

Hannes Strass

(based on slides by Martin Gebser & Torsten Schaub (CC-BY 3.0))

Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

ASP: Syntax and Semantics

Lecture 10, 9th Jan 2023 // Foundations of Logic Programming, WS 2022/23

Previously ...

- The immediate consequence operator T_P for a normal logic program P characterizes the **supported models** of P (= the models of comp(P)).
- The **stratification** of a program *P* partitions the program in layers (strata) such that predicates in one layer only **negatively**/positively depend on predicates in **strictly lower**/lower or equal layers.
- Programs P that are **stratified** have an intended **standard model** M_P .
- A program is locally stratified iff its "propositional version" is stratified.
- Locally stratified programs allow for a unique perfect model.
- A normal program P may have zero or more well-supported models.

Well-supported models are also known as stable models.

Logic Programming Semantics

LPs \ Model(s)	Least Herbrand	Standard	Perfect	Stable	
Definite	defined, exists, unique				
Stratified		defined, exists, unique			
Locally Stratified			defined, exists, unique		
Normal				defined	

Overview

Motivation: ASP vs. Prolog and SAT

ASP Syntax

Semantics

Variables

Motivation: ASP vs. Prolog and SAT

KR's Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)

- 1. Provide a representation of the problem
- 2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)

- 1. Provide a representation of the problem
- 2. A solution is given by a model of the representation

KR's Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)

- 1. Provide a representation of the problem
- 2. A solution is given by a derivation of a query

Prolog program

```
on(a,b). on(b,c).
```

$$above(X,Y) :- on(X,Y)$$
.

$$above(X,Y) := on(X,Z), above(Z,Y).$$

Prolog program

```
on(a,b). on(b,c).
```

$$above(X,Y) :- on(X,Y).$$

$$above(X,Y) := on(X,Z), above(Z,Y).$$

Prolog queries

Prolog program

```
on(a,b). on(b,c).
```

$$above(X,Y) :- on(X,Y)$$
.

$$above(X,Y) := on(X,Z), above(Z,Y).$$

Prolog queries

Prolog program

```
on(a,b). on(b,c).
```

$$above(X,Y) :- on(X,Y)$$
.

$$above(X,Y) := on(X,Z), above(Z,Y).$$

Prolog queries (testing entailment)

Shuffled Prolog program

```
on(a,b). on(b,c).
```

$$above(X,Y) := above(X,Z), on(Z,Y).$$

$$above(X,Y) :- on(X,Y).$$

Shuffled Prolog program

```
on(a,b). on(b,c).
```

$$above(X,Y) := above(X,Z), on(Z,Y).$$

$$above(X,Y) :- on(X,Y).$$

Prolog queries

Shuffled Prolog program

```
on(a,b). on(b,c).
```

$$above(X,Y) := above(X,Z), on(Z,Y).$$

$$above(X,Y) :- on(X,Y).$$

Prolog queries (answered via fixed execution)

```
?- above(a,c). Fatal Error: local stack overflow.
```


KR's Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)

- 1. Provide a representation of the problem
- 2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)

- 1. Provide a representation of the problem
- 2. A solution is given by a model of the representation

KR's Shift of Paradigm

Model Generation based approach (e.g. SATisfiability testing)

- 1. Provide a representation of the problem
- 2. A solution is given by a model of the representation

Formula

```
on(a, b)

\land on(b, c)

\land (on(X, Y) \rightarrow above(X, Y))

\land (on(X, Z) \land above(Z, Y) \rightarrow above(X, Y))
```


Formula

```
on(a, b)

\land on(b, c)

\land (on(X, Y) \rightarrow above(X, Y))

\land (on(X, Z) \land above(Z, Y) \rightarrow above(X, Y))
```

Herbrand model

```
\left\{ \begin{array}{ccc} on(a,b), & on(b,c), & on(a,c), & on(b,b), \\ above(a,b), & above(b,c), & above(a,c), & above(b,b), & above(c,b) \end{array} \right\}
```



```
Formula

on(a, b) \\
\land on(b, c) \\
\land (on(X, Y) \rightarrow above(X, Y)) \\
\land (on(X, Z) \land above(Z, Y) \rightarrow above(X, Y))

Herbrand model (among 426)

\left\{
on(a, b), on(b, c), on(a, c), on(b, b), \\
above(a, b), above(b, c), above(a, c), above(b, b), above(c, b)
\right\}
```



```
Formula

\begin{array}{l}
on(a,b) \\
\land on(b,c) \\
\land (on(X,Y) \to above(X,Y)) \\
\land (on(X,Z) \land above(Z,Y) \to above(X,Y))
\end{array}

Herbrand model (among 426)

\left\{\begin{array}{l}
on(a,b), \quad on(b,c), \quad on(a,c), \quad on(b,b), \\
above(a,b), \quad above(b,c), \quad above(b,b), \quad above(c,b)
\end{array}\right\}
```



```
Formula

\begin{array}{c}
on(a,b) \\
\land on(b,c) \\
\land (on(X,Y) \rightarrow above(X,Y)) \\
\land (on(X,Z) \land above(Z,Y) \rightarrow above(X,Y))
\end{array}

Herbrand model (among 426)

\left\{\begin{array}{ccc}
on(a,b), & on(b,c), & on(a,c), & on(b,b), \\
above(a,b), & above(b,c), & above(b,b), & above(c,b)
\end{array}\right\}
```


KR's Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)

- 1. Provide a representation of the problem
- 2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)

- 1. Provide a representation of the problem
- 2. A solution is given by a model of the representation

KR's Shift of Paradigm

Model Generation based approach (e.g. SATisfiability testing)

- 1. Provide a representation of the problem
- 2. A solution is given by a model of the representation
 - ➡ Answer Set Programming (ASP)

Logic program

```
on(a,b). on(b,c).
```

$$above(X,Y) :- on(X,Y).$$

$$above(X,Y) := on(X,Z), above(Z,Y).$$

on(a,b). on(b,c).

Logic program

```
above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).
```

Stable Herbrand model

 $\{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) \}$

Logic program

```
on(a,b). on(b,c). above(X,Y) :- on(X,Y). above(X,Y) :- on(X,Z), above(Z,Y). Stable Herbrand model (and no others)
```



```
\{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) \}
```


Logic program (shuffled)

```
on(a,b). on(b,c). above(X,Y) := above(Z,Y), on(X,Z). above(X,Y) := on(X,Y).
```

Stable Herbrand model (and no others)

```
\{ on(a,b), on(b,c), above(b,c), above(a,b), above(a,c) \}
```


ASP versus LP

ASP	Prolog				
Model generation	Entailment proving				
Bottom-up	Top-down				
Modeling language	Programming language				
Rule-based format					
Instantiation	Unification				
Flat terms	Nested terms				
(Turing +) NP(^{NP})	Turing				

ASP versus SAT

ASP	SAT				
Model generation					
Bottom-up					
Constructive Logic	Classical Logic				
Closed (and open) world reasoning	Open world reasoning				
Modeling language	_				
Complex reasoning modes	Satisfiability testing				
Satisfiability Enumeration/Projection Intersection/Union Optimization	Satisfiability — — — —				
(Turing +) NP(NP)	NP				

What is ASP Good For?

 Combinatorial search problems in the realm of P, NP, and NP^{NP} (some with substantial amount of data), like

What is ASP Good For?

- Combinatorial search problems in the realm of P, NP, and NP^{NP} (some with substantial amount of data), like
 - Automated Planning
 - Code Optimization
 - Composition of Renaissance Music
 - Database Integration
 - Decision Support for NASA shuttle controllers
 - Model Checking
 - Product Configuration
 - Robotics
 - Systems Biology
 - System Synthesis
 - (industrial) Team-building
 - and many many more

ASP Syntax

Normal Logic Programs

Definition

- A (normal) **logic program**, P, over a set A of atoms is a finite *set* of rules.
- A (normal) rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where $0 \le m \le n$ and each $a_i \in A$ is an atom for $0 \le i \le n$.

Normal Logic Programs

Definition

- A (normal) **logic program**, P, over a set A of atoms is a finite set of rules.
- A (normal) **rule**, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where $0 \le m \le n$ and each $a_i \in A$ is an atom for $0 \le i \le n$.

• A program *P* is **positive** (definite) : $\iff m = n$ for all $r \in P$.

$$head(r) = a_0 \qquad body(r) = \{a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n\}$$

$$body(r)^+ = \{a_1, \dots, a_m\} \qquad body(r)^- = \{a_{m+1}, \dots, a_n\}$$

$$atom(P) = \bigcup_{r \in P} \left(\{head(r)\} \cup body(r)^+ \cup body(r)^- \right)$$

$$body(P) = \{body(r) \mid r \in P\}$$

Rough Notational Convention

We sometimes use the following notation interchangeably in order to stress the respective view:

	true, false	if	and	or	iff		classical negation
source code		:-	ı			not	-
logic program		\leftarrow	,	;		~	¬
formula	⊤,⊥	\rightarrow	\wedge	\vee	\leftrightarrow	~	¬

Semantics

Definition

- A set of atoms *X* is **closed under** a positive program *P* : \iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^{+} \subseteq X$.
 - X corresponds to a model of P (seen as a formula)

Definition

- A set of atoms X is **closed under** a positive program P : \iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$.
 - X corresponds to a model of P (seen as a formula)
- The **smallest** set of atoms that is closed under a positive program P is denoted by Cn(P).
 - Cn(P) corresponds to the ⊆-smallest model of P

Definition

- A set of atoms X is **closed under** a positive program P : \iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$.
 - X corresponds to a model of P (seen as a formula)
- The **smallest** set of atoms that is closed under a positive program *P* is denoted by *Cn(P)*.
 - Cn(P) corresponds to the ⊆-smallest model of P
- The set Cn(P) of atoms is the stable model of a positive program P.

Consider the logical formula ϕ and its three (classical) models:

$$\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$$

Consider the logical formula ϕ and its three (classical) models:

$$\Phi \ \boxed{q \land (q \land \neg r \rightarrow p)}$$

$$\{p,q\}, \{q,r\}, \text{ and } \{p,q,r\}$$

$$\begin{array}{ccc} p & \mapsto & 1 \\ q & \mapsto & 1 \\ r & \mapsto & 0 \end{array}$$

Consider the logical formula ϕ and its three (classical) models:

 $\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$

Consider the logical formula ϕ and its three (classical) models:

$$\Phi \quad q \wedge (q \wedge \neg r \to p)$$

$$\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$$

Formula ♥ has one stable model, often called answer set:

Consider the logical formula ϕ and its three (classical) models:

$$\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$$

Formula ϕ has one stable model, often called answer set:

$$p \mid q \wedge (q \wedge \neg r \rightarrow p)$$

$$\begin{array}{cccc} P_{\phi} & q & \leftarrow & \\ p & \leftarrow & q, \sim r \end{array}$$

Consider the logical formula ϕ and its three (classical) models:

$$\{p,q\},\{q,r\}, \text{ and } \{p,q,r\}$$

Formula ϕ has one stable model, often called answer set:

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
- if all atoms in *X* are justified by some rule in *P*.

"Justified" here means well-founded support.

(Rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Formula ϕ has one stable model, often called answer set:

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
- if all atoms in *X* are justified by some rule in *P*.

"Justified" here means well-founded support.

(Rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Formula ϕ has one stable model, often called answer set:

$$P_{\phi} \begin{array}{|c|c|} \hline q & \leftarrow \\ \hline p & \leftarrow & q, \sim r \end{array}$$

$$\{p, q\}$$

Informally, a set *X* of atoms is a stable model of a logic program *P*

- if X is a (classical) model of P and
- if all atoms in *X* are justified by some rule in *P*.

"Justified" here means well-founded support.

(Rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Formal Definition Stable Models of Normal Programs

Definition

• The **reduct**, P^X , of a program P relative to a set X of atoms is defined by

$$P^X = \{ head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset \}$$

Formal Definition Stable Models of Normal Programs

Definition

• The **reduct**, P^X , of a program P relative to a set X of atoms is defined by

$$P^X = \{ head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset \}$$

A set X of atoms is a **stable model** of a program P

$$Cn(P^X) = X$$

Formal Definition Stable Models of Normal Programs

Definition

• The **reduct**, P^X , of a program P relative to a set X of atoms is defined by

$$P^X = \{ head(r) \leftarrow body(r)^{+} \mid r \in P \text{ and } body(r)^{-} \cap X = \emptyset \}$$

A set X of atoms is a **stable model** of a program P
 :⇒

$$Cn(P^X) = X$$

- Note: $Cn(P^X)$ is the \subseteq -smallest (classical) model of P^X
- Note: Every atom in X is justified by an "applying rule from P"

A Closer Look at P^X

• In other words, given a set *X* of atoms from *P*,

 P^X is obtained from P by deleting

- 1. each rule having $\sim a$ in its body with $a \in X$ and then
- 2. all negative atoms of the form $\sim a$ in the bodies of the remaining rules

A Closer Look at P^X

In other words, given a set X of atoms from P,

 P^X is obtained from P by deleting

- 1. each rule having $\sim \alpha$ in its body with $\alpha \in X$ and then
- 2. all negative atoms of the form $\sim a$ in the bodies of the remaining rules
- Note Only negative body literals are evaluated w.r.t. X

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	$Cn(P^X)$
{ }	
{ <i>p</i> }	
{ q}	
{ <i>p</i> , <i>q</i> }	

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ← <i>p</i>	{q}
	<i>q</i> ←	
{ <i>p</i> }	<i>p</i> ← <i>p</i>	Ø
{ q}	<i>p</i> ← <i>p q</i> ←	{q}
{ <i>p</i> , <i>q</i> }	<i>p</i> ← <i>p</i>	Ø

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ← <i>p</i>	{q} ✗
	<i>q</i> ←	
{ <i>p</i> }	<i>p</i> ← <i>p</i>	Ø
{ q}	<i>p</i> ← <i>p q</i> ←	{q}
{ <i>p</i> , <i>q</i> }	<i>p</i> ← <i>p</i>	Ø

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ← <i>p</i>	{q} ✗
	<i>q</i> ←	
{ <i>p</i> }	<i>p</i> ← <i>p</i>	Ø X
{ q}	<i>p</i> ← <i>p q</i> ←	{q}
{ <i>p</i> , <i>q</i> }	<i>p</i> ← <i>p</i>	Ø

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ← <i>p</i>	{q} ×
	<i>q</i> ←	
{ <i>p</i> }	<i>p</i> ← <i>p</i>	Ø ×
{ q}	<i>p</i> ← <i>p q</i> ←	{q} ✓
{ <i>p</i> , <i>q</i> }	<i>p</i> ← <i>p</i>	Ø

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ← <i>p</i>	{q} x
	<i>q</i> ←	
{ <i>p</i> }	<i>p</i> ← <i>p</i>	Ø X
{ q}	$\begin{array}{cccc} p & \leftarrow & p \\ q & \leftarrow \end{array}$	{q} ✓
{ <i>p</i> , <i>q</i> }	<i>p</i> ← <i>p</i>	ø x

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

$$P = \{p \leftarrow \sim q, \ q \leftarrow \sim p\}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{p, q}
	<i>q</i> ←	
{ <i>p</i> }	<i>p</i> ←	{ <i>p</i> }
{ q}	<i>a</i> ,	{ <i>q</i> }
	<i>q</i> ←	
{ <i>p</i> , <i>q</i> }		Ø

$$P = \{p \leftarrow \sim q, \ q \leftarrow \sim p\}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{ <i>p</i> , <i>q</i> } ×
	<i>q</i> ←	
{ <i>p</i> }	<i>p</i> ←	{ <i>p</i> }
{ q}		{ <i>q</i> }
	<i>q</i> ←	
{ <i>p</i> , <i>q</i> }		Ø

$$P = \{p \leftarrow \sim q, \ q \leftarrow \sim p\}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{ <i>p</i> , <i>q</i> } ×
	<i>q</i> ←	
{ <i>p</i> }	<i>p</i> ←	{p} v
{ q}		{q}
	<i>q</i> ←	7.17
{ <i>p</i> , <i>q</i> }		Ø

$$P = \{p \leftarrow \sim q, \ q \leftarrow \sim p\}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{ <i>p</i> , <i>q</i> } ×
	<i>q</i> ←	
{ <i>p</i> }	<i>p</i> ←	{p} •
{ q}	q ←	{q} ✓
{ <i>p</i> , <i>q</i> }	-	Ø

$$P = \{p \leftarrow \sim q, \ q \leftarrow \sim p\}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{ <i>p</i> , <i>q</i> } ×
	<i>q</i> ←	
{ <i>p</i> }	<i>p</i> ←	{p} v
{ q}	<i>q</i> ←	{q} ✓
{ <i>p</i> , <i>q</i> }		Ø ×

$$P = \{p \leftarrow \sim p\}$$

$$P = \{p \leftarrow \sim p\}$$

Χ	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{ <i>p</i> }
{ <i>p</i> }		Ø

$$P = \{p \leftarrow \sim p\}$$

Χ	P^X	$Cn(P^X)$	
{ }	<i>p</i> ←	{ <i>p</i> }	X
{ <i>p</i> }		Ø	

$$P = \{p \leftarrow \sim p\}$$

Χ	P^X	$Cn(P^X)$	
{ }	<i>p</i> ←	{ <i>p</i> }	X
{ <i>p</i> }		Ø	X

Quiz: Stable Models

Quiz

Consider the following normal logic program *P*: ...

Some Properties

• A logic program may have zero, one, or multiple stable models.

Some Properties

- A logic program may have zero, one, or multiple stable models.
- If X is a stable model of a logic program P, then X is a model of P (seen as a formula).
- If X and Y are distinct stable models of a logic program P, then X ⊈ Y.

Variables

Definition

Let *P* be a logic program with first-order atoms (built from predicates over terms, where terms are built from constant/function symbols and variables).

- Let T be a set of (variable-free) terms.
- Let A be a set of (variable-free) atoms constructable from T.

Definition

Let *P* be a logic program with first-order atoms (built from predicates over terms, where terms are built from constant/function symbols and variables).

- Let τ be a set of variable-free terms (also called Herbrand universe).
- Let A be a set of (variable-free) atoms constructable from T (also called Herbrand base).

Definition

Let *P* be a logic program with first-order atoms (built from predicates over terms, where terms are built from constant/function symbols and variables).

- Let T be a set of (variable-free) terms.
- Let A be a set of (variable-free) atoms constructable from T.
- For a rule $r \in P$ (with variables), the **ground instances** of r are the variable-free rules obtained by replacing all variables in r by elements from \mathfrak{T} :

$$ground(r) := \{r\theta \mid \theta : var(r) \rightarrow \mathfrak{T} \text{ and } var(r\theta) = \emptyset\}$$

where var(r) stands for the set of all variables occurring in r; θ is a (ground) substitution.

Definition

Let *P* be a logic program with first-order atoms (built from predicates over terms, where terms are built from constant/function symbols and variables).

- Let T be a set of (variable-free) terms.
- Let A be a set of (variable-free) atoms constructable from \mathfrak{T} .
- For a rule r ∈ P (with variables), the ground instances of r are the variable-free rules obtained by replacing all variables in r by elements from T:

$$ground(r) := \{r\theta \mid \theta : var(r) \rightarrow \mathfrak{T} \text{ and } var(r\theta) = \emptyset\}$$

where var(r) stands for the set of all variables occurring in r; θ is a (ground) substitution.

• The **ground instantiation** of *P* is $ground(P) := \bigcup_{r \in P} ground(r)$.

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$\mathfrak{I} = \{ a,b,c \}$$

$$\mathcal{A} = \{ r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \}$$

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$T = \{a,b,c\}$$

$$A = \begin{cases} r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), \\ t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \end{cases}$$

$$ground(P) = \begin{cases} r(a,b) \leftarrow, \\ r(b,c) \leftarrow, \\ t(a,a) \leftarrow r(a,a), t(b,a) \leftarrow r(b,a), t(c,a) \leftarrow r(c,a), \\ t(a,b) \leftarrow r(a,b), t(b,b) \leftarrow r(b,b), t(c,b) \leftarrow r(c,b), \\ t(a,c) \leftarrow r(a,c), t(b,c) \leftarrow r(b,c), t(c,c) \leftarrow r(c,c) \end{cases}$$

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$\mathfrak{T} = \{ a,b,c \}$$

$$\mathcal{A} = \left\{ r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \right\}$$

$$ground(P) = \left\{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(b,c) \leftarrow, t(b,c)$$

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$\mathfrak{T} = \{ a,b,c \}$$

$$\mathcal{A} = \left\{ r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \right\}$$

$$ground(P) = \left\{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(a,b) \leftarrow, t(b,c) \leftarrow, t(a,b) \leftarrow, t(b,c) \leftarrow, t(a,b) \leftarrow, t(b,c) \leftarrow, t(b,c)$$

Intelligent Grounding aims at reducing the ground instantiation.

Stable Models of Programs with Variables

Definition

Let *P* be a normal logic program with variables.

A set X of ground atoms is a **stable model** of P:

$$Cn(ground(P)^X) = X$$

Example

The normal first-order program $P = \{even(0) \leftarrow, even(s(X)) \leftarrow \sim even(X)\}$ has the single stable model

$$S = \{even(0), even(s(s(0))), even(s(s(s(0)))), \ldots\}$$

since the reduct $ground(P)^S$ is given by $\{even(0) \leftarrow, even(s(s(0))) \leftarrow, \ldots\}$.

Well-Supported Models = Stable Models

Theorem (Fages, 1991)

For any normal (first-order) logic program *P*, its well-supported models coincide with its stable models.

Proof Ideas.

- For X a stable model of P, define $A \prec_X B : \iff$ for some $i \in \mathbb{N}$, $A \in T_{P^X} \uparrow i$ and $B \in T_{P^X} \uparrow (i+1) \setminus T_{P^X} \uparrow i$. Show that X is well-supported via \prec_X .
- For M a well-supported model of P via \prec , show by induction that for any atom $A \in M$, there is $i \in \mathbb{N}$ with $A \in T_{P^M} \uparrow i$. For this, employ that \prec is well-founded and use the cardinality of the set $\{B \mid B \prec A\}$.

Recall: A Herbrand interpretation $I \subseteq \mathcal{A}$ is **well-supported** : \iff there is a well-founded ordering \prec on \mathcal{A} such that:

for each $A \in I$ there is a clause $A \leftarrow \vec{B} \in ground(P)$ with:

 $I \models \vec{B}$, and for every positive atom $C \in \vec{B}$, we have $C \prec A$.

Conclusion

Summary

- PROLOG-based logic programming focuses on theorem proving.
- LP based on stable model semantics focuses on model generation.
- The **stable model** of a positive program is its least (Herbrand) model.
- The **stable models** of a normal logic program P are those sets X for which X is the stable model of the positive program P^X (the reduct).
- The well-supported model semantics equals stable model semantics.

Suggested action points:

- Download the solver clingo and try out the examples of this lecture.
- Clarify: How do stable models have justified support for true atoms?

