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System NEL is Undecidable
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Abstract

System NEL is a conservative extension of multiplicative exponential linear logic
(extended by the rules mix and nullary mix) by a self-dual noncommutative con-
nective called seq which has an intermediate position between the connectives par
and times. In this paper, I will show that system NEL is undecidable by encoding
two counter machines into NEL. Although the encoding is simple, the proof of the
faithfulness is a little intricate because there is no sequent calculus and no phase
semantics available for NEL.

1 Introduction

Since the beginning of linear logic [5], the complexity of the provability prob-
lem of its fragments has been studied. The multiplicative fragment is NP-
complete [10], the multiplicative additive fragment is PSPACE-complete and
full propositional linear logic is undecidable [16]. The decidability of the mul-
tiplicative exponential fragment (MELL) is still an open problem. But in a
purely noncommutative setting, i.e. in the presence of two mutually dual non-
commutative connectives, the multiplicatives and the exponentials are suffi-
cient to get undecidability [16].

In this paper, I will address the decidability question for a mixed commu-
tative and noncommutative system in which there is only one single self-dual
noncommutative connective. I will show that also in this case, the multiplica-
tives and the exponentials alone are sufficient to get undecidability, as it has
been conjectured in [8]. For showing this, Guglielmi proposes in [6] an en-
coding of Post’s correspondence problem, which makes the noncommutativity
correspond to sequential composition of words. Since I was not able to find
a complete proof along these lines, I will here use an encoding of two counter
machines, which also has the advantage of being simpler. If it turns out that
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Associativity

[R, [T ],U ] = [R,T ,U ]
(R, (T ),U) = (R,T ,U)
〈R; 〈T 〉;U〉 = 〈R;T ;U〉

Commutativity

[R,T ] = [T ,R]
(R,T ) = (T ,R)

Unit
[◦,R] = [R]
(◦,R) = (R)
〈◦;R〉 = 〈R〉
〈R; ◦〉 = 〈R〉

Singleton

[R] = (R) = 〈R〉 = R

Exponentials

?◦ = ◦
!◦ = ◦

??R = ?R
!!R = !R

Negation

◦ = ◦
[R1, . . . , Rh ] = (R̄1, . . . , R̄h)
(R1, . . . , Rh) = [R̄1, . . . , R̄h ]
〈R1; . . . ;Rh〉 = 〈R̄1; . . . ; R̄h〉

?R = !R̄
!R = ?R̄
¯̄R = R

Contextual Closure

if R = T then S{R} = S{T}

Fig. 1. Basic equations for the syntactic equivalence =

MELL is decidable (as many believe), then the border to undecidability is
crossed by this new self-dual noncommutative connective. Such a connective
did first occur in Retoré’s pomset logic [19] and has then been rediscovered in
Guglielmi’s system BV [7]. I conjecture that the two logics are the same, but
the proof of this is not yet complete. The new noncommutative connective
is important for applications in linguistics as well as in concurrency: Because
of the self-duality it corresponds quite well to the notion of sequentiality in
many process algebras. For example, in [3] Bruscoli shows the correspondence
to the prefixing operation of CCS [17].

In the following, I will first (in Section 2) introduce system NEL [9], which
is a conservative extension of MELL plus mix [4] plus nullary mix [1] by a
self-dual noncommutative connective called seq [7]. It has been shown by
Tiu in [21] that a logic containing that connective cannot be presented in
the sequent calculus because deep rewriting is crucial for reasoning with seq.
For that reason, I will use here the calculus of structures [7,8,2], which is a
generalisation of the one-sided sequent calculus. Rules do not work on sequents
but on structures, which are intermediate expressions between formulae and
sequents.

Then, in Section 3, I will introduce two counter machines [18,15] and show
in Section 4 how they are encoded in system NEL. The encoding is pretty
much inspired by [12], and the proof of its completeness is an easy exercise
(done in Section 5).

However, the proof of the faithfulness of the encoding is quite different from
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what has been done so far. There are two reasons for this: First, the simple
way of extracting the computation sequence of the machine from the proof of
the encoding, as done in [16,11] for full linear logic, is not possible because the
calculus of structures allows more freedom in applying and permuting rules
than the sequent calculus does. And second, the use of phase spaces [5], as it
has been done in [13,14,12] is not possible because (so far) there is no phase
semantics available for NEL.

The method I will use instead is the following. The given proof in system
NEL of an encoding of a two-counter machine is first transformed into a certain
normal form, which allows to remove the exponentials. The resulting proof
in the multiplicative fragment has as conclusion a structure which has the
shape of what I call a weak encoding. From this proof, I will extract the
first computation step of the machine and another proof (in the multiplicative
fragment) which has as conclusion again a weak encoding. By an inductive
argument it is then possible to obtain the whole computation sequence. For
this, I will first discuss the multiplicative fragment (namely Guglielmi’s system
BV [7,8]) in Section 6, and then show the full proof in Section 7.

2 System NEL

In order to present a system in the calculus of structures, we first need to
define a language of structures, in the same way as we need to define a lan-
guage of formulae when presenting a system in the sequent calculus or natural
deduction.

Definition 2.1 There are countably many positive and negative atoms. They,
positive or negative, are denoted by a, b, c, d, p and q. Structures are denoted
by S, P , Q, R, T , U , V , W , X and Z. The structures of the language NEL

are generated by

S ::= a | ◦ | [ S, . . . , S︸ ︷︷ ︸
>0

] | (S, . . . , S︸ ︷︷ ︸
>0

) | 〈S; . . . ;S︸ ︷︷ ︸
>0

〉 | ?S | !S | S̄ ,

where ◦, the unit, is not an atom; [S1, . . . , Sh ] is a par structure, (S1, . . . , Sh) is
a times structure, 〈S1; . . . ;Sh〉 is a seq structure, ?S is a why-not structure and
!S is an of-course structure; S̄ is the negation of the structure S. Structures
with a hole that does not appear in the scope of a negation are denoted by
S{ }. The structure R is a substructure of S{R}, and S{ } is its context. I
will simplify the indication of context in cases where structural parentheses
fill the hole exactly: for example, S [R, T ] stands for S{[R, T ]}.

Structures come with equational theories establishing some basic, decidable
algebraic laws by which structures are indistinguishable. These are analogous
to the laws of associativity, commutativity, idempotency, and so on, usually
imposed on sequents. The difference is that the notions of formula and sequent
are merged and the equations are extended to formulae. The structures of the
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◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R,U ], T )
s
S [(R, T ), U ]

S〈[R,U ]; [T, V ]〉
q↓
S [〈R;T 〉, 〈U ;V 〉]

S{![R, T ]}
p↓

S [!R, ?T ]

S{◦}
w↓

S{?R}
S [?R,R]

b↓
S{?R}

Fig. 2. System NEL

language NEL are equivalent modulo the relation =, defined in Fig. 1. There,
R, T and U stand for finite, nonempty sequences of structures (sequences
may contain ‘,’ or ‘;’ separators as appropriate in the context).

There is a straightforward two-way correspondence between structures not
involving seq and formulae of MELL. For example ![(?a, b), c̄, !d̄] corresponds
to !((?a� b)O c⊥O!d⊥), and vice versa. Units are mapped into ◦, since 1 ≡ ⊥,
when the rules mix [4] and mix0 [1] are added to MELL.

The next step in defining a system is to show the inference rules. In the

calculus of structures, an (inference) rule is a scheme
T

ρ
R

, where ρ is the

name of the rule, T is its premise and R is its conclusion. If a rule ρ has
no premise, then it is called an axiom. Observe that contrary to the sequent
calculus, all rules have at most one premise.

A (formal) system, denoted by S, is a set of rules. A derivation in a
system S is a finite sequence of instances of rules of S, and is denoted by
∆; a derivation can consist of just one structure. The topmost structure in a
derivation is called its premise; the bottommost structure is called conclusion.
A derivation ∆ whose premise is T , conclusion is R, and whose rules are in S

is denoted by
T

∆‖S
R

. Similarly, −Π‖S
R

denotes a proof Π, which is a derivation

with no premise.

The rules of system NEL are shown in Fig. 2. Except for the axiom, all are

of the kind
S{T}

ρ
S{R}

. This rule scheme specifies that if a structure matches R,

in a context S{ }, it can be rewritten as specified by T , in the same context
S{ } (or vice versa if one reasons top-down). Fig. 3 shows an example for a
proof in system NEL.

For system NEL, the cut rule has the following shape:
S(R, R̄)

i↑
S{◦}

.

Theorem 2.2 (Cut Elimination) The rule i↑ is admissible for system NEL,

in other words, for every proof −Π‖NEL∪{i↑}
R

, there is a proof −
Π′‖NEL
R

. ut

For a proof of that result and a more detailed discussion on the proof
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◦↓
◦

ai↓
[a, ā]

ai↓
〈[a, ā]; [b, b̄]〉

ai↓
〈[a, ā]; [b, b̄]; [c, c̄]〉

q↓
〈[a, ā]; [〈b; c〉, 〈b̄; c̄〉]〉

q↓
[〈a; b; c〉, 〈ā; b̄; c̄〉]

w↓
[?(〈c; d〉, c̄), 〈a; b; c〉, 〈ā; b̄; c̄〉]

Fig. 3. A proof in system NEL

theory of NEL, the reader is referred to [9]. Observe that NEL is a conservative
extension of MELL+mix+mix0. We have that [R, T ]−◦〈R;T 〉−◦ (R, T ). For
the precise relation between NEL and linear logic, the reader should consult
[20] and [7].

3 Two Counter Machines

Two counter machines have been introduced by Minsky in [18] as two tape
non-writing Turing machines. He showed that any (usual) Turing machine
can be simulated on a two counter machine. In [15], Lambek showed that
any recursive function can be computed by an n counter machine, for some
number n ∈ N.

Definition 3.1 A two counter machine M is a tuple (Q, q0, n0,m0, qf , T ),
where Q is a finite set of states, q0 ∈ Q is called the initial state, qf ∈ Q
is called the final state, the numbers n0,m0 ∈ N are the initial values of
the two counters, and T ⊆ Q × I × Q is a finite set of transitions, where
I = {inc1, dec1, zero1, inc2, dec2, zero2} is the set of possible instructions. A
configuration of M is given by a tuple (q, n,m), where q ∈ Q is a state and
n and m are natural numbers. The configuration (q0, n0,m0) is called initial
configuration. A configuration (q′, n′,m′) is reachable in one step from a con-
figuration (q, n,m), written as (q, n,m) → (q′, n′,m′), if one of the following
six cases holds:

• (q, inc1, q′) ∈ T and n′ = n+ 1 and m′ = m,

• (q, dec1, q′) ∈ T and n > 0 and n′ = n− 1 and m′ = m,

• (q, zero1, q′) ∈ T and n′ = n = 0 and m′ = m,

• (q, inc2, q′) ∈ T and n′ = n and m′ = m+ 1,

• (q, dec2, q′) ∈ T and n′ = n and m > 0 and m′ = m− 1,

• (q, zero2, q′) ∈ T and n′ = n and m′ = m = 0.
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A configuration (q′, n′,m′) is reachable in r steps from a configuration (q, n,m),
written as (q, n,m)→r (q′, n′,m′), if

• r = 0 and (q′, n′,m′) = (q, n,m) or

• r > 1 and there is a configuration (q′′, n′′,m′′) such that
(q, n,m)→ (q′′, n′′,m′′) and (q′′, n′′,m′′)→r−1 (q′, n′,m′).

A configuration (q′, n′,m′) is reachable from a configuration (q, n,m), writ-
ten as (q, n,m) →∗ (q′, n′,m′), if there is an r ∈ N such that (q, n,m) →r

(q′, n′,m′). In other words, the relation →∗ is the reflexive and transitive
closure of →. A two counter machine M = (Q, q0, n0,m0, qf , T ) accepts a
configuration (q, n,m), if (q, n,m)→∗ (qf , 0, 0).

Example 3.2 The running example in this paper will be the following

M= ({q0, q1, q2}, q0, 1, 0, q1, T ) , where

T = {(q0, dec2, q2), (q1, dec1, q1), (q0, zero2, q1)} .

The machine accepts for example the configuration (q0, 8, 0), because
(q0, 8, 0) → (q1, 8, 0) →8 (q1, 0, 0). More precisely, it accepts any configura-
tion (q0, n, 0) for n > 0. In particular it also accepts its initial configuration
(q0, 1, 0).

Theorem 3.3 In general, it is undecidable whether a two counter machine
accepts its initial configuration [18,15]. ut

4 Encoding Two Counter Machines in NEL

Let a be an atom and n ∈ N. Then an denotes the structure 〈a; a; . . . ; a〉 with
n copies of a. More precisely, a0 = ◦ and an = 〈an−1; a〉, for n > 1.

Encoding 4.1 Let a two counter machineM = (Q, q0, n0,m0, qf , T ) be given.
For each state q ∈ Q, I will introduce a fresh atom, also denoted by q. Fur-
ther, I will need four fresh atoms a, b, c and d. Without loss of generality, let
Q = {q0, q1, . . . , qz} for some z > 0. Then qf = qi for some i ∈ {0, . . . , z}. A
configuration (q, n,m) will be encoded by the structure 〈b; an; q; cm; d〉. Since
T is finite, we have T = {t1, t2, . . . , th} for some h ∈ N (if T = ∅, then
h = 0). For each k ∈ {1, . . . , h}, I will define the structure Tk, that encodes
the transition tk, as follows. For all i, j ∈ {0, . . . , z},
• if tk = (qi, inc1, qj), then Tk = (q̄i, 〈a; qj〉),
• if tk = (qi, dec1, qj), then Tk = (〈ā; q̄i〉, qj),
• if tk = (qi, zero1, qj), then Tk = (〈b̄; q̄i〉, 〈b; qj〉),
• if tk = (qi, inc2, qj), then Tk = (q̄i, 〈qj; c〉),
• if tk = (qi, dec2, qj), then Tk = (〈q̄i; c̄〉, qj),
• if tk = (qi, zero2, qj), then Tk = (〈q̄i; d̄〉, 〈qj; d〉).
I will say that a structure T encodes a transition of M, if T = Tk for some
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k ∈ {1, . . . , h}. The machine M is then encoded by the structure

Menc = [?T1, . . . , ?Th, 〈b; an0 ; q0; cm0 ; d〉, 〈b̄; q̄f ; d̄〉] ,

which is called the encoding of M.

Example 4.2 The machine in Example 3.2 is encoded by the structure

Menc = [?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q0; d〉, 〈b̄; q̄1; d̄〉] .

Theorem 4.3 A two counter machine M accepts its initial configuration if
and only if its encoding Menc is provable in NEL.

The remaining sections are devoted to the proof of this theorem. The main
result of this paper is an immediate consequence:

Corollary 4.4 Provability in system NEL is undecidable.

5 Completeness of the Encoding

Lemma 5.1 Given a two counter machine M = (Q, q0, n0,m0, qf , T ).

If (qi, n,m)→ (qj, n
′,m′) then

[?T1, . . . , ?Th, 〈b; an
′
; qj; c

m′ ; d〉, 〈b̄; q̄f ; d̄〉]
‖NEL

[?T1, . . . , ?Th, 〈b; an; qi; c
m; d〉, 〈b̄; q̄f ; d̄〉]

.

Proof. There are six possible cases how the machine M can go from (qi, n,m) to
(qj , n′,m′). I will show only the case where the first counter is decremented (the
others are similar). We have (qi, dec1, qj) ∈ T and n > 0 and n′ = n−1 and m′ = m.
Therefore Tk = (〈ā; q̄i〉, qj) for some k ∈ {1, . . . , h}. Now use

[?T1, . . . , ?Th, 〈b; an−1; qj ; cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈b; an−1; ([q̄i, qi ], qj); cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈b; an−1; (〈[ā, a]; [q̄i, qi ]〉, qj); cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, 〈b; an−1; ([〈ā; q̄i〉, 〈a; qi〉], qj); cm; d〉, 〈b̄; q̄f ; d̄〉]
s

[?T1, . . . , ?Th, 〈b; an−1; [(〈ā; q̄i〉, qj), 〈a; qi〉]; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, 〈[(〈ā; q̄i〉, qj), 〈b; an; qi〉]; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, (〈ā; q̄i〉, qj), 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
b↓ .

[?T1, . . . , ?Th, 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉] ut

Now we can prove the first direction of Theorem 4.3.

Proposition 5.2 Given a two counter machine M = (Q, q0, n0,m0, qf , T ).

If (q0, n0,m0)→∗ (qf , 0, 0) then −‖NEL
Menc

.
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◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R,U ], T )
s
S [(R, T ), U ]

S〈[R,U ]; [T, V ]〉
q↓
S [〈R;T 〉, 〈U ;V 〉]

Fig. 4. System BV

Proof. Use −
Π‖NEL

[?T1, . . . , ?Th, 〈b; qf ; d〉, 〈b̄; q̄f ; d̄〉]
∆‖NEL

[?T1, . . . , ?Th, 〈b; an0 ; q0; cm0 ; d〉, 〈b̄; q̄f ; d̄〉]

,

where ∆ is obtained from Lemma 5.1 by an easy inductive argument and Π exists
trivially (cf. Fig. 3). ut

6 Some Facts about System BV

In order to show the other direction, I need first to establish some properties
of the multiplicative fragment of system NEL. That fragment is called system
BV [8,7] and is shown in Fig. 4.

If a structure R is provable in BV , then every atom a occurs as often in R
as ā. This is easy to see: the only possibility, where an atom a can disappear
is an instance of ai↓. But then at the same time an atom ā does disappear.

A BV structure R is called a non-par structure if it it does not contain a
par structure as substructure. Let R be a BV structure and let a be an atom
occurring in R. I will say that the atom a is unique in R if it occurs exactly
once. For example, in [〈c; c; d〉, 〈c̄; c̄; d̄〉], the atoms d and d̄ are unique, but not
c and c̄. A set P of atoms is called clean if for all atoms a ∈ P , we have ā /∈ P .
If e : P → Q be a mapping, where P and Q are two clean sets of atoms, and R
is a BV structure, then Re is the structure obtained from R where each atom
p ∈ P is replaced by q = e(p) ∈ Q. If for example P = {a, b} and Q = {c} and
e(a) = e(b) = c, then we have [〈a; b; c; d〉, 〈ā; d̄; b̄; ā〉]e = [〈c; c; c; d〉, 〈c̄; d̄; c̄; c̄〉].

The following two lemmata will play a crucial role in the proof of the
faithfulness of the encoding of two counter machines. Lemma 6.1 is almost
a triviality and Lemma 6.2 can be established by using Guglielmi’s Splitting
Lemma [7].

Lemma 6.1 Given two clean sets P and Q of atoms, a mapping e : P → Q
and a structure R. If R is provable in BV , then Re is also provable in BV . ut

Lemma 6.2 Let R = [Z, (V̄ , T ), 〈U ;V ;W 〉] be a BV structure, such that V̄
is a non-par structure and all atoms occurring in V are unique in R. If R is
provable in BV , then R′ = [Z, 〈U ;T ;W 〉] is also provable in BV . ut

Definition 6.3 A BV structure Q is called a negation circuit if there is a
clean set of atoms P = {a1, a2, . . . , an}, such that Q = [Z1, . . . , Zn ], where

• Zj = (aj, āj+1) or Zj = 〈aj; āj+1〉 for every j = 1, . . . , n− 1, and
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• Zn = (an, ā1) or Zn = 〈an; ā1〉.
I will say that a structure P contains a negation circuit if there is a structure
Q, which is a negation circuit that can be obtained from P by replacing some
atoms in P by ◦, and all atoms that occur in Q are unique in P .

Example 6.4 The structure P = [(a, c, [d̄, b]), c̄, 〈b̄; [ā, d]〉] contains the nega-
tion circuit Q = [(a, b), 〈b̄; ā〉] = [(a, ◦, [◦, b]), ◦, 〈b̄; [ā, ◦]〉].

Proposition 6.5 Let P be a BV structure. If P contains a negation circuit,
then P is not provable in BV .

Proof. By induction on the number of atoms in the negation circuit. ut

Remark 6.6 I believe that the converse of Proposition 6.5 does also hold.
This would then immediately imply the equivalence between Guglielmi’s BV
and Retoré’s pomset logic [19].

7 Faithfulness of the Encoding

The main ingredient of the proof of the second direction of Theorem 4.3 is the
notion of weak encoding together with a crucial use of Proposition 6.5.

Definition 7.1 Let M = (Q, q0, n0,m0, qf , T ) be a two counter machine.
Let W = [U1, . . . , Ur, 〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉] be a BV structure for some
r, n,m > 0 and q ∈ Q. Then W is called a weak encoding of M, if the
structures U1, . . . , Ur encode transitions ofM, i.e. for every l ∈ {1, . . . , r}, we
have that Ul = Tk for some k ∈ {1, . . . , h}.

Observe that in a weak encoding W of a machineM, some transitions Tk
might occur many times and some might not occur at all.

Lemma 7.2 Given a two counter machine M = (Q, q0, n0,m0, qf , T ).

If −‖NEL
Menc

then there is a weak encoding W of M, such that

−‖BV
W
‖{w↓,b↓}
Menc

.

Proof. The rules w↓ and b↓ can be permuted under any other rule in NEL. Since
Menc does not contain any !, there are no (nontrivial) instances of p↓. ut

The following lemma is nothing but an act of bureaucracy. The idea is
to rename the atoms q0, . . . , qz that encode the states of the machine in such
a way that each new atom occurs only once. This will then simplify the
extraction of the computation sequence from the proof.

Lemma 7.3 Let M = (Q, q0, n0,m0, qf , T ) be a two counter machine and let
W = [U1, . . . , Ur, 〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉] be a weak encoding of M. Further,
let P = {p0, . . . , pr} be a clean set of r + 1 fresh atoms. If W is provable in
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BV , then there is a structure W̃ = [Ũ1, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] and
a mapping e : P → Q, such that

• W̃ is provable in BV ,

• all atoms p0, p̄0, . . . , pr, p̄r occur exactly once in W̃ ,

• for every l ∈ {1, . . . , r}, the atoms p̄l−1 and pl occur inside Ũl,

• W̃ e = W , and

• for every l ∈ {1, . . . , r}, we have Ũ e
l = Ul′ for some l′ ∈ {1, . . . , r}. ut

Example 7.4 We get W = [(〈ā; q̄1〉, q1), (〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q0; d〉, 〈b̄; q̄1; d̄〉]
as weak encoding for the encoding in Example 4.2. From this we can obtain
W̃ = [ (〈p̄0; d̄〉, 〈p1; d〉) , (〈ā; p̄1〉, p2) , 〈b; a; p0; d〉 , 〈b̄; p̄2; d̄〉 ], with e(p0) = q0

and e(p1) = e(p2) = q1.

The following lemma is at the heart of this paper.

Lemma 7.5 Let M = (Q, q0, n0,m0, qf , T ) a two counter machine and let

W = [U1, . . . , Ur, 〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉] be a weak encoding of M. If −‖BV
W

,
then (q, n,m)→r (qf , 0, 0).

Proof. By induction on r. If r = 0 then W = [〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉]. This is
only provable if n = m = 0 and q = qf , i.e. if W = [〈b; qf ; d〉, 〈b̄; q̄f ; d̄〉]. We trivially
have that (qf , 0, 0)→0 (qf , 0, 0).

Let us now consider the case where r > 0. By Lemma 7.3, there is a set
P = {p0, . . . , pr} of r + 1 fresh atoms, a mapping e : P → Q and a provable
structure W̃ = [Ũ1, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉], with W̃ e = W , and such that
the killer p̄0 of p0 is inside Ũ1. Now we have six cases, how Ũ1 can look like. Let
me here show only the case where Ũ1 = (〈ā; p̄0〉, p1). It contains all the ideas and
the other cases are very similar. In this case we have

W̃ = [ (〈ā; p̄0〉, p1), Ũ2, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

Mark inside W̃ the atom ā inside Ũ1 by ā• and its killer by a•. By way of contradic-
tion, assume now that a• occurs inside Ũl = (p̄l−1, 〈a•; pl〉) for some l ∈ {2, . . . , r}.
This means that

W̃ = [ (〈ā•; p̄0〉, p1), Ũ2, . . . , Ũl−1, (p̄l−1, 〈a•; pl〉), Ũl+1, . . . , Ũr,

〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

But then W̃ contains the negation circuit [(ā•, p1), (p̄1, p2), . . . , (p̄l−1, a
•)]. This

is by Proposition 6.5 a contradiction to the provability of W̃ . Hence, the atom
a• must occur inside the encoding of the configuration, which means that n > 0.
Furthermore, we have that

W̃ = [ (〈ā•; p̄0〉, p1), Ũ2, . . . , Ũr, 〈b; an
′
; a•; an

′′
; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] ,

for some n′, n′′ with n = n′+ 1 +n′′. I will now show that n′′ = 0. For this, assume
by way of contradiction, that n′′ > 0. Mark the first atom a in an

′′
by a◦ and its

killer by ā◦. Then ā◦ must occur inside Ũk = (〈ā◦; p̄k−1〉, pk) for some k ∈ {2, . . . , r}.
Then we have that

10
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W̃ = [ (〈ā•; p̄0〉, p1), Ũ2, . . . , Ũk−1, (〈ā◦; p̄k−1〉, pk), Ũk+1, . . . , Ũr,

〈b; an′ ; a•; a◦; an′′−1; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] , which

contains the negation circuit [〈a•; a◦〉, 〈ā◦; p̄k−1〉, (pk−1, p̄k−2), . . . , (p2, p̄1), (p1, ā
•)],

which is (by Proposition 6.5) a contradiction to the provability of W̃ . Hence, the
atom a◦ cannot exist, which means that n′′ = 0 and n′ = n− 1. This means that

W̃ = [ Ũ2, . . . , Ũr, (〈ā•; p̄0〉, p1), 〈b; an−1; a•; p0; cm; d〉, 〈b̄; p̄r; d̄〉 ] .

Since this is provable in BV , we have (by Lemma 6.2) that

W̃ ′= [ Ũ2, . . . , Ũr, 〈b; an−1; p1; cm; d〉, 〈b̄; p̄r; d̄〉 ]

is also provable. Let now W ′ = W̃ ′e and e(p1) = q′. Then

W ′= [ U1, . . . , Ul−1, Ul+1, . . . , Ur, 〈b; an−1; q′; cm; d〉, 〈b̄; q̄f ; d̄〉 ] ,

for some l ∈ {1, . . . , r}. As before, W ′ is a weak encoding ofM and (by Lemma 6.1)
provable in BV . Hence, we can apply the induction hypothesis and get
(q′, n − 1,m) →r−1 (qf , 0, 0). Furthermore, we have that Ul = Ũ e1 = (〈ā; q̄〉, q′).
Therefore (q, dec1, q′) ∈ T . Since we also have n > 0, we have
(q, n,m)→ (q′, n− 1,m), which gives us (q, n,m)→r (qf , 0, 0). ut

Proposition 7.6 Given a two counter machine M = (Q, q0, n0,m0, qf , T ).

If −‖NEL
Menc

then (q0, n0,m0)→∗ (qf , 0, 0) .

Proof. Immediate from Lemma 7.2 and Lemma 7.5. ut
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