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Introduction – The Missionaries and Cannibals Puzzle

I Puzzle Three missionaries and three cannibals come to a river.
A rowboat that seats two is available. If the cannibals ever outnumber the
missionaries on either bank of the river, the missionaries will be eaten.
How shall the missionaries and the cannibals cross the river?

I Representation MCB where

. M denotes the number of missionaries on the left bank of the river

. C denotes the number of cannibals on the left bank of the river

. B denotes the number of rowboats on the left bank of the river

I Solution

(331, 220, 321, 300, 311, 110, 221, 020, 031, 010, 021, 000)

Can it be derived as a logical consequence of a first order formalization?
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Problems

I Unless it can be deduced that an object is present,
we conjecture that it is not present

I Unless there is something wrong with the boat or something else prevents
the boat from using it, it can be used to cross the river
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Non-Monotonic Logics

I A logic 〈A,L, |=〉 is said to be non-monotonic
iff there exist K, K′ and G such that

K |= G and K ∪ K′ 6|= G

where K and K′ are sets of formulas in L and G is a formula in L

I Propositional and first order logic are monotonic  Exercise
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Closed World Assumption

I Open world assumption (OWS)
the only answers given to a query are those that can be obtained from proofs of
the query, given the knowledge base

I Closed world assumption (CWS)
certain additional answers are admitted as a result of a failure to prove a result

I Example

. K = {lectures(steffen, cl1), lectures(steffen, cl5),
lectures(michael, cl2), lectures(michael, cl5),
lectures(heiko, cl4), lectures(horst, cl3)}

. query OWS CWS

K |= (∃X) lectures(steffen, X) yes yes
K |= ¬lectures(michael, cl6) no yes
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The Formal Theory

I Let 〈A,L, |=〉 be a first order logic

I Let K ⊆ L be a satisfiable set of formulas

I C(K) = {G | K |= G} is the theory or closure of K

I Let KCWA = {¬A | A is a ground atom in L and K 6|= A}

I CCWA(K) = C(K ∪ KCWA) is the theory of K under the closed world assumption
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Satisfiability

I Is CCWA(K) satisfiable?

I Consider K = {leakyValve ∨ puncturedTube}

. K 6|= leakyValve

. K 6|= puncturedTube

. {¬leakyValve,¬puncturedTube} ⊆ KCWA

. K ∪KCWA ⊇ {leakyValve ∨ puncturedTube, ¬leakyValve,¬puncturedTube}

. K ∪ KCWA is unsatisfiable!

I Theorem Let K be a satisfiable set of formulas in Skolem normal form.
CCWA(K) is satisfiable iff K admits a least Herbrand model
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Models and the Closed World Assumption

I Let M = (D, ·I ) and M′ = (D′, ·I′) be two models of K

I LetR be the set of relation symbols in L and P ⊆ R

I M is a submodel of M′ wrt P (M �P M′) iff
D = D′ and ·I , ·I′ are identical except that for all q ∈ P we find qI ⊆ qI′

. (qI is often called the extension of q under I)

I If P = R then we write M � M′ instead of M �P M′

I A model M of K is minimal
iff for all models M′ of K we find that M′ � M implies M = M′

I M ≺ M′ iff M � M′ and M 6= M′

I A model M of K is the least model of K
iff for all models M′ of K we find M 6= M′ implies M ≺ M′

I The closed world assumption eliminates non-least models!
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Remarks

I K 6|= A cannot be decided in first-order logic!

I There are several extensions of the closed world assumption
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Completion

I Can we add more complex formulas than negative ground atoms
to a knowledge base?

I Let F = {tweedy, john} and R = {penguin}

I Let K = {penguin(tweedy)}

I Models for K

. M1 = {penguin(tweedy)}

. M2 = {penguin(tweedy), penguin(john)}

I M1 ≺ M2

I How can the least model be computed?

I Another example K = {penguin(tweedy), penguin(john)}

I And another one K = {(∀X) (¬fly(X)→ fly(X))}
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Solitary Clauses

I An occurrence of an n-ary predicate symbol p in a clause C is said to be

. positive iff we find terms ti , 1 ≤ i ≤ n, such that p(t1, . . . , tn) ∈ C

. negative iff we find terms ti , 1 ≤ i ≤ n, such that ¬p(t1, . . . , tn) ∈ C

I A set K of clauses is said to be solitary wrt p
iff for each clause C ∈ K we find that if C contains a positive occurrence of p

then C does not contain another occurrence of p

I The clause

[¬fly(tweedy), ¬fly(john), penguin(tweedy), ¬penguin(john)]

. is solitary in fly and

. not solitary in penguin
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The Completion Algorithm

Input A set K of clauses and a predicate symbol p

Output The completion formula CK,p of K with respect to p

1 Replace each clause [L1, . . . , Ln, p(t1, . . . , tm)] ∈ K by

(∀X)((∃Y ) (X1 ≈ t1 ∧ . . . ∧ Xm ≈ tm ∧ ¬L1 ∧ . . . ∧ ¬Ln)→ p(X))

where
X = X1, . . . , Xm is a sequence of ‘new’ variables
Y is a sequence of those variables which occur in the clause and
all occurrences of double negation are removed

2 Let
{(∀X) (Ci → p(X)) | 1 ≤ i ≤ k}

be the set of all formulas where p occurs in the conclusion.
Return the completion formula

CK,p = (∀X) (C1 ∨ . . . ∨ Ck ← p(X))
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An Example

I K = { ¬penguin(Y ) ∨ bird(Y ),
bird(tweedy),
¬penguin(john) }

I K1 = { (∀X)((∃Y ) (X ≈ Y ∧ penguin(Y ))→ bird(X)),
(∀X) (X ≈ tweedy → bird(X)),
¬penguin(john) }

I (∀X) ((∃Y ) (X ≈ Y ∧ penguin(Y ) ∨ X ≈ tweedy)→ bird(X))

I CK,bird = (∀X) ((∃Y )(X ≈ Y ∧ penguin(Y ) ∨ X ≈ tweedy)← bird(X))
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The Equational System EC

I Let

EC = {(∀X , Y ) f (X) 6≈ g(Y ) | f , g ∈ F and f 6= g}

∪ {(∀X) tdXe 6≈ X | t 6= X}

∪ {(∀X , Y ) (
∨n

i=1 Xi 6≈ Yi → f (X) 6≈ f (Y )) | n-ary f ∈ F}

∪ {(∀X) X ≈ X}

∪ {(∀X , Y ) (
∧n

i=1 Xi ≈ Yi → f (X) ≈ f (Y )) | n-ary f ∈ F}

∪ {∀ (
∧n

i=1 Xi ≈ Yi ∧ p(X)→ p(Y )) | n-ary p ∈ R}
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Predicate Completion

I Let K be a set of formulas which is solitary in p

I The predicate completion CC(K, p) of p is defined as

CC(K, p) = {G | K ∪ {CK,p} ∪ EC |= G}

I Theorem Let K be a set of clauses which is solitary in p.
If K is satisfiable, then so is CC(K, p).
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Parallel Completion and Logic Programming

I K = {bird(tweedy), (∀X) (¬bird(X) ∨ ab(X) ∨ fly(X))}

I Normal program clauses p(t)← A1 ∧ . . . ∧ Am ∧ ¬Am+1 ∧ . . . ∧ ¬An

I A normal logic program is a set of normal program clauses

I p is defined in the logic program K
iff K contains a clause with p occurring in its head

I LetRD be the set of defined predicate symbols

I The completion CC(K) of a normal logic program K
with defined predicate symbolsRD is defined as

CC(K) =

{G | K ∪ {CK,p | p ∈ RD} ∪ EC ∪ {(∀X)¬p(X) | p ∈ R \RD} |= G}
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Stratified Logic Programs

I ConsiderR, F and V

I A level mapping is a total mapping level : R→ N

I level(p) is the level of p

I A normal logic program K is stratified iff in each clause of the form

p(t)← p1(s1) ∧ . . . ∧ pm(sm) ∧ ¬pm+1(sm+1) ∧ . . . ∧ ¬pn(sn)

of K we find level(p) ≥ level(pi ), 1 ≤ i ≤ m, and level(p) > level(pj ),
m < j ≤ n

I Theorem Let K be a stratified normal logic program.
Then CC(K) is satisfiable

I Exercise Find non-stratifiable programs K1 and K2 such that

. CC(K1) is satisfiable and

. CC(K2) is unsatisfiable
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Negation as Failure

I We do not want to compute with the “only-if” parts and EC !

I {¬A | ¬A ∈ C(K)} 6= {¬A | ¬A ∈ CC(K)}

I Replace ¬ by∼ called negation as failure

I K = {bird(tweedy), fly(X)← bird(X) ∧ ∼ ab(X)}
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Finitely Failed Search Trees

I A search tree is finitely failed
iff it is finite and each leaf is labelled as a failure

I K′ = { ab(X)← brokenWing(X),
ab(X)← ratite(X),
ratite(X)← ostrich(X),
ratite(X)← emu(X),
ratite(X)← kiwi(X) }

← kiwi(tweedy)
���

���
���

← emu(tweedy) ← ostrich(tweedy)
XXX

XXX
XXX

← ratite(tweedy)
���

���
���

← brokenWing(tweedy)

← ab(tweedy)
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SLDNF-Resolution

I Let G be a goal clause consisting of positive and negative literals,K a normal
logic program, L be the selected literal in G and A be a ground atom

. If L is positive, then each SLD-resolvent of G using L and some
new variant of a clause in K is also an SLDNF-resolvent

. If L is a ground negative literal, i.e. L = ∼ A, and the query←A
finitely fails with respect to K and SLDNF-resolution,
then the SLDNF-resolvent of G is obtained from G by deleting L

. If L is a ground negative literal, i.e. L = ∼ A, and the query
←A suceeds with respect to K and SLDNF-resolution,
then the SLDNF-derivation of G fails

. If L is negative and non-ground, then without loss of generality we may
assume that each literal in G is negative and non-ground.
In this case G is said to be blocked

I Theorem Let K be a normal logic program.
SLDNF-resolution is sound with respect to the completion ofK
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Classical Negation vs. Negation as Failure

I cross ← ∼ train

I cross ← ¬train
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Circumscription

I All approaches mentioned so far cannot handle disjunctions or (∃X) green(X)

I How can we compute their minimal models?

I Idea We want to conjecture that the tuples (X1, . . . , Xm) which can be shown
to satisfy an m-ary relation p are all the tuples satisfying p

. According to McCarthy, we want to circumscribe p

I G{p 7→ Q} is the string obtained from the formula G
by replacing each occurrence of p by the predicate variable Q

I The circumscription of p in G

Circ(G, p) = (G{p 7→ Q} ∧ (∀X) (Q(X)→ p(X)))→ (∀X)(p(X)→ Q(X))

I Note Circ(G, p) is a schema
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Example 1

I Let G = isblock(a) ∧ isblock(b) ∧ isblock(c)

I Then

Circ(G, isblock) = ((Q(a) ∧ Q(b) ∧ Q(c)) ∧ (∀X) (Q(X)→ isblock(X)))
→ (∀X) (isblock(X)→ Q(X))

I This schema can be instantiated replacing Q(X) by (X ≈ a ∨ X ≈ b ∨ X ≈ c),
where≈ denotes syntactic equality

I Let G′ be the corresponding instance of Circ(G, isblock)

I Note
Q(a) = a ≈ a ∨ a ≈ b ∨ a ≈ c ≡ 〈〉
Q(b) = b ≈ a ∨ b ≈ b ∨ b ≈ c ≡ 〈〉
Q(c) = c ≈ a ∨ c ≈ b ∨ c ≈ c ≡ 〈〉
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Example 1 Continued

I Remember

G = isblock(a) ∧ isblock(b) ∧ isblock(c)
G′ ≡ (∀X) (X ≈ a ∨ X ≈ b ∨ X ≈ c → isblock(X))

→ (∀X) (isblock(X)→ X ≈ a ∨ X ≈ b ∨ X ≈ c)

I Let I be a Herbrand-interpretation (which interprets≈ as syntactic equality)
such that I |= {G, G′}.

. [(∀X) (X ≈ a ∨ X ≈ b ∨ X ≈ c → isblock(X)]I = >
iff for all t ∈ T (F) we find [t ≈ a ∨ t ≈ b ∨ t ≈ c → isblock(t)]I = > (∗)

. case t ∈ {a, b, c}
[t ≈ a ∨ t ≈ b ∨ t ≈ c]I = > and [isblock(t)]I = >, thus, (∗) holds

. case t 6∈ {a, b, c}
[t ≈ a ∨ t ≈ b ∨ t ≈ c]I = ⊥, thus, (∗) holds

I Therefore, we obtain

{G, G′} |= (∀X) (isblock(X)→ (X ≈ a ∨ X ≈ b ∨ X ≈ c))
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Non-monotonicity

I Circumscription is non-monotonic

. Reconsider Example 1

. {G, G′} |= ¬isblock(d)

. Now let H = G ∧ isblock(d)

. Then {H, Circ(H, isblock)} 6|= ¬isblock(d)
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Example 2

I Let G = p(a) ∨ p(b)

I Then
Circ(G, p) = ((Q(a) ∨ Q(b)) ∧ (∀X) (Q(X)→ p(X)))

→ (∀X) (p(X)→ Q(X))

I This schema can be instantiated replacing Q(X) by X ≈ a,
where≈ denotes syntactic equality

I We obtain

G1 = ((a ≈ a ∨ b ≈ a) ∧ (∀X) (X ≈ a → p(X)))
→ (∀X) (p(X)→ X ≈ a)

≡ (∀X) (X ≈ a → p(X))→ (∀X) (p(X)→ X ≈ a)
≡ p(a)→ (∀X) (p(X)→ X ≈ a)
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Example 2 Continued

I Remember
G = p(a) ∨ p(b)

and
G1 ≡ p(a)→ (∀X) (p(X)→ X ≈ a)

I Circ(G, p) can also be instantiated replacing Q(X) by X ≈ b and we obtain

G2 ≡ p(b)→ (∀X) (p(X)→ X ≈ b)

I Note
{H1 ∨ H2, H1 → H′

1, H2 → H′
2} |= H′

1 ∨ H′
2

I Hence

{G, G1, G2} |= (∀X) (p(X)→ X ≈ a) ∨ (∀X) (p(X)→ X ≈ b)
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The Main Result

I Theorem Let G′ be an instance of Circ(G, p).
G′ holds in all models of G which are minimal in {p}

I Proof
Consider (G{p 7→ Q} ∧ (∀X) (Q(X)→ p(X)))→ (∀X)(p(X)→ Q(X))

. Let I be a model for G which is minimal in {p}

. Let p′ be a predicate symbol such that
[G{p 7→ p′} ∧ (∀X) (p′(X)→ p(X))]I = >

. To show [(∀X)(p(X)→ p′(X))]I = >

II Suppose [(∀X)(p(X)→ p′(X))]I = ⊥
II Hence pI 6⊆ p′I

II Because [(∀X) (p′(X)→ p(X))]I = > we find p′I ⊆ pI

II We conclude p′I ⊂ pI

II Because [G{p 7→ p′}]I = > we can construct a model I′ for G
which is identical to I for all predicate letters different from p
and with pI′ = p′I

II Because pI′ = p′I ⊂ pI this contradicts the minimality of I in {p}
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Remarks

I G follows minimally from K with respect to p, written K |={p} G,
iff G holds in all models of K which are minimal in {p}

I Corollary Let G′ be an instance of Circ(G, p).
If {G, G′} |= H then {G} |={p} H

I Circumscribing a predicate may lead to an unsatisfiable theory

I Under certain circumstances circumscription can be reduced to first order
reasoning

I Many extensions are known
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Default Logic

I Most objects of sort s have property p. Object o is of sort s.

. Does object o have property p?

I Most birds are flying. Tweedy is a bird.

. Does Tweedy fly?

I A first order formalization:

(∀X) (bird(X) ∧ ¬penguin(X) ∧ ¬ostrich(X) ∧ . . .→ fly(X)

I Problems

. We do not know all exceptions

. We cannot conlude that Tweedy does not belong to one of the exceptions

I Idea We would like to conclude the Tweedy flies by default
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Default Reasoning

I Unless any information to the contrary is known we assume that

. exceptions are not logical consequences (CWA)

. we finitely failed to prove exceptions (NAF)

. it is consistent to assume that . . . (Default Logic)

I Default rules bird(X) : fly(X) / fly(X)

I Exceptions { (∀X) (penguin(X)→ ¬fly(X)),
(∀X) (ostrich(X)→ ¬fly(X)),
. . . }

I But how is consistency defined?

I Few objects of sort s have property p:

man(X) : ¬moon(X) / ¬moon(X)
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Default Rules

I Let 〈A,L, |=〉 be a first order logic

I A default rule is any expression of the form G : G1, . . . , Gn / H or

G : G1, . . . , Gn

H

. G is called prerequisite

. G1, . . . , Gn are called justifications

. H is called consequent

I A default rule is said to be closed iff all formulas occurring in it are closed

I It is said to be open iff it is not closed

. It is a scheme representing the set of its ground instances
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Default Rules – Special Cases

I If G is missing, then G ≡ 〈 〉

I If n = 0, then this is a rule in 〈A,L, |=〉

I If n = 1 and G1 = H, then the default rule is said to be normal

I If n = 1 and G1 = H ∧ H′, then the default rule is said to be semi-normal
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Default Knowledge Bases

I A default knowledge base is a pair 〈KD ,KW 〉, where

. KD is a set of at most countably many default rules and

. KW is a set of at most countably many closed first order formulas overA

I A default knowledge base is said to be closed
iff all default rules occurring in it are closed

I It is said to be open iff it is not closed

I Example

KD : spouse(X , Y ) ∧ htown(Y ) ≈ Z : htown(X) ≈ Z / htown(X) ≈ Z ,
employer(X , Y ) ∧ location(Y ) ≈ Z : htown(X) ≈ Z / htown(X) ≈ Z

KW : spouse(jane, john),
htown(john) ≈ munich,
employer(jane, tud),
location(tud) ≈ dresden,
(∀X , Y , Z) (htown(X) ≈ Y ∧ htown(X) ≈ Z → Y ≈ Z)
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Extensions

I Let K be a set of closed first-order formulas
and 〈KD ,KW 〉 a closed default knowledge base

I Intuitively, an extension K of 〈KD ,Kw〉 should have the properties:

. KW ⊆ K

. C(K) = K

. K should be closed under the application of default rules

I Let Γ(K) be the smallest set satisfying the following properties

1 KW ⊆ Γ(K)

2 C(Γ(K)) = Γ(K)

3 If G : G1, . . . , Gn / H ∈ KD , G ∈ Γ(K) and for all 1 ≤ j ≤ n we find ¬Gj 6∈ K
then H ∈ Γ(K)

K is said to be an extension of 〈KD ,KW 〉 iff Γ(K) = K

I The set of extensions of 〈KD ,KW 〉 is a subset of the set of models for KW
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Another Characterization of Extensions

I Theorem Let 〈KD ,KW 〉 be a closed default knowledge base
and K be a set of sentences. Define

K0 = KW

and for i ≥ 1

Ki+1 = C(Ki ) ∪ {H | G : G1, . . . , Gn / H ∈ KD ,
G ∈ Ki and
¬Gj 6∈ K for all 1 ≤ j ≤ n}

Then, K is an extension of 〈KD ,KW 〉 iff K =
⋃∞

i=0Ki

I We have to guess extensions!

I KD = { bird(X) : fly(X) / fly(X) }
KW = { bird(tweedy) }

I K = C({bird(tweedy), fly(tweedy)}) is an extension
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Another Example

I KD : spouse(X , Y ) ∧ htown(Y ) ≈ Z : htown(X) ≈ Z / htown(X) ≈ Z ,
employer(X , Y ) ∧ location(Y ) ≈ Z : htown(X) ≈ Z / htown(X) ≈ Z

KW : spouse(jane, john),
htown(john) ≈ munich,
employer(jane, tud),
location(tud) ≈ dresden,
(∀X , Y , Z) (htown(X) ≈ Y ∧ htown(X) ≈ Z → Y ≈ Z)

I Its extensions are

C(KW ∪ {htown(jane) ≈ munich})

and
C(KW ∪ {htown(jane) ≈ dresden})
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Credolous vs. Sceptical Reasoning

I G follows credolously from 〈KD ,KW 〉, in symbols 〈KD ,KW 〉 |=c G,
iff there exists an extension K of 〈KD ,KW 〉 such that G ∈ K

I G follows sceptically from 〈KD ,KW 〉, in symbols 〈KD ,KW 〉 |=s G,
iff for all extensions K of 〈KD ,KW 〉 we find G ∈ K
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Remarks

I Default logic is non-monotonic

I Extensions are always satisfiable

I Extensions may contain counter-intuitive facts

KW = {broken(leftarm) ∨ broken(rightarm)}
KD = { : usable(X) ∧ ¬broken(X) / usable(X)}

I There are many approaches extending default logic
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Answer Set Programming

I Example

. Every student with a GPA of at least 3.8 is eligible

. Every minority student with a GPA of at least 3.6 is eligible

. Students with a GPA under 3.8 who do not belong to a minority are
not eligible

. The students whose eligibility is not determined by these rules are
interviewed by the scholarship committee

I K1 = { eligible(X) ← highGPA(X),
eligible(X) ← minority(X) ∧ fairGPA(X),
¬eligible(X) ← ¬highGPA(X) ∧ ¬minority(X),
interview(X) ← ∼ eligible(X) ∧ ∼¬eligible(X) }

I K2 = { fairGPA(john) ←,
¬highGPA(john) ← }

I What happens with John?
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Rules and Programs

I Rules

L1 ∨ . . . ∨ Lk ∨∼ Lk+1 ∨ . . . ∨∼ Ll ← Ll+1 ∧ . . . ∧ Lm ∧∼ Lm+1 ∧ . . . ∧∼ Ln

. Li are propositional literals

. 0 ≤ k ≤ l ≤ m ≤ n

. If k = l = 0 then rules are called constraints

I A program is a set of rules

. K1 ∪ K2
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Answer Sets

I Remember rules

L1 ∨ . . . ∨ Lk ∨∼ Lk+1 ∨ . . . ∨∼ Ll ← Ll+1 ∧ . . . ∧ Lm ∧∼ Lm+1 ∧ . . . ∧∼ Ln

I LetM be a satisfiable set of literals
and K be a program where k = l and n = m, i.e., rules are of the form

L1 ∨ . . . ∨ Lk ← Ll+1 ∧ . . . ∧ Lm

. M is said to be closed under K if for every rule of K we find that
{L1, . . . , Lk} ∩M 6= ∅ whenever {Ll+1, . . . , Lm} ⊆ M

. M is said to be an answer set for K
ifM is minimal among the sets closed under K

I Example K3 = { s ∨ r ← ,
¬b ← r }

. What are the answer sets of K3?

. What happens if we add the constraint← s?
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Reducts and Answer Sets

I Let K be a program andM a satisfiable set of literals

I The reduct K|M of K relative toM is the set of rules

L1 ∨ . . . ∨ Lk ← Ll+1 ∧ . . . ∧ Lm
such that

L1 ∨ . . . ∨ Lk ∨∼ Lk+1 ∨ . . . ∨∼ Ll ← Ll+1 ∧ . . . ∧ Lm ∧∼ Lm+1 ∧ . . . ∧∼ Ln

occurs in K, {Lk+1, . . . , Ll} ⊆ M and {Lm+1, . . . , Ln} ∩M = ∅

I In K|M the symbol∼ does not occur anymore

I M is said to be an answer set for K iff M is an answer set for K|M

I Examples {p ← ∼ q}
{¬p ← ∼ p}
{p ← ∼¬p}
{q ← p ∧ ∼ q, p ←, q ←}
What happens if we delete q ← from the last example?
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Predicate Symbols, Constants and Variables

I We allow n-ary predicate symbols ranging over constants and variables

I We view rules containing variable occurrences as schemas

I K1 = { eligible(X) ← highGPA(X),
eligible(X) ← minority(X) ∧ fairGPA(X),
¬eligible(X) ← ¬highGPA(X) ∧ ¬minority(X),
interview(X) ← ∼ eligible(X) ∧ ∼¬eligible(X) }

I K2 = { fairGPA(john) ←,
¬highGPA(john) ← }

I Its only answer set is:

{fairGPA(john), ¬highGPA(john), interview(john)}

I What happens if we add ¬minority(john)←?

I Answer set programming is non-monotonic!
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Programming with Answer Sets

I A Hamiltonian cycle is a cyclic tour through a graph visiting each vertex exactly
once

I The problem of finding a Hamiltonian cycle is known to be NP-complete

I Let G be a graph with vertices 0, . . . , n

I Consider an alphabet with

. F = {0, . . . , n} and

. R = {reachable, in}

I Idea

. WLOG let 0 be the starting vertex of the tour

. reachable(i) represents the fact that vertex i is reachable from 0

. in(i, j) represents the fact that the edge from i to j is in the cycle

. Specify a program such that for each answer setM we find:
{〈u, v〉 | in(u, v) ∈M} is the set of edges in the Hamiltonian cycle
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Computing Hamiltonian Cycles

I Program

. {in(u, v) ∨ ¬in(u, v)← | 〈u, v〉 ∈ G}

. {← in(u, v) ∧ in(u, w) | 〈u, v〉, 〈u, w〉 ∈ G and v 6≈ w}

. {← in(v, u) ∧ in(w , u) | 〈v, u〉, 〈w , u〉 ∈ G and v 6≈ w}

. {reachable(u)← in(0, u) | 〈0, u〉 ∈ G}

. {reachable(v)← reachable(u) ∧ in(u, v) | 〈u, v〉 ∈ G}

. {← ∼ reachable(u) | 0 ≤ u ≤ n}

I You have to show that the answer sets of this program correspond to
Hamiltonian cycles!
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Computing Answer Sets

I Paradigm shift

. Logic and constraint programming  answer substitution

. Answer set programming  model, i.e., answer set

I Quite successful in recent years

I Systems

. Smodels

. Dlv

. DeReS

. Clasp
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