
DATABASE THEORY

Lecture 4: Complexity of FO Query Answering

Sebastian Rudolph

Computational Logic Group

Slides based on Material of Markus Krötzsch and David Carral

TU Dresden, 26th Apr 2021

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2019)
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

How to Measure Query Answering Complexity

Query answering as decision problem
{ consider Boolean queries

Various notions of complexity:

• Combined complexity (complexity w.r.t. size of query and database instance)

• Data complexity (worst case complexity for any fixed query)

• Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime

Sebastian Rudolph, 26th Apr 2021 Database Theory slide 2 of 11

An Algorithm for Evaluating FO Queries

function Eval(ϕ,I)

01 switch (ϕ) {

02 case p(c1, . . . , cn) : return 〈c1, . . . , cn〉 ∈ pI

03 case ¬ψ : return ¬Eval(ψ,I)

04 case ψ1 ∧ ψ2 : return Eval(ψ1,I) ∧ Eval(ψ2,I)

05 case ∃x.ψ :

06 for c ∈ ∆I {

07 if Eval(ψ[x 7→ c],I) then return true

08 }

09 return false

10 }

Sebastian Rudolph, 26th Apr 2021 Database Theory slide 3 of 11

FO Algorithm Worst-Case Runtime

Let m be the size of ϕ, and let n = |I| (total table sizes)

• Maximum depth of recursion (=max tree depth)?
{ in an Eval call (on a formula), Eval is called recursively only on shorter formulas
{ recursion depth bounded by length of ϕ: at most m

• Maximum number of direct calls from within one Eval call (=max branching degree)?
{ |∆I| ≤ n (lines 06–08) – unless |∆I| < 2, then it may still be 2 (line 04)
{ to be on the safe side, pick n + 2

• Maximum number of total Eval calls?
max tree depth∑

depth=0

(max branching degree)depth =

m∑
i=0

(n + 2)i ≤ (n + 2)m+1

• Maximum time needed for one Eval call (without subcalls)?
{ Checking 〈c1, . . . , cn〉 ∈ pI can be done in linear time w.r.t. n (line 02)
{ so can the for loop (lines 06-08), all other cases are less costly

Runtime in (n + 2)m+1 · O(n) ≤ O((n + 2)m+2)

Sebastian Rudolph, 26th Apr 2021 Database Theory slide 4 of 11

Time Complexity of FO Algorithm

Let m be the size of ϕ, and let n = |I| (total table sizes)

Runtime in O((n + 2)m+2)

Time complexity of FO query evaluation

• Combined complexity: in ExpTime

• Data complexity (m is constant): in P

• Query complexity (n is constant): in ExpTime

Sebastian Rudolph, 26th Apr 2021 Database Theory slide 5 of 11

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let m be the size of ϕ, and let n = |I| (total table sizes)

• For each (recursive) call, store pointer to current subexpression of ϕ: log m

• For each variable in ϕ (at most m), store current constant assignment (as a
pointer): m · log n

• Checking 〈c1, . . . , cn〉 ∈ pI can be done in logarithmic space w.r.t. n

Memory in m log m + m log n + log n = m log m + (m + 1) log n

Sebastian Rudolph, 26th Apr 2021 Database Theory slide 6 of 11

Space Complexity of FO Algorithm

Let m be the size of ϕ, and let n = |I| (total table sizes)

Memory in m log m + (m + 1) log n

Space complexity of FO query evaluation

• Combined complexity: in PSpace

• Data complexity (m is constant): in L

• Query complexity (n is constant): in PSpace

Sebastian Rudolph, 26th Apr 2021 Database Theory slide 7 of 11

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace.
Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO query evaluation
{ QBF satisfiability

Let Q1X1. Q2X2. · · · QnXn.ϕ[X1, . . . , Xn] be a QBF (with Qi ∈ {∀,∃})
• Database instance I with ∆I = {0, 1}
• One table with one row: true(1)
• Transform input QBF into Boolean FO query

Q1x1. Q2x2. · · · Qnxn.ϕ[X1 7→ true(x1), . . . , Xn 7→ true(xn)]

It is easy to check that this yields the required reduction. �

Sebastian Rudolph, 26th Apr 2021 Database Theory slide 8 of 11

PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF ∃p.¬p leads to FO query ∃x.¬true(x)

Better approach:

• Consider QBF Q1X1. Q2X2. · · · QnXn.ϕ[X1, . . . , Xn] with ϕ in negation normal form:
negations only occur directly before variables Xi (still PSpace-complete: exercise)

• Database instance I with ∆I = {0, 1}
• Two tables with one row each: true(1) and false(0)
• Transform input QBF into Boolean FO query

Q1x1. Q2x2. · · · Qnxn.ϕ′

where ϕ′ is obtained by replacing each negated variable ¬Xi with false(xi) and
each non-negated variable Xi with true(xi).

Sebastian Rudolph, 26th Apr 2021 Database Theory slide 9 of 11

Combined Complexity of FO Query Answering

Summing up, we obtain:

Theorem 4.1: The evaluation of FO queries is PSpace-complete with respect to
combined complexity.

We have actually shown something stronger:

Theorem 4.2: The evaluation of FO queries is PSpace-complete with respect to
query complexity.

Sebastian Rudolph, 26th Apr 2021 Database Theory slide 10 of 11

Summary and Outlook

The evaluation of FO queries is

• PSpace-complete for combined complexity

• PSpace-complete for query complexity

Open questions:

• What is the data complexity of FO queries?

• Are there query languages with lower complexities? (next lecture)

• Which other computing problems are interesting?

Sebastian Rudolph, 26th Apr 2021 Database Theory slide 11 of 11

