP): Formalisms to combine logic and probability for
reasoning in uncertain domains.

Basic idea: Reason over facts which may be true with a certain probability

State of the art
Several PLP formalisms exist. ProbLog (Raedt, Kimmig, and Toivonen 2007) is one of
the most popular ones

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 6 of 39

PLP

How can we perform logic-based reasoning in an uncertain domain?

PLP
Probabilistic Logic Programming (PLP): Formalisms to combine logic and probability for
reasoning in uncertain domains.

Basic idea: Reason over facts which may be true with a certain probability

State of the art
Several PLP formalisms exist. ProbLog (Raedt, Kimmig, and Toivonen 2007) is one of
the most popular ones

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 6 of 39

PLP

How can we perform logic-based reasoning in an uncertain domain?

PLP
Probabilistic Logic Programming (PLP): Formalisms to combine logic and probability for
reasoning in uncertain domains.

Basic idea: Reason over facts which may be true with a certain probability

State of the art
Several PLP formalisms exist. ProbLog (Raedt, Kimmig, and Toivonen 2007) is one of
the most popular ones

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 6 of 39

ProbLog

Definition
A ProbLog program P is a triple (R,F , π) where R is set of (function-free) rules, F is a
set of facts and π : F → [0, 1] is the function that labels facts with probabilities.

Key problem
Given P and query q as input, what is Pr(q) (the probability of q)?

General Approach
It has been shown that computing Pr(q) can be expressed using Weighted Model
Counting (WMC) over weighted logical formulas (Vlasselaer et al. 2016)

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 7 of 39

The Grounding Problem

ProbLog2, a state-of-the-art engine, proceeds as follows:

1. Find relevant ground program for q with backward chaining

2. Execute a custom implementation of fixpoint operator TP:

– TP proceeds bottom-up, akin to chase procedures
– TP incrementally computes, for each inferred fact f , a propositional formula λf

which “remembers” all the possible ways f can be inferred

3. After TP has finished, it computes WMC for λq

Problem
Grounding can be a major performance bottleneck with large knowledge bases

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 8 of 39

Datalog to the rescue

Some ideas developed for Datalog can be useful (Tsamoura, Gutiérrez-Basulto, and
Kimmig 2020)

First idea
Don’t ground P with backward chaining. Rewrite it with magic sets (Bancilhon et al.
1985)

Second idea
Apply semi-naïve evaluation (Abiteboul, Hull, and Vianu 1995) on the non-ground
program to reduce the number of duplicates

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 9 of 39

Datalog to the rescue

Some ideas developed for Datalog can be useful (Tsamoura, Gutiérrez-Basulto, and
Kimmig 2020)

First idea
Don’t ground P with backward chaining. Rewrite it with magic sets (Bancilhon et al.
1985)

Second idea
Apply semi-naïve evaluation (Abiteboul, Hull, and Vianu 1995) on the non-ground
program to reduce the number of duplicates

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 9 of 39

Magic sets

Consider database I and program P. Our goal is to answer query Q

Idea
The main idea is to rewrite P into P′ where additional magic relations restrict the
derivations to facts relevant for answering Q

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 10 of 39

Magic sets

Consider database I and program P. Our goal is to answer query Q

Example 1
Consider the rules below and assume we want to answer Q = lives(linda, X)

married(X, Y), lives(X, Z)→ lives(Y, Z) (r1)

married(X, Y)→ married(Y, X) (r2)

The rewriting procedure produces the program

mgc1(Y), married(X, Y), lives(X, Z)→ lives(Y, Z) (r3)

mgc1(X)→ mgc2(X) (r4)

mgc2(Y), married(X, Y)→ married(Y, X) (r5)

Then, we can reason on I ∪ {mgc1(linda)}

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 11 of 39

Magic sets

Consider database I and program P. Our goal is to answer query Q

Example 1
Consider the rules below and assume we want to answer Q = lives(linda, X)

married(X, Y), lives(X, Z)→ lives(Y, Z) (r1)

married(X, Y)→ married(Y, X) (r2)

The rewriting procedure produces the program

mgc1(Y), married(X, Y), lives(X, Z)→ lives(Y, Z) (r3)

mgc1(X)→ mgc2(X) (r4)

mgc2(Y), married(X, Y)→ married(Y, X) (r5)

Then, we can reason on I ∪ {mgc1(linda)}

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 11 of 39

Semi naïve evaluation

Semi naïve evaluation is a well-known technique to avoid the recomputation of duplicate
derivation during the materialization

Naïve Evaluation
Input: Facts I, program P
while true do

J B I;
for r ∈ P do

Let r be B→ H
J B J ∪ {Hσ | Bσ ⊆ I};

if J = I then return J ;

Semi Naïve Evaluation
Input: Facts I, program P
∆ B I;
while true do

J B I;
for r ∈ P do

Let r be B→ H;
J B J ∪ {Hσ | Bσ ⊆ I ∧ Bσ∩∆ ,
∅};

if J = I then return J;
∆ B J \ I;

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 12 of 39

New approach

Tsamoura et al. (2020) proposed a new procedure:

1. Find relevant ground program for q with backward chaining. Use Magic Set to
obtain a non-ground program

2. Execute a custom implementation of fixpoint operator TP Offload the computation
to a chase engine (VLog):

– Leverage semi-naïve evaluation
– Introduce extra rules to compute the probability (λ−transformation)

3. After TP has finished, compute WMC for λq

Impact
The new procedure removes the need for grounding, which was a performance
bottleneck

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 13 of 39

New approach

Tsamoura et al. (2020) proposed a new procedure:

1. Find relevant ground program for q with backward chaining. Use Magic Set to
obtain a non-ground program

2. Execute a custom implementation of fixpoint operator TP Offload the computation
to a chase engine (VLog):

– Leverage semi-naïve evaluation
– Introduce extra rules to compute the probability (λ−transformation)

3. After TP has finished, compute WMC for λq

Impact
The new procedure removes the need for grounding, which was a performance
bottleneck

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 13 of 39

New approach

Tsamoura et al. (2020) proposed a new procedure:

1. Find relevant ground program for q with backward chaining. Use Magic Set to
obtain a non-ground program

2. Execute a custom implementation of fixpoint operator TP Offload the computation
to a chase engine (VLog):

– Leverage semi-naïve evaluation
– Introduce extra rules to compute the probability (λ−transformation)

3. After TP has finished, compute WMC for λq

Impact
The new procedure removes the need for grounding, which was a performance
bottleneck

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 13 of 39

Performance improvement

Some key results from (Tsamoura, Gutiérrez-Basulto, and Kimmig 2020)

• The runtime of query answering was two order of magnitude and 25% faster than
ProbLog2 in the best and worst cases, respectively

• VLog enabled the computation on much larger DBs than what was possible before

Lesson learned
Well-known ideas developed for rule-based query answering can be re-used as-is for
other problems as well

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 14 of 39

Performance improvement

Some key results from (Tsamoura, Gutiérrez-Basulto, and Kimmig 2020)

• The runtime of query answering was two order of magnitude and 25% faster than
ProbLog2 in the best and worst cases, respectively

• VLog enabled the computation on much larger DBs than what was possible before

Lesson learned
Well-known ideas developed for rule-based query answering can be re-used as-is for
other problems as well

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 14 of 39

3rd Scenario: Entity Resolution

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 15 of 39

Entity Resolution

Entity resolution is the task of recognizing and linking entities across different tables.
It is a well-known task in database literature (96+ papers between 2009-2014,
see (Papadakis, Ioannou, and Palpanas 2020))

• Magellan (Konda et al. 2016)

• Deep Learning (Mudgal et al. 2018)

• Crowd-sourcing (Das et al. 2017)

• Embeddings (Cappuzzo, Papotti, and Thirumuruganathan 2020)

• . . .

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 16 of 39

Entity Resolution in Practice

Scientific advancement requires an extensive analysis of prior knowledge in the
literature, but this is time consuming

AI can help!
Long-term vision: Develop an accurate and large-scale KB of scientific knowledge

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 17 of 39

Entity Resolution in Practice

Scientific advancement requires an extensive analysis of prior knowledge in the
literature, but this is time consuming

AI can help!
Long-term vision: Develop an accurate and large-scale KB of scientific knowledge

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 17 of 39

A KB of Scientific Knowledge

Figure 4: The search latency increase with respect to rerank size.

cost of our models, we compare the online search latency of
different models. The latency of the baseline is 21 ms. And
the relative latency increase of our models over the baseline
are shown in Figure 4.

In Figure 4, the latency of miDNN is small and grows lin-
early with respect to rerank size. But the latency of miRNN
and miRNN+attention grows polynomially. When rerank size
is 50, the latency of miRNN+attentions increases 400% over
the baseline, from 21 ms to 105 ms. Although the RNN mod-
els achieves larger GMV, the computational cost of the RNN
models are huge when rerank size gets big. The large compu-
tational cost is the major drawback of our RNN models.

For RNN models, we use beam search to find a good rank-
ing sequence. The beam size k is a key parameter for beam
search. Larger k means larger search space and usually re-
sults in better ranking results. But larger k also lead to more
computational cost. We studied the GMV and latency in-
crease with respect to beam size. And the results are shown
in Figure 5 and Figure 6.

Figure 5 shows that the GMV increases as beam size
grows. But the GMV increase gets smaller when beam size
gets larger. Figure 6 shows that the latency increases linearly
with respect to beam size, which is in accordance with our
time complexity analysis. A balance of GMV and latency
is needed to choose the value of beam size. And we set the
beam size to 5.

Figure 5: The GMV increase with respect to beam size.

Finally, we summarize our online test results in Table 2.
The rerank size is set to 50 and the beam size for RNN

Figure 6: The search latency increase with respect to beam size.

Models Rerank size Beam size GMV Latency
miDNN 50 - 2.91% 9%
miRNN 50 5 5.03% 58%

miRNN+att. 50 5 5.82% 401%

Table 2: The GMV increase in A/B test.

models is 5. Results in Table 2 show that our mutual in-
fluence aware ranking framework brings a significant GMV
increase over the baseline. The miDNN model achieves a
good GMV increase with only a little latency overhead. The
miRNN+attention model gets the best GMV result but the
latency grows too fast. The miRNN model achieves a very
good GMV increase with much less latency compared to
miRNN+attention. Therefore, if computational cost is very
expensive, the miDNN model is a good choice. In our case
where mild latency increase is acceptable, the miRNN model
is preferred.

5 Conclusion
In this paper, we point out the importance of mutual influ-
ences between items in e-commerce ranking and propose a
global optimization framework for mutual influence aware
ranking for the first time. We incorporate mutual influences
into our models by global feature extension and modeling
ranking as a sequence generation problem. We performed
online experiments on a large e-commerce search engine. To
reduce computational cost, we use our methods as a rerank-
ing process on top of the baseline ranking. The results show
that our method produces a significant GMV increase over
the baseline, and therefore verifies the importance of mutual
influences between items. We also compared the computa-
tional costs of our methods. Our miDNN model noticeably
increases GMV without much computational cost. Our atten-
tion mechanism for RNN model gets the best GMV result.
But the computational cost of our attention mechanism is too
high. Future research will be focused on more efficient atten-
tion mechanisms that increase GMV with less computations.

Acknowledgments
This work receives great help from our colleague Xiaoyi
Zeng. We would also like to thank Xin Li and the Taobao
Search Engineering team for helpful discussions and the sys-
tem engineering efforts.

valuable experimental knowledge

DNN

Model

0.724

AUC
Measur
ement

Experime
nt#1

Table#1

Paper#1

Author1
#1

Confere
nce1#1

isA

subclassOf

isA

Method
Input

isIn isIn

writtenBy

publishedAt

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 18 of 39

A KB of Scientific Knowledge

Figure 4: The search latency increase with respect to rerank size.

cost of our models, we compare the online search latency of
different models. The latency of the baseline is 21 ms. And
the relative latency increase of our models over the baseline
are shown in Figure 4.

In Figure 4, the latency of miDNN is small and grows lin-
early with respect to rerank size. But the latency of miRNN
and miRNN+attention grows polynomially. When rerank size
is 50, the latency of miRNN+attentions increases 400% over
the baseline, from 21 ms to 105 ms. Although the RNN mod-
els achieves larger GMV, the computational cost of the RNN
models are huge when rerank size gets big. The large compu-
tational cost is the major drawback of our RNN models.

For RNN models, we use beam search to find a good rank-
ing sequence. The beam size k is a key parameter for beam
search. Larger k means larger search space and usually re-
sults in better ranking results. But larger k also lead to more
computational cost. We studied the GMV and latency in-
crease with respect to beam size. And the results are shown
in Figure 5 and Figure 6.

Figure 5 shows that the GMV increases as beam size
grows. But the GMV increase gets smaller when beam size
gets larger. Figure 6 shows that the latency increases linearly
with respect to beam size, which is in accordance with our
time complexity analysis. A balance of GMV and latency
is needed to choose the value of beam size. And we set the
beam size to 5.

Figure 5: The GMV increase with respect to beam size.

Finally, we summarize our online test results in Table 2.
The rerank size is set to 50 and the beam size for RNN

Figure 6: The search latency increase with respect to beam size.

Models Rerank size Beam size GMV Latency
miDNN 50 - 2.91% 9%
miRNN 50 5 5.03% 58%

miRNN+att. 50 5 5.82% 401%

Table 2: The GMV increase in A/B test.

models is 5. Results in Table 2 show that our mutual in-
fluence aware ranking framework brings a significant GMV
increase over the baseline. The miDNN model achieves a
good GMV increase with only a little latency overhead. The
miRNN+attention model gets the best GMV result but the
latency grows too fast. The miRNN model achieves a very
good GMV increase with much less latency compared to
miRNN+attention. Therefore, if computational cost is very
expensive, the miDNN model is a good choice. In our case
where mild latency increase is acceptable, the miRNN model
is preferred.

5 Conclusion
In this paper, we point out the importance of mutual influ-
ences between items in e-commerce ranking and propose a
global optimization framework for mutual influence aware
ranking for the first time. We incorporate mutual influences
into our models by global feature extension and modeling
ranking as a sequence generation problem. We performed
online experiments on a large e-commerce search engine. To
reduce computational cost, we use our methods as a rerank-
ing process on top of the baseline ranking. The results show
that our method produces a significant GMV increase over
the baseline, and therefore verifies the importance of mutual
influences between items. We also compared the computa-
tional costs of our methods. Our miDNN model noticeably
increases GMV without much computational cost. Our atten-
tion mechanism for RNN model gets the best GMV result.
But the computational cost of our attention mechanism is too
high. Future research will be focused on more efficient atten-
tion mechanisms that increase GMV with less computations.

Acknowledgments
This work receives great help from our colleague Xiaoyi
Zeng. We would also like to thank Xin Li and the Taobao
Search Engineering team for helpful discussions and the sys-
tem engineering efforts.

valuable experimental knowledge

DNN

Model

0.724

AUC
Measur
ement

Experime
nt#1

Table#1

Paper#1

Author1
#1

Confere
nce1#1

isA

subclassOf

isA

Method
Input

isIn isIn

writtenBy

publishedAt

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 18 of 39

Advantages

DNN

Model

0.724

AUC
Measur
ement

Experime
nt#1

Table#1

Paper#1

Author1
#1

Confere
nce1#1

isA

subclassOf

isA

Method
Input

isIn isIn

writtenBy

publishedAt

Potential use cases:

• Retrieve experimental results with
entity-based search

• Exploit co-authorship networks

• Identify potential inconsistencies
across papers

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 19 of 39

Tab2Know: General pipeline

Tab2Know is a recent work to construct a KB from tables in scientific papers (Kruit, He,
and Urbani 2020)

Key features:

• Heuristic-based methods to recognize and extract tables from PDFs

• Machine learning models to predict the type of tables and columns

• Weak supervision with SPARQL queries to counter the problem of lack of training
data

• (Focus of today) logic-based reasoning for entity resolution

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 20 of 39

Tab2Know: General pipeline

Tab2Know is a recent work to construct a KB from tables in scientific papers (Kruit, He,
and Urbani 2020)

Key features:

• Heuristic-based methods to recognize and extract tables from PDFs

• Machine learning models to predict the type of tables and columns

• Weak supervision with SPARQL queries to counter the problem of lack of training
data

• (Focus of today) logic-based reasoning for entity resolution

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 20 of 39

Tab2Know: General pipeline

Tab2Know is a recent work to construct a KB from tables in scientific papers (Kruit, He,
and Urbani 2020)

Key features:

• Heuristic-based methods to recognize and extract tables from PDFs

• Machine learning models to predict the type of tables and columns

• Weak supervision with SPARQL queries to counter the problem of lack of training
data

• (Focus of today) logic-based reasoning for entity resolution

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 20 of 39

Tab2Know: General pipeline

Tab2Know is a recent work to construct a KB from tables in scientific papers (Kruit, He,
and Urbani 2020)

Key features:

• Heuristic-based methods to recognize and extract tables from PDFs

• Machine learning models to predict the type of tables and columns

• Weak supervision with SPARQL queries to counter the problem of lack of training
data

• (Focus of today) logic-based reasoning for entity resolution

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 20 of 39

Tab2Know: General pipeline
From (Kruit, He, and Urbani 2020)

1. INTRODUCTION

Figure 1.1: Results table from ICDAR 2013

task. Tables, on the other hand, provide direct structured data which is easily ingestable

into a knowledge base. Take the table in figure 1.1 taken from the paper presenting the

results for the ICDAR 2013 document recognition competition (1). The information density

in this table is incredible. We see multiple method names, some of which are even directly

linked to citations, with their respective recall, precision and F-score. If the structure of

this table is known, structured data could easily be extracted. This data were to be of

great use for the augmentation of existing knowledge bases. An example relationship that

could be extracted would be a method and its score. The caption "Ranking of submitted

methods to task 1.1" also gives us additional insights. We know that task 1.1 is probably

defined somewhere else in the document, and linking this to the performance of a specific

method is of great value. A simple search in the document provides us with the information

that task 1.1 is "Text Localization". Thus we know:

USTB_TexStar <performs with> 87.75 F-score <on task> Text Localization

Linking this information and making it available through a search engine, would greatly

enhance the experience of researchers.

Another useful application of table data from academic papers would be as follows:

imagine a direct query that provides a researcher with all the papers that report an exact

same technique for the exact same task. This could even be provided to the user in

table mark-up and could clearly show the discrepancies between similar research. Many

computer science experiments are highly reproducible, but will never be questioned since

such contradictory information is never found. This task does not necessarily question

the professionality and integrity of researchers, but could definitely give us great insights

2

1. INTRODUCTION

Figure 1.1: Results table from ICDAR 2013

task. Tables, on the other hand, provide direct structured data which is easily ingestable

into a knowledge base. Take the table in figure 1.1 taken from the paper presenting the

results for the ICDAR 2013 document recognition competition (1). The information density

in this table is incredible. We see multiple method names, some of which are even directly

linked to citations, with their respective recall, precision and F-score. If the structure of

this table is known, structured data could easily be extracted. This data were to be of

great use for the augmentation of existing knowledge bases. An example relationship that

could be extracted would be a method and its score. The caption "Ranking of submitted

methods to task 1.1" also gives us additional insights. We know that task 1.1 is probably

defined somewhere else in the document, and linking this to the performance of a specific

method is of great value. A simple search in the document provides us with the information

that task 1.1 is "Text Localization". Thus we know:

USTB_TexStar <performs with> 87.75 F-score <on task> Text Localization

Linking this information and making it available through a search engine, would greatly

enhance the experience of researchers.

Another useful application of table data from academic papers would be as follows:

imagine a direct query that provides a researcher with all the papers that report an exact

same technique for the exact same task. This could even be provided to the user in

table mark-up and could clearly show the discrepancies between similar research. Many

computer science experiments are highly reproducible, but will never be questioned since

such contradictory information is never found. This task does not necessarily question

the professionality and integrity of researchers, but could definitely give us great insights

2

Table Extraction1

Naïve KB
Ontology

Table Interpretation2

SPARQL Queries

SPARQL Query 1
SPARQL Query 2
SPARQL Query 3

…

Input: PDF Figure

APIs

Snorkel ‘

Output: KB (with linked entities)
3 Entity Linking

VLog
Rule 1
Rule 2
Rule 3

…

Rules

Assets

≈

≈

≈

≈

Header detectionTable type classification

Column type classification

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 21 of 39

Tab2Know: General pipeline
From (Kruit, He, and Urbani 2020)

1. INTRODUCTION

Figure 1.1: Results table from ICDAR 2013

task. Tables, on the other hand, provide direct structured data which is easily ingestable

into a knowledge base. Take the table in figure 1.1 taken from the paper presenting the

results for the ICDAR 2013 document recognition competition (1). The information density

in this table is incredible. We see multiple method names, some of which are even directly

linked to citations, with their respective recall, precision and F-score. If the structure of

this table is known, structured data could easily be extracted. This data were to be of

great use for the augmentation of existing knowledge bases. An example relationship that

could be extracted would be a method and its score. The caption "Ranking of submitted

methods to task 1.1" also gives us additional insights. We know that task 1.1 is probably

defined somewhere else in the document, and linking this to the performance of a specific

method is of great value. A simple search in the document provides us with the information

that task 1.1 is "Text Localization". Thus we know:

USTB_TexStar <performs with> 87.75 F-score <on task> Text Localization

Linking this information and making it available through a search engine, would greatly

enhance the experience of researchers.

Another useful application of table data from academic papers would be as follows:

imagine a direct query that provides a researcher with all the papers that report an exact

same technique for the exact same task. This could even be provided to the user in

table mark-up and could clearly show the discrepancies between similar research. Many

computer science experiments are highly reproducible, but will never be questioned since

such contradictory information is never found. This task does not necessarily question

the professionality and integrity of researchers, but could definitely give us great insights

2

1. INTRODUCTION

Figure 1.1: Results table from ICDAR 2013

task. Tables, on the other hand, provide direct structured data which is easily ingestable

into a knowledge base. Take the table in figure 1.1 taken from the paper presenting the

results for the ICDAR 2013 document recognition competition (1). The information density

in this table is incredible. We see multiple method names, some of which are even directly

linked to citations, with their respective recall, precision and F-score. If the structure of

this table is known, structured data could easily be extracted. This data were to be of

great use for the augmentation of existing knowledge bases. An example relationship that

could be extracted would be a method and its score. The caption "Ranking of submitted

methods to task 1.1" also gives us additional insights. We know that task 1.1 is probably

defined somewhere else in the document, and linking this to the performance of a specific

method is of great value. A simple search in the document provides us with the information

that task 1.1 is "Text Localization". Thus we know:

USTB_TexStar <performs with> 87.75 F-score <on task> Text Localization

Linking this information and making it available through a search engine, would greatly

enhance the experience of researchers.

Another useful application of table data from academic papers would be as follows:

imagine a direct query that provides a researcher with all the papers that report an exact

same technique for the exact same task. This could even be provided to the user in

table mark-up and could clearly show the discrepancies between similar research. Many

computer science experiments are highly reproducible, but will never be questioned since

such contradictory information is never found. This task does not necessarily question

the professionality and integrity of researchers, but could definitely give us great insights

2

Table Extraction1

Naïve KB
Ontology

Table Interpretation2

SPARQL Queries

SPARQL Query 1
SPARQL Query 2
SPARQL Query 3

…

Input: PDF Figure

APIs

Snorkel ‘

Output: KB (with linked entities)
3 Entity Linking

VLog
Rule 1
Rule 2
Rule 3

…

Rules

Assets

≈

≈

≈

≈

Header detectionTable type classification

Column type classification

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 21 of 39

A declarative approach

Terminology
Tuple Generating Dependency (TGD): bicycle(X)→ ∃Y.partOf (X, Y) ∧Wheel(Y)
Equality Generating Dependency (EGD): email(X, Y) ∧ email(X, Z)→ Y ≈ Z

Tab2Know’s approach: Use TGDs and EGDs to perform entity resolution

TGDs
They can be used to create new entities
from the cells and columns

EGDs
They can be used to infer that entities
mentioned in different cells are the same

Output
After reasoning is completed, newly introduced entities are used to populate a KB

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 22 of 39

A declarative approach: TGDs

Two types of entities: One for columns, one for cells

type(X, Column)→ ∃Y.colEntity(X, Y) (r1)

type(X, Cell)→ ∃Y.cellEntity(X, Y) (r2)

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 23 of 39

A declarative approach: EGDs

Avoid that the same entity is represented with multiple labeled nulls

ceNoTypLabel(X, L) ∧ ceNoTypLabel(Y, L)→ X ≈ Y (r3)

eNoTypLabel(X, C, L), eNoTypLabel(Y, C, L)→ X ≈ Y (r4)

eTableLabel(X, T, L), eTableLabel(Y, T, L)→ X ≈ Y (r5)

eTypLabel(X, S, L), eTypLabel(Y, S, M), STR_EQ(L, M)→ X ≈ Y (r6)

eAuthLabel(X, A, L), eAuthLabel(Y, A, M), STR_EQ(L, M)→ X ≈ Y (r7)

• Special built-in predicates (STR_EQ) encode string similarities
• Other predicates include authors of the paper
• Program can be easily extended with other rules→ rapid KB construction

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 24 of 39

Preliminary results

Input
Approach was tested on a collection with 142k CS open-access papers and 73k tables
(IJCAI, ECAI, etc.)

Key results

• Table interpretation superior than previous state-of-the-art approach (Yu et al.
2020)

• EGDs reduced number of “column” entities of 65% and of “cell” entities of 55%

• Every rule contributed by linking some entities

• On a sample of 541 entities, average precision was 97%

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 25 of 39

Preliminary results

Input
Approach was tested on a collection with 142k CS open-access papers and 73k tables
(IJCAI, ECAI, etc.)

Key results

• Table interpretation superior than previous state-of-the-art approach (Yu et al.
2020)

• EGDs reduced number of “column” entities of 65% and of “cell” entities of 55%

• Every rule contributed by linking some entities

• On a sample of 541 entities, average precision was 97%

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 25 of 39

Preliminary results

Input
Approach was tested on a collection with 142k CS open-access papers and 73k tables
(IJCAI, ECAI, etc.)

Key results

• Table interpretation superior than previous state-of-the-art approach (Yu et al.
2020)

• EGDs reduced number of “column” entities of 65% and of “cell” entities of 55%

• Every rule contributed by linking some entities

• On a sample of 541 entities, average precision was 97%

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 25 of 39

Preliminary results

Input
Approach was tested on a collection with 142k CS open-access papers and 73k tables
(IJCAI, ECAI, etc.)

Key results

• Table interpretation superior than previous state-of-the-art approach (Yu et al.
2020)

• EGDs reduced number of “column” entities of 65% and of “cell” entities of 55%

• Every rule contributed by linking some entities

• On a sample of 541 entities, average precision was 97%

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 25 of 39

Lessons learned

1. A declarative approach is ideal for non-CS domain experts

2. Rules can be easily changed or adapted depending on the performance

3. VLog was scalable enough to perform rapid prototyping with large KGs

4. Support to built-in predicates was crucial

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 26 of 39

Lessons learned

1. A declarative approach is ideal for non-CS domain experts

2. Rules can be easily changed or adapted depending on the performance

3. VLog was scalable enough to perform rapid prototyping with large KGs

4. Support to built-in predicates was crucial

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 26 of 39

Lessons learned

1. A declarative approach is ideal for non-CS domain experts

2. Rules can be easily changed or adapted depending on the performance

3. VLog was scalable enough to perform rapid prototyping with large KGs

4. Support to built-in predicates was crucial

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 26 of 39

Lessons learned

1. A declarative approach is ideal for non-CS domain experts

2. Rules can be easily changed or adapted depending on the performance

3. VLog was scalable enough to perform rapid prototyping with large KGs

4. Support to built-in predicates was crucial

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 26 of 39

4th Scenario: Stream Reasoning
A few of slides are a modified version of Harald Beck’s ISWC17 presentation, used with permission

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 27 of 39

Motivation

Stream reasoning: add reasoning on top of stream processing. Central question: “What
is true now?” (Margara et al. 2014)

• E.g. public transport: What are the current expected arrival times?

• Is there currently a good connection between two lines?

Semantic Web: RDF Stream Processing - SPARQL extensions: C-SPARQL, CQELS,
SPARQLStream, . . . Typical: Window operators select snapshots of recent data

• Window examples: [RANGE 3m], [TRIPLES 2]

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 28 of 39

Motivation

Stream reasoning: add reasoning on top of stream processing. Central question: “What
is true now?” (Margara et al. 2014)

• E.g. public transport: What are the current expected arrival times?

• Is there currently a good connection between two lines?

Semantic Web: RDF Stream Processing - SPARQL extensions: C-SPARQL, CQELS,
SPARQLStream, . . . Typical: Window operators select snapshots of recent data

• Window examples: [RANGE 3m], [TRIPLES 2]

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 28 of 39

Goals & Challenges

• Goal: expressive stream reasoning solutions

(1) based on model-based semantics

(2) high performance

• Central challenge: throughput vs. expressiveness

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 29 of 39

LARS: A Logic for Analytic Reasoning over Streams
LARS (Beck, Dao-Tran, and Eiter 2018) is a logic-based frameworks to reason on
streams

0 1 2 3 4

a
•

a
•

b, c
•

a
• •

• Stream S = (T, υ)

– Timeline T closed interval in N, t ∈ T time point
– Evaluation function υ : T → 2A (sets of atoms)

• Formulas α: evaluated on S at t

– α = �wβ: means that β must hold on the substream defined by a window
function with arg w (e.g., last w time points)

– α = ^β: means that β must holds at some time point
– α = �β: means that β must holds at every time point
– α = @Tβ: means that β must holds at time point T

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 30 of 39

LARS: A Logic for Analytic Reasoning over Streams
LARS (Beck, Dao-Tran, and Eiter 2018) is a logic-based frameworks to reason on
streams

0 1 2 3 4

a
•

a
•

b, c
•

a
• •

• Stream S = (T, υ)

– Timeline T closed interval in N, t ∈ T time point
– Evaluation function υ : T → 2A (sets of atoms)

• Formulas α: evaluated on S at t

– α = �wβ: means that β must hold on the substream defined by a window
function with arg w (e.g., last w time points)

– α = ^β: means that β must holds at some time point

– α = �β: means that β must holds at every time point
– α = @Tβ: means that β must holds at time point T

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 30 of 39

LARS: A Logic for Analytic Reasoning over Streams
LARS (Beck, Dao-Tran, and Eiter 2018) is a logic-based frameworks to reason on
streams

0 1 2 3 4

a
•

a
•

b, c
•

a
• •

• Stream S = (T, υ)

– Timeline T closed interval in N, t ∈ T time point
– Evaluation function υ : T → 2A (sets of atoms)

• Formulas α: evaluated on S at t

– α = �wβ: means that β must hold on the substream defined by a window
function with arg w (e.g., last w time points)

– α = ^β: means that β must holds at some time point
– α = �β: means that β must holds at every time point

– α = @Tβ: means that β must holds at time point T

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 30 of 39

LARS: A Logic for Analytic Reasoning over Streams
LARS (Beck, Dao-Tran, and Eiter 2018) is a logic-based frameworks to reason on
streams

0 1 2 3 4

a
•

a
•

b, c
•

a
• •

• Stream S = (T, υ)

– Timeline T closed interval in N, t ∈ T time point
– Evaluation function υ : T → 2A (sets of atoms)

• Formulas α: evaluated on S at t

– α = �wβ: means that β must hold on the substream defined by a window
function with arg w (e.g., last w time points)

– α = ^β: means that β must holds at some time point
– α = �β: means that β must holds at every time point
– α = @Tβ: means that β must holds at time point T

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 30 of 39

Plain LARS

Plain LARS (Bazoobandi, Beck, and Urbani 2017)
Focus on positive non-ground LARS programs where for each rule α← β1, . . . , βn

we have:

• head α: atom a or @ta

• body elements: βi ::= a | @t a | �w@t a | �w^ a | �w� a

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 31 of 39

From LARS to Datalog

Observation
LARS rules can be rewritten into Datalog rules

• How do we represent time?

– Increase arity of the relations, e.g., P(X)→ P(X, T)

• How can we translate LARS rules?

– @SP(X) as P(X, S)
– �2^P(X)→ Q(X) as P(X, T)→ Q(X) and P(X, T − 1)→ Q(X)

Semi-naïve evaluation (SNE)
One key novelty of (Bazoobandi, Beck, and Urbani 2017) is to show how to replicate
SNE in a stream

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 32 of 39

From LARS to Datalog

Observation
LARS rules can be rewritten into Datalog rules

• How do we represent time?

– Increase arity of the relations, e.g., P(X)→ P(X, T)

• How can we translate LARS rules?

– @SP(X) as P(X, S)
– �2^P(X)→ Q(X) as P(X, T)→ Q(X) and P(X, T − 1)→ Q(X)

Semi-naïve evaluation (SNE)
One key novelty of (Bazoobandi, Beck, and Urbani 2017) is to show how to replicate
SNE in a stream

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 32 of 39

From LARS to Datalog

• For formula ϕ = α, βi in any rule α← β1, . . . , βn, consider annotated ground
formulas ϕσ[c,h], where

– ϕσ is the ground instance of ϕ due to substitution σ

– [c, h] is an annotation stating that ϕσ holds from consideration time c to
horizon time h

• Horizon time can be extended in the future, e.g., at time point t, �3^p(a) can be
annotated as �3^p(a)[t,t+3]

• When computing substitution σ for instantiating rule B1 ∧ B2 ∧ ...Bn → H at time
point t, at least one Biσ[c,h] has c = t, i.e., has been derived at the current time point

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 33 of 39

From LARS to Datalog

• For formula ϕ = α, βi in any rule α← β1, . . . , βn, consider annotated ground
formulas ϕσ[c,h], where

– ϕσ is the ground instance of ϕ due to substitution σ

– [c, h] is an annotation stating that ϕσ holds from consideration time c to
horizon time h

• Horizon time can be extended in the future, e.g., at time point t, �3^p(a) can be
annotated as �3^p(a)[t,t+3]

• When computing substitution σ for instantiating rule B1 ∧ B2 ∧ ...Bn → H at time
point t, at least one Biσ[c,h] has c = t, i.e., has been derived at the current time point

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 33 of 39

From LARS to Datalog

• For formula ϕ = α, βi in any rule α← β1, . . . , βn, consider annotated ground
formulas ϕσ[c,h], where

– ϕσ is the ground instance of ϕ due to substitution σ

– [c, h] is an annotation stating that ϕσ holds from consideration time c to
horizon time h

• Horizon time can be extended in the future, e.g., at time point t, �3^p(a) can be
annotated as �3^p(a)[t,t+3]

• When computing substitution σ for instantiating rule B1 ∧ B2 ∧ ...Bn → H at time
point t, at least one Biσ[c,h] has c = t, i.e., has been derived at the current time point

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 33 of 39

Laser: Implementation & Evaluation

Evaluation: Time per triple

• Compare to C-SPARQL, CQELS, and Ticker

• Micro benchmarks to test (1) q(A, B)← �n^p(A, B) (resp. �); elementary data join; multiple
rules; (2) small show case example requiring LARS features.

• Window sizes: 1s to 80s; stream rate: 200 to 800 triples/second

(1) (2)

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 34 of 39

Lesson learned

• A good idea remains a good idea (even if is old)

• ... but it might need to be properly implemented

To conclude
We have described cases where rules turned out to be very useful

• In some scenarios, existential quantification was necessary (data integration). In
others, Datalog rules were enough (PLP, stream reasoning)

• Sometimes, the tools could be directly used (data integration). In other cases,
some modifications are required (PLP)

• Finally, we have seen how sometimes ideas, rather systems, can make the
difference

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 35 of 39

Lesson learned

• A good idea remains a good idea (even if is old)

• ... but it might need to be properly implemented

To conclude
We have described cases where rules turned out to be very useful

• In some scenarios, existential quantification was necessary (data integration). In
others, Datalog rules were enough (PLP, stream reasoning)

• Sometimes, the tools could be directly used (data integration). In other cases,
some modifications are required (PLP)

• Finally, we have seen how sometimes ideas, rather systems, can make the
difference

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 35 of 39

Lesson learned

• A good idea remains a good idea (even if is old)

• ... but it might need to be properly implemented

To conclude
We have described cases where rules turned out to be very useful

• In some scenarios, existential quantification was necessary (data integration). In
others, Datalog rules were enough (PLP, stream reasoning)

• Sometimes, the tools could be directly used (data integration). In other cases,
some modifications are required (PLP)

• Finally, we have seen how sometimes ideas, rather systems, can make the
difference

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 35 of 39

References I

Abiteboul, Serge, Richard Hull, and Victor Vianu (1995). Foundations of
databases. Vol. 8. Addison-Wesley Reading.

Bancilhon, Francois, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman
(1985). “Magic sets and other strange ways to implement logic programs”. In:
Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles
of database systems. ACM, pp. 1–15. (Visited on 02/25/2015).

Bazoobandi, Hamid R., Harald Beck, and Jacopo Urbani (2017). “Expressive
Stream Reasoning with Laser”. In: ISWC, pp. 87–103.

Beck, Harald, Minh Dao-Tran, and Thomas Eiter (2018). “LARS: A Logic-based
framework for Analytic Reasoning over Streams”. In: Artificial Intelligence
261, pp. 16–70. ISSN: 0004-3702.

Cappuzzo, Riccardo, Paolo Papotti, and Saravanan Thirumuruganathan (2020).
“Creating Embeddings of Heterogeneous Relational Datasets for Data
Integration Tasks”. In: SIGMOD, pp. 1335–1349.

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 36 of 39

References II

Das, Sanjib, Paul Suganthan G.C., AnHai Doan, Jeffrey F. Naughton,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and
Youngchoon Park (2017). “Falcon: Scaling Up Hands-Off Crowdsourced Entity
Matching to Build Cloud Services”. In: SIGMOD, pp. 1431–1446.

Konda, Pradap, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan,
Jeffrey R. Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton,
Shishir Prasad, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra
(2016). “Magellan: toward building entity matching management systems”. In:
PVLDB 9.12, pp. 1197–1208.

Kruit, Benno, Hongu He, and Jacopo Urbani (2020). “Tab2Know: Building a
Knowledge Base from Tables in Scientific Papers”. In: To appear at ISWC
2020, pp. xxx–xxx.

Margara, Alessandro, Jacopo Urbani, Frank Van Harmelen, and Henri Bal
(2014). “Streaming the web: Reasoning over dynamic data”. In: Web
Semantics: Science, Services and Agents on the World Wide Web 25,
pp. 24–44. (Visited on 04/30/2017).

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 37 of 39

References III

Mudgal, Sidharth, Han Li, Theodoros Rekatsinas, AnHai Doan,
Youngchoon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and
Vijay Raghavendra (2018). “Deep Learning for Entity Matching: A Design
Space Exploration”. In: SIGMOD, pp. 19–34.

Papadakis, George, Ekaterini Ioannou, and Themis Palpanas (2020). “Entity
Resolution: Past, Present and Yet-to-Come.”. In: EDBT, pp. 647–650.

Raedt, Luc De, Angelika Kimmig, and Hannu Toivonen (2007). “ProbLog: A
Probabilistic Prolog and Its Application in Link Discovery”. In: IJCAI,
pp. 2462–2467.

Tsamoura, Efthymia, Víctor Gutiérrez-Basulto, and Angelika Kimmig (2020).
“Beyond the Grounding Bottleneck: Datalog Techniques for Inference in
Probabilistic Logic Programs”. In: AAAI, pp. 10284–10291.

Vlasselaer, Jonas, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and
Luc De Raedt (2016). “TP-Compilation for inference in probabilistic logic
programs”. In: International Journal of Approximate Reasoning 78,
pp. 15–32.

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 38 of 39

References IV

Yu, Wenhao, Wei Peng, Yu Shu, Qingkai Zeng, and Meng Jiang (2020).
“Experimental Evidence Extraction System in Data Science with Hybrid Table
Features and Ensemble Learning”. In: WWW, pp. 951–961.

J. Urbani, September 13, 2020 Practical Uses of Existential Rules in Knowledge Representation slide 39 of 39

	References

