
DATABASE THEORY

Lecture 6: Conjunctive Queries

David Carral

Knowledge-Based Systems

TU Dresden, 30th April 2019

Review: FO Query Complexity

The evaluation of FO queries is

• PSpace-complete for combined complexity

• PSpace-complete for query complexity

• AC0-complete for data complexity

{ PSpace is rather high
{ Are there relevant query languages that are simpler than that?

Markus Krötzsch, 30th April 2019 Database Theory slide 2 of 35

Conjunctive Queries

Idea: restrict FO queries to conjunctive, positive features

Definition 6.1: A conjunctive query (CQ) is an expression of the form

9y1, . . . , ym.A1 ^ . . . ^ A`

where each Ai is an atom of the form R(t1, . . . , tk). In other words, a conjunctive
query is an FO query that only uses conjunctions of atoms and (outer) existential
quantifiers.

Example: “Find all lines that depart from an accessible stop” (as seen in earlier lectures)

9ySID, yStop, yTo.Stops(ySID, yStop,"true") ^ Connect(ySID, yTo, xLine)

Markus Krötzsch, 30th April 2019 Database Theory slide 3 of 35

Conjunctive Queries in Relational Calculus

The expressive power of CQs can also be captured in the relational calculus

Definition 6.2: A conjunctive query (CQ) is a relational algebra expression
that uses only the operations select �n=m, project ⇡a1,...,an

, join ./, and renaming
�a1,...,an!b1,...,bn

.

Renaming is only relevant in named perspective
{ CQs are also known as SELECT-PROJECT-JOIN queries

Markus Krötzsch, 30th April 2019 Database Theory slide 4 of 35

Extensions of Conjunctive Queries

Two features are often added:

• Equality: CQs with equality can use atoms of the form t1 ⇡ t2

(in relational calculus: table constants)

• Unions: unions of conjunctive queries are called UCQs
(in this case the union is only allowed as outermost operator)

Both extensions truly increase expressive power
(as shown in exercise)

Features omitted on purpose: negation and universal quantifiers
{ the reason for this is query complexity (as we shall see)

Markus Krötzsch, 30th April 2019 Database Theory slide 5 of 35

Boolean Conjunctive Queries

A Boolean conjunctive query (BCQ) asks for a mapping from query variables to domain
elements such that all atoms are true

Example: “Is there an accessible stop where some line departs?”

9ySID, yStop, yTo, yLine.Stops(ySID, yStop,"true") ^ Connect(ySID, yTo, yLine)

Stops:

SID Stop Accessible

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

Connect:

From To Line

57 42 85

17 789 3

.

Markus Krötzsch, 30th April 2019 Database Theory slide 6 of 35

How Hard is it to Answer CQs?

If we know the variable mappings, it is easy to check:

• Checking if a single ground atom R(c1, . . . , ck) holds can be done in linear time

• Checking if a conjunction of ground atoms holds can be done in quadratic time

{ A candidate BCQ match can be verified in P
(There are n

m candidates: n size of domain; m number of query variables)

Theorem 6.3: BCQ query answering is in NP for combined complexity (and also
for query complexity).

{ Better than PSpace (presumably)

Markus Krötzsch, 30th April 2019 Database Theory slide 7 of 35

Can we do any better?

Not really. To see this, let’s look at some other problems.

Consider two relational structures I and J
(= database instances, interpretations, hypergraphs)

Definition 6.4: A homomorphism h from I to J is a function h : �I ! �J such
that, for all relation names R:

if hd1, . . . , dni 2 R
I then hh(d1), . . . , h(dn)i 2 R

J .

The homomorphism problem is the question if there is a homomorphism
from I to J .

Markus Krötzsch, 30th April 2019 Database Theory slide 8 of 35

Example: Three-colouring as Homomorphism

I : J :

1 2

1 5

1 6

2 3

2 7

3 4

3 8

.

1

2

3

45

6

7

8

910

r g

r b

g r

g b

b r

b g

3-colouring is NP-hard
{ the homomorphism problem is NP-hard

Markus Krötzsch, 30th April 2019 Database Theory slide 9 of 35

BCQ Answering as Homomorphism Problem

The homomorphism problem can be reduced to BCQ answering:

• A relational structure I gives rise to a CQ QI:
replace domain elements by variables (one-to-one); add one query atom per
relational tuple; existentially quantify all variables

• I has a homomorphism to J if and only if J |= QI

BCQ answering can be reduced to the homomorphism problem:

• Clear for BCQs that don’t contain constants

• Eliminate query constants a: create new relation Ra = {hai}; replace a by a fresh
variable x and add a query atom Ra(x)

{ both problems are equivalent

Markus Krötzsch, 30th April 2019 Database Theory slide 10 of 35

Complexity of Conjunctive Query Answering

We showed that BCQ answering is in NP and that the homomorphism problem is
NP-hard, therefore:

Theorem 6.5: BCQ answering is

• NP-complete for combined complexity

• NP-complete for query complexity

• in AC0 for data complexity (inherited from FO queries)

Markus Krötzsch, 30th April 2019 Database Theory slide 11 of 35

Constraint Satisfaction Problems

Another important problem equivalent to BCQ answering

Definition 6.6: A constraint satisfaction problem (CSP) over a domain � is given
by a set of variables {x1, . . . , xn} and a set of constraints {C1, . . . , Cm}, where each
constraint Ci has the form hXi, Rii with

• Xi a list of variables from {x1, . . . , xn},
• Ri a |Xi|-ary relation over �.

A solution to the CSP is an assignment of variables to values from � such that all
constraints are satisfied (=all tuples occur in the respective relations).

{ alternative notation for BCQ answering/homomorphism problem

Markus Krötzsch, 30th April 2019 Database Theory slide 12 of 35

CSP Example

A combinatorial crossword puzzle:

Domain: � = {A, . . . , Z}
Variables: x1, . . . , x26

Constraints:

x1 x2 x3 x4 x5 x6

x7 x8 x9 x10

x11 x12 x13 x14 x15

x16 x17 x18 x19

x20 x21 x22 x23 x24 x25 x26

1 vertically:
H E A R T

H O N E Y

I R O N Y

L O G I C

1 horizontally:
H A P P Y

I N F E R

L A B O R

L A T E R

5 vertically:
R A D I O

R E T R O

Y A C H T

Y E R B A

. . .

Markus Krötzsch, 30th April 2019 Database Theory slide 13 of 35

Equivalent Problems

Summing up, the following problems are equivalent:

• Answering a conjunctive query over a database instance

• Finding a homomorphism from a relational structure to another

• Solving a constraint satisfaction problem

Each of these problems is NP-complete

Markus Krötzsch, 30th April 2019 Database Theory slide 14 of 35

Tractable CQ Answering

Markus Krötzsch, 30th April 2019 Database Theory slide 15 of 35

How to reduce complexities?

NP-complete query complexity is still intractable

Can we do better?

Idea:

• We have encoded 3-colourability to show NP-hardness

• Can we avoid hardness by restricting to certain cases?

Markus Krötzsch, 30th April 2019 Database Theory slide 16 of 35

Excursion: CSP Complexity

The problem of 3-colourability was captured by the target structure of the
homomorphism:

This part of the problem is called the template in CSP.

Another template:

{ 2-colourability, a well-known problem in P

Markus Krötzsch, 30th April 2019 Database Theory slide 17 of 35

Excursion: CSP Complexity (2)

Can we study CSP complexity based on a given template?

Yes, for a fixed template, there are still infinitely many instances, and we can ask for the
complexity of the resulting language.

In 1993, Feder and Vardi famously conjecture the following

Feder–Vardi Conjecture (simplified): For any fixed template, the CSP-problem
is either NP-complete or contained in P.

What’s the big deal?

• According to Ladner’s Theorem, if P , NP, then there are problems that are neither
in P nor hard for NP– so-called NP-intermediate problems1

• According to Feder/Vardi, such problems do not exist in CSPs (which might
contribute to explaining why they seem to be relatively rare)

1 For more details, see our lecture Complexity Theory

Markus Krötzsch, 30th April 2019 Database Theory slide 18 of 35

The End of the Feder–Vardi Conjecture

In 2017, the Feder–Vardi Conjecture has been proven independently by two authors:

• Andrei A. Bulatov: A Dichotomy Theorem for Nonuniform CSPs (FOCS 2017)

• Dmitriy Zhuk: A Proof of CSP Dichotomy Conjecture (FOCS 2017)

A third attempt by Tomás Feder, Jeff Kinne, and Arash Rafiey did not (so far) work out

These and further results have also significantly improved our understanding of tractable
templates. For more information, look out for lectures by Manuel Bodirsky (TU Dresden)

Can we exploit this for better BCQ answering complexities?

Not really:

• The template corresponds to the database in CQ answering

• We do not want to answer many queries over fixed databases

• Assuming that only families of “easy” databases are considered is not realistic

Markus Krötzsch, 30th April 2019 Database Theory slide 19 of 35

Towards Better Complexities

Idea 2:

• Searching a match may require backtracking, eventually exploring all options

• Can we constrain the query to avoid this?

H A P P Y

O A

N E W C

E A H

Y Y T

Intuition: life would be easier if we would not have to go back so much . . .
{ the problem is with the cycles

Markus Krötzsch, 30th April 2019 Database Theory slide 20 of 35

Example: Cyclic CQs

“Is there a child whose parents are married with each other?”

9yc, ym, yf .mother(yc, ym) ^ father(yc, yf) ^married(ym, yf)

ym

yf

yc

{ cyclic query

Markus Krötzsch, 30th April 2019 Database Theory slide 21 of 35

Example: Acyclic CQs

“Is there a child whose parents are married with someone?”

9yc, ym, yf , ymm, ymf .mother(yc, ym) ^ father(yc, yf) ^married(ym, ymm) ^married(ymf , yf)

ymmym

yf

yc

ymf

{ acyclic query

Markus Krötzsch, 30th April 2019 Database Theory slide 22 of 35

Defining Acyclic Queries

Queries in general are hypergraphs
{What does “acyclic” mean?

y1 y2

y4

y6

y5

y3

y1 y2

y4y5

y3

y6

y1 y2

y4

y3

View hypergraphs as graphs to check acyclicity?

• Primal graph: same vertices; edges between each pair of vertices that occur
together in a hyperedge

• Incidence graph: vertices and hyperedges as vertices, with edges to mark
incidence (bipartite graph)

However: both graphs have cycles in almost all cases

Markus Krötzsch, 30th April 2019 Database Theory slide 23 of 35

Acyclic Hypergraphs

GYO-reduction algorithm to check acyclicity:
(after Graham [1979] and Yu & Özsoyoğlu [1979])

Input: hypergraph H = hV, Ei (we don’t need relation labels here)
Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all vertices that occur in at most one hyperedge

(2) Delete all hyperedges that are empty or that are contained in other hyperedges

Definition 6.7: A hypergraph is acyclic if its GYO-reduct is h;, ;i.
A CQ is acyclic if its associated hypergraph is.

Markus Krötzsch, 30th April 2019 Database Theory slide 24 of 35

Example 1: GYO-Reduction

1

2

4

3

7

5

6

2

4

3

7

2

4

3

7

2

4

2

4

Rule (1) Rule (2)

Rule (1) Rule (2)

Ru
le

 (1
)

Ru
le

 (2
)

�

Markus Krötzsch, 30th April 2019 Database Theory slide 25 of 35

Example 2: GYO-Reduction

1

2

4

3

7

5

6

Rule (1) Rule (2)

Ru
le

 (1
)

2

4

3

7

5

2

4

3

7

5

2

4

7

5

Rule (2)

Rule (1)

Markus Krötzsch, 30th April 2019 Database Theory slide 26 of 35

Alternative Version of GYO-Reduction

An ear of a hypergraph hV, Ei is a hyperedge e 2 E that satisfies one of the following:

(1) there is an edge e
0 2 E such that e , e

0 and every vertex of e is either only in e or
also in e

0, or

(2) e has no intersection with any other hyperedge.

Example:

4
5

6

7
8

9 1
23

0

{ edges h4, 5, 6i and h7, 8, 9i are ears

Markus Krötzsch, 30th April 2019 Database Theory slide 27 of 35

Examples

Any ears?

y1 y2

y4

y6

y5

y3

y1 y2

y4y5

y3

y6

y1 y2

y4

y3

Markus Krötzsch, 30th April 2019 Database Theory slide 28 of 35

GYO’-Reduction

Input: hypergraph H = hV, Ei
Output: GYO’-reduct of H

Apply the following simplification rule as long as possible:

• Select an ear e of H

• Delete e

• Delete all vertices that only occurred in e

Theorem 6.8: The GYO-reduct is h;, ;i if and only if the GYO’-reduct is h;, ;i

{ alternative characterization of acyclic hypergraphs

Markus Krötzsch, 30th April 2019 Database Theory slide 29 of 35

Join Trees

Both GYO algorithms can be implemented in linear time

Open question: what benefit does BCQ acyclicity give us?

Fact: if a BCQ is acyclic, then it has a join tree

Definition 6.9: A join tree of a (B)CQ is an arrangement of its query atoms in
a tree structure T, such that for each variable x, the atoms that refer to x are a
connected subtree of T.

A (B)CQ that has a join tree is called a tree query.

Markus Krötzsch, 30th April 2019 Database Theory slide 30 of 35

Example: Join Tree

9x, y, z, t, u, v, w.
�
r(x, y, z) ^ r(t, u, y) ^ s(u, v, y, z) ^ q(t, w)

�

x

y

u

z

t

v

w r(x,y,z)

s(u,v,y,z)

r(t,u,y)

q(t,w)

sr

rq

Markus Krötzsch, 30th April 2019 Database Theory slide 31 of 35

Processing Join Trees Efficiently

Join trees can be processed in polynomial time

Key ingredient: the semijoin operation

Definition 6.10: Given two relations R[U] and S[V], the semijoin R
InS

I is defined
as ⇡U(RI ./ S

I).

Join trees can now be processed by computing semijoins bottom-up
{ Yannakakis’ Algorithm

Markus Krötzsch, 30th April 2019 Database Theory slide 32 of 35

Yannakakis’ Algorithm by Example

r(x,y,z)

s(u,v,y,z)

r(t,u,y)

q(t,w)

n

n n

s:

I

2 8 3 5

I

2 4 4 6

I...

3 4 2 3

I

7 1 3 5

8 5 6 4

I

9 2 7 3

r:

...
I

1 2 3

I

3 3 5

I

4 7 3

I

7 9 7

r:

...
I

1 2 3

I...

3 3 5

4 7 3

7 9 7

q:

...
I

2 3

4 5

4 7

6 5

7 2

Markus Krötzsch, 30th April 2019 Database Theory slide 33 of 35

Yannakakis’ Algorithm: Summary

Polynomial time procedure for answering BCQs

Does not immediately compute answers in the version given here
{ modifications needed

Even tree queries can have exponentially many results,
but each can be computed (not just checked) in P
{ output-polynomial computation of results

Markus Krötzsch, 30th April 2019 Database Theory slide 34 of 35

Summary and Outlook

Conjunctive queries (CQs) are an important special case of FO queries

Boolean CQ answering, the homomorphism problem and constraint satisfaction
problems are equivalent and NP-complete

CQ answering is simpler, namely in P, when CQs are tree queries

• Check acyclicity with GYO algorithm

• Evaluate query using Yannakakis’ Algorithm

Open questions:

• Tree queries are rather special. Are there more general conditions for good
queries?

• What about query optimisation?

Markus Krötzsch, 30th April 2019 Database Theory slide 35 of 35

