Complexity Theory

Exercise 8: Polynomial Hierarchy

12th January 2022

Exercise 8.1. Show that Cook-reducibility is transitive. In other words, show that if A is Cook-reducible to B and B is Cook-reducible to C, then A is Cook-reducible to C.

Exercise 8.2. Show that there exists an oracle C such that $NP^C \neq CONP^C$.

Hint:

What kind of Turing machines exist for languages in CONP? Use the answer to adapt the proof of the Baker-Gill-Solovay Theorem for CONP instead of P.

Exercise 8.3. Show $NP^{SAT} \subseteq \Sigma_2 P$.

Exercise 8.4. Show the following result: If there is any k such that $\Sigma_k^{\mathrm{P}} = \Sigma_{k+1}^{\mathrm{P}}$ then $\Sigma_j^{\mathrm{P}} = \Pi_j^{\mathrm{P}} = \Sigma_k^{\mathrm{P}}$ for all j > k, and therefore $\mathrm{PH} = \Sigma_k^{\mathrm{P}}$.

Exercise 8.5. Show that $PH \subseteq PSPACE$.

Exercise 8.6. Let **A** be a language and let **F** be a finite set with $\mathbf{A} \cap \mathbf{F} = \emptyset$. Show that $P^{\mathbf{A}} = P^{\mathbf{A} \cup \mathbf{F}}$ and $NP^{\mathbf{A}} = NP^{\mathbf{A} \cup \mathbf{F}}$.