
Usability Issues in

Description Logic Knowledge Base Completion

Franz Baader and Barış Sertkaya�

TU Dresden, Germany
{baader,sertkaya}@tcs.inf.tu-dresden.de

Abstract. In a previous paper, we have introduced an approach for ex-
tending both the terminological and the assertional part of a Description
Logic knowledge base by using information provided by the assertional
part and by a domain expert. This approach, called knowledge base com-
pletion, was based on an extension of attribute exploration to the case
of partial contexts. The present paper recalls this approach, and then
addresses usability issues that came up during first experiments with
a preliminary implementation of the completion algorithm. It turns out
that these issues can be addressed by extending the exploration algorithm
for partial contexts such that it can deal with implicational background
knowledge.

1 Introduction

Description Logics (DLs) [1] are a successful family of logic-based knowledge
representation formalisms, which can be used to represent the conceptual knowl-
edge of an application domain in a structured and formally well-understood way.
They are employed in various application domains, such as natural language
processing, configuration, databases, and bio-medical ontologies, but their most
notable success so far is due to the fact that DLs provide the logical under-
pinning of OWL, the standard ontology language for the semantic web [20]. As
a consequence of this standardization, several ontology editors support OWL
[19,22,23,27], and ontologies written in OWL are employed in more and more
applications. As the size of these ontologies grows, tools that support improv-
ing their quality become more important. The tools available until now use DL
reasoning to detect inconsistencies and to infer consequences, i.e., implicit knowl-
edge that can be deduced from the explicitly represented knowledge. There are
also promising approaches that allow to pinpoint the reasons for inconsistencies
and for certain consequences, and that help the ontology engineer to resolve
inconsistencies and to remove unwanted consequences [6,7,21,24,32]. These ap-
proaches address the quality dimension of soundness of an ontology, both within
itself (consistency) and w.r.t. the intended application domain (no unwanted con-
sequences). Here, we are concerned with a different quality dimension, namely
completeness of the ontology w.r.t. to the intended application domain. In [5],

� Supported by the German Research Foundation (DFG) under grant BA 1122/12-1.

S. Ferré and S. Rudolph (Eds.): ICFCA 2009, LNAI 5548, pp. 1–21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 F. Baader and B. Sertkaya

we have provided a basis for formally well-founded techniques and tools that
support the ontology engineer in checking whether an ontology contains all the
relevant information about the application domain, and in extending the on-
tology appropriately if this is not the case. In the present paper, we give an
overview over this approach, and then describe how the general framework must
be extended such that it becomes easier to use for a domain expert. But first,
let us introduce the problem of knowledge base completion, and our approach
for solving it, in a bit more detail.

A DL knowledge base (nowadays often called ontology) usually consists of two
parts, the terminological part (TBox), which defines concepts and also states
additional constraints (so-called general concept inclusions, GCIs) on the inter-
pretation of these concepts, and the assertional part (ABox), which describes
individuals and their relationship to each other and to concepts. Given an appli-
cation domain and a DL knowledge base (KB) describing it, we can ask whether
the KB contains all the “relevant” information1 about the domain:

– Are all the relevant constraints that hold between concepts in the domain
captured by the TBox?

– Are all the relevant individuals existing in the domain represented in the
ABox?

As an example, consider the OWL ontology for human protein phosphatases
that has been described and used in [37]. This ontology was developed based on
information from peer-reviewed publications. The human protein phosphatase
family has been well characterized experimentally, and detailed knowledge about
different classes of such proteins is available. This knowledge is represented in the
terminological part of the ontology. Moreover, a large set of human phosphatases
has been identified and documented by expert biologists. These are described as
individuals in the assertional part of the ontology. One can now ask whether the
information about protein phosphatases contained in this ontology is complete.
Are all the relationships that hold among the introduced classes of phosphatases
captured by the constraints in the TBox, or are there relationships that hold
in the domain, but do not follow from the TBox? Are all possible kinds of
human protein phosphatases represented by individuals in the ABox, or are
there phosphatases that have not yet been included in the ontology or even not
yet been identified?

Such questions cannot be answered by an automated tool alone. Clearly, to
check whether a given relationship between concepts—which does not follow
from the TBox—holds in the domain, one needs to ask a domain expert, and
the same is true for questions regarding the existence of individuals not described
in the ABox. The rôle of the automated tool is to ensure that the expert is asked
as few questions as possible; in particular, she should not be asked trivial ques-
tions, i.e., questions that could actually be answered based on the represented
knowledge. In the above example, answering a non-trivial question regarding

1 The notion of “relevant information” must, of course, be formalized appropriately
for this problem to be addressed algorithmically.

Usability Issues in Description Logic Knowledge Base Completion 3

human protein phosphatases may require the biologist to study the relevant lit-
erature, query existing protein databases, or even to carry out new experiments.
Thus, the expert may be prompted to acquire new biological knowledge.

Attribute exploration [11] is an approach developed in Formal Concept Anal-
ysis (FCA) [14] that can be used to acquire knowledge about an application
domain by querying an expert. One of the earliest applications of this approach
is described in [29,36], where the domain is lattice theory, and the goal of the
exploration process is to find, on the one hand, all valid relationships between
properties of lattices (like being distributive), and, on the other hand, to find
counterexamples to all the relationships that do not hold. To answer a query
whether a certain relationship holds, the lattice theory expert must either con-
firm the relationship (by using results from the literature or carrying out a new
proof for this fact), or give a counterexample (again, by either finding one in the
literature or constructing a new one).

Although this sounds very similar to what is needed in our context, we could
not directly use this approach in [5]. The main reason for this is the open-world
semantics of description logic knowledge bases. Consider an individual i from an
ABox A and a concept C occurring in a TBox T . If we cannot deduce from the
TBox T and A that i is an instance of C, then we do not assume that i does
not belong to C. Instead, we only accept this as a consequence if T and A imply
that i is an instance of ¬C. Thus, our knowledge about the relationships between
individuals and concepts is incomplete: if T and A imply neither C(i) nor ¬C(i),
then we do not know the relationship between i and C. In contrast, classical
FCA and attribute exploration assume that the knowledge about individuals is
complete: the basic datastructure is that of a formal context, i.e., a crosstable
between individuals and properties. A cross says that the property holds, and
the absence of a cross is interpreted as saying that the property does not hold.
In contrast, in a partial context, a property may be known to hold or not to hold
for an individual, but there is also the third possibility that nothing is known
about the relationship between the individual and this property.

There has been some work on how to extend FCA and attribute exploration
from complete knowledge to the case of such partial knowledge [9,10,17,18,28].
However, this work is based on assumptions that are different from ours. In
particular, it assumes that the expert cannot answer all queries and, as a conse-
quence, the knowledge obtained after the exploration process may still be incom-
plete and the relationships between concepts that are produced in the end fall
into two categories: relationships that are valid no matter how the incomplete
part of the knowledge is completed, and relationships that are valid only in some
completions of the incomplete part of the knowledge. In contrast, our intention
is to complete the KB, i.e., in the end we want to have complete knowledge
about these relationships. What may be incomplete is the description of individ-
uals used during the exploration process. From the FCA point of view, the main
new result in [5] is the extension of attribute exploration to the case of partial
contexts. This approach is then used to derive an algorithm for completing DL
knowledge bases.

4 F. Baader and B. Sertkaya

Before publishing [5], we had implemented a first experimental version of a
tool for completing DL knowledge bases as an extension of the ontology editor
Swoop [22], using the system Pellet as underlying reasoner [33]. A first evaluation
of this tool on the OWL ontology for human protein phosphatases mentioned in
the introduction, with biologists as experts, was quite promising, but also showed
that the tool must be improved in order to be useful in practice. In particular, we
have observed that the experts sometimes make errors when answering queries.
Thus, the tool should support the expert in detecting such errors, and also make
it possible to correct errors without having to restart the exploration process
from scratch. Another usability issue on the wish list of our experts was to allow
the postponement of answering certain queries, while continuing the exploration
process with other queries.

The present paper is a follow-up work to [5], which addresses these usability
issues. In the next section, we give a brief introduction to DLs, and then recall, in
Section 3, the completion approach developed in [5]. For more details, we refer
the reader to that paper as well as to the technical report [4] accompanying
it. In Section 4, we address the usability issues mentioned above. From the
FCA point of view, our solution to these problems requires an extension of the
results in [5] to the case of attribute exploration w.r.t. background knowledge and
partial contexts. In Section 5, we describe our implementation of the improved
approach, which is now realized as an OWL plugin to Protégé 4 [19], and uses
the incremental reasoning facilities of Pellet [16].

2 Description Logics

In order to represent knowledge about an application domain using Description
Logics (DLs) one usually first defines the relevant concepts of this domain, and
then describes relationships between concepts and relationships between indi-
viduals and concepts in the knowledge base. To construct concepts, one starts
with a set NC of concept names (unary predicates) and a set NR of role names
(binary predicates), and builds complex concept descriptions out of them by
using the concept constructors provided by the particular description language
being used. In addition, a set NI of individual names is used to refer to domain
elements. Table 1 displays commonly used concept constructors. In this table C
and D stand for concept descriptions, r for a role name, and a, b, a1, . . . , an for
individual names. In the current paper, we do not fix a specific set of constructors
since our results apply to arbitrary DLs as long as they allow for the constructors
conjunction and negation (see the upper part of Table 1). For our purposes, a
TBox is a finite set of general concept inclusions (GCIs), and an ABox is a finite
set of concept and role assertions (see the lower part of Table 1). A knowledge
base (KB) consists of a TBox together with an ABox. As usual, we use C ≡ D
as an abbreviation for the two GCIs C � D and D � C.

The semantics of concept descriptions, TBoxes, and ABoxes is given in terms
of an interpretation I = (ΔI , ·I), where ΔI (the domain) is a non-empty set,
and ·I (the interpretation function) maps each concept name A ∈ NC to a set

Usability Issues in Description Logic Knowledge Base Completion 5

Table 1. Syntax and semantics of commonly used constructors

Constructor name Syntax Semantics

negation ¬C ΔI \ CI

conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

existential restriction ∃r.C {x ∈ ΔI | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
one-of {a1, . . . , an} {aI

1 , . . . , aI
n}

general concept inclusion C 	 D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

AI ⊆ ΔI , each role name r ∈ NR to a binary relation rI ⊆ ΔI × ΔI , and
each individual name a ∈ NI to an element aI ∈ ΔI . Concept descriptions C
are also interpreted as sets CI ⊆ ΔI , which are defined inductively, as seen in
the semantics column of Table 1. An interpretation I is a model of the TBox T
(the ABox A) if it satisfies all its GCIs (assertions) in the sense shown in the
semantics column of the table. In case I is a model of both T and A, it is called
a model of the knowledge base (T ,A).

Given a KB (T ,A), concept descriptions C, D, and an individual name a,
the inference problems subsumption, instance, and consistency are defined as
follows:

– Subsumption: C is subsumed by D w.r.t. T (written C �T D) if CI ⊆ DI

holds for all models I of T
– Instance: a is an instance of C w.r.t. T and A (written T ,A |= C(a)) if

aI ∈ CI holds for all models of (T ,A).
– Consistency: the knowledge base (T ,A) is consistent if it has a model.

For most DLs, these problems are decidable, and there exist highly optimized
DL reasoners such as FaCT++ [35], RacerPro [15], Pellet [33], KAON2 [25],
and HermiT [26], which can solve these problems for very expressive DLs on
large knowledge bases from practical applications.

The following example demonstrates how a DL that has the constructors
conjunction, disjunction, existential restriction, and one-of can be used to model
some simple properties of countries.

Example 1. Assume that our set of concept names NC contains the concepts
Country, Ocean, and Sea; the set of role names NR contains the roles hasBor-
derTo, isMemberOf, and hasOfficialLanguage; and the set of individual names NI

contains the individuals German, EU, MediterraneanSea, Italy, and Germany. Us-
ing these names, the following TBox defines a coastal country as a country that
has a border to a sea or an ocean; a Mediterranean country as a country that
has border to the MediterraneanSea; a German-speaking country as a country
that has the language German as an official language; and an EU member as a
country that is a member of the EU.

6 F. Baader and B. Sertkaya

Tcountries := { Coastal ≡ Country � ∃hasBorderTo.(Ocean � Sea)
EUmember ≡ Country � ∃isMemberOf.{EU}

Mediterranean ≡ Country � ∃hasBorderTo.{MediterraneanSea}
GermanSpeaking ≡ Country � ∃hasOfficialLanguage.{German} }

The following ABox states facts about the countries Italy and Germany, and
about the Mediterranean Sea:

Acountries := {GermanSpeaking(Germany), EUmember(Germany),
Coastal(Germany), Mediterranean(Italy), Sea(MediterraneanSea)}

3 Partial Contexts, Attribute Exploration, and
Completion of DL Knowledge Bases

In [5], we have extended the classical approach to FCA to the case of objects
that have only a partial description in the sense that, for some attributes, it is
not known whether they are satisfied by the object or not. This was needed due
to the open-world semantics of DL knowledge bases. If an assertion C(a) does
not follow from a knowledge base, then one does not assume that its negation
holds. Thus, if neither C(a) nor ¬C(a) follows, then we do not know whether
a has the property C or not. In this section, we first give the basic definitions
for extending FCA to the case of partially described objects, and then introduce
a version of attribute exploration that works in this setting. More details can
be found in [5,4]. In the following, we assume that we have a finite set M of
attributes and a (possibly infinite) set of objects.

Definition 1. A partial object description (pod) is a tuple (A, S) where A, S ⊆
M are such that A ∩ S = ∅. We call such a pod a full object description (fod)
if A ∪ S = M . A set of pods is called a partial context and a set of fods a full
context.

Intuitively, the pod (A, S) says that the object it describes satisfies all attributes
from A and does not satisfy any attribute from S. For the attributes not con-
tained in A ∪ S, nothing is known w.r.t. this object. A partial context can be
extended by either adding new pods or by extending existing pods.

Definition 2. We say that the pod (A′, S′) extends the pod (A, S), and write
this as (A, S) ≤ (A′, S′), if A ⊆ A′ and S ⊆ S′. Similarly, we say that the partial
context K′ extends the partial context K, and write this as K ≤ K′, if every pod
in K is extended by some pod in K′. If K is a full context and K ≤ K, then K
is called a realizer of K. If (A, S) is a fod and (A, S) ≤ (A, S), then we also say
that (A, S) realizes (A, S).

Next, we introduce the notion of an implication between attributes, which for-
malizes the informal notion “relationship between properties” used in the intro-
duction.

Usability Issues in Description Logic Knowledge Base Completion 7

Definition 3. An implication is of the form L → R where L, R ⊆ M . This
implication is refuted by the pod (A, S) if L ⊆ A and R ∩ S �= ∅. It is refuted
by the partial context K if it is refuted by at least one element of K. The set
of implications that are not refuted by a given partial context K is denoted by
Imp(K). The set of all fods that do not refute a given set of implications L is
denoted by Mod(L).

Obviously, K ≤ K′ implies that every implication refuted by K is also refuted
by K′. For a set of implications L and a set P ⊆ M , the implicational closure of
P with respect to L, denoted by L(P), is the smallest subset Q of M such that

– P ⊆ Q, and
– L → R ∈ L and L ⊆ Q imply R ⊆ Q.

A set P ⊆ M is called L-closed if L(P) = P .

Definition 4. The implication L → R is said to follow from a set J of impli-
cations if R ⊆ J (L). The set of implications J is called complete for a set of
implications L if every implication in L follows from J . It is called sound for L
if every implication that follows from J is contained in L. A set of implications
J is called a base for a set of implications L if it is both sound and complete
for L, and no strict subset of J satisfies this property.

The following fact is trivial, but turns out to be crucial for our attribute explo-
ration algorithm.

Proposition 1. For a given set P ⊆ M and a partial context K, K(P) :=
M \

⋃
{S | (A, S) ∈ K, P ⊆ A} is the largest subset of M such that P → K(P)

is not refuted by K.

Attribute Exploration with Partial Contexts

The classical attribute exploration algorithm of FCA [11,14] assumes that there is
a domain expert that can answer questions regarding the validity of implications
in the application domain. Accordingly, our approach requires an expert that can
decide whether an implication is refuted in the application domain or not. In
contrast to existing work on extending FCA to the case of partial knowledge
[9,17,18,10], we do not assume that the expert has only partial knowledge and
thus cannot answer all implication questions.

To be more precise, we consider the following setting. We are given an initial
(possibly empty) partial context K, an initially empty set of implications L, and
a full context K that is a realizer of K. The expert answers implication questions
“L → R?” w.r.t. the full context K. More precisely, if the answer is “yes,” then K
does not refute L → R. The implication L → R is then added to L. Otherwise,
the expert extends the current context K such that the extended context refutes
L → R and still has K as a realizer. Consequently, the following invariant will
be satisfied by K,K,L: K ≤ K ⊆ Mod(L).

Since K ⊆ Mod(L) implies L ⊆ Imp(K), this invariant ensures that L is sound
for Imp(K). Our aim is to enrich K and L such that eventually L is also complete

8 F. Baader and B. Sertkaya

for Imp(K), and K refutes all other implications (i.e., all the implications refuted
by K). As in the classical case, we want to do this by asking as few as possible
questions to the expert.

Definition 5. Let L be a set of implications and K a partial context. An im-
plication is called undecided w.r.t. K and L if it neither follows from L nor is
refuted by K. It is decided w.r.t. K and L if it is not undecided w.r.t. K and L.

In principle, our attribute exploration algorithm tries to decide each undecided
implication by either adding it to L or extending K such that it refutes the
implication. If all implications are decided, then our goal is achieved [4].

Proposition 2. Assume that K ≤ K ⊆ Mod(L) and that all implications are
decided w.r.t. K and L. Then L is complete for Imp(K) and K refutes all impli-
cations not belonging to Imp(K).

How can we find—and let the expert decide—all undecided implications without
naively considering all implications? The following proposition motivates why it
is sufficient to consider implications whose left-hand sides are L-closed. It is
an immediate consequence of the fact that L(·) is a closure operator, and thus
idempotent.

Proposition 3. Let L be a set of implications and L → R an implication. Then,
L → R follows from L iff L(L) → R follows from L.

Concerning right-hand sides, Proposition 1 says that the largest right-hand side
R such that L → R is not refuted by K is R = K(L). Putting these two obser-
vations together, we only need to consider implications of the form L → K(L)
where L is L-closed. In order to enumerate all left-hand sides, we can thus use
the well-known approach from FCA for enumerating closed sets in the lectic or-
der [14]. In this approach, the elements of M are assumed to have a fixed order
that imposes a linear order on the power set of M , called the lectic order. An
algorithm that, given L and an L-closed set P , computes in polynomial time the
lectically next L-closed set that comes after P , is described in [11].

If an implication is added because the expert has stated that it holds in K,
then we can extend the current context K by closing the first component of every
pod in K w.r.t. the new set of implications L. In fact, L ⊆ Imp(K) makes sure
that the extended context is still realized by K. To allow for this and possible
other ways of extending the partial context, the formulation of the algorithm
just says that, in case an implication is added, the partial context can also be
extended. Whenever an implication is not accepted by the expert, K will be
extended to a context that refutes the implication and still has K as a realizer.

Based on these considerations, an attribute exploration algorithm for partial
contexts was introduced in [5], and is here recalled as Algorithm 1.

The following theorem states that this algorithm always terminates, and in
which sense it is correct.

Theorem 1. Let M be a finite set of attributes, and K and K0 respectively a
full and a partial context over the attributes in M such that K0 ≤ K. Then

Usability Issues in Description Logic Knowledge Base Completion 9

Algorithm 1. Attribute exploration for partial contexts
1: Input: M = {m1, . . . , mn},K0 {attribute set and

partial context, realized by full context K.}
2: K := K0 {initialize partial context.}
3: L := ∅ {initial empty set of implications.}
4: P := ∅ {lectically smallest L-closed set.}
5: while P �= M do
6: Compute K(P)
7: if P �= K(P) then {P → K(P) is undecided.}
8: Ask the expert if P → K(P) is refuted by K
9: if no then {P → K(P) not refuted.}

10: K := K′ where K′ is a partial context such that
K ≤ K′ ≤ K {optionally extend K.}

11: L := L ∪ {P → K(P) \ P}
12: Pnew := lectically next L-closed set after P
13: else {P → K(P) refuted.}
14: Get a partial context K′ from the expert such that K ≤ K′ ≤ K and

P → K(P) is refuted by K′

15: K := K′

16: Pnew := P {P not changed.}
17: end if
18: else {trivial implication.}
19: Pnew := lectically next L-closed set after P
20: end if
21: P := Pnew

22: end while

Algorithm 1 terminates and, upon termination, it outputs a partial context K
and a set of implications L such that

1. L is a base for Imp(K), and
2. K refutes every implication that is refuted by K.

DLs and Partial Contexts

Let (T ,A) be a consistent DL knowledge base, and M be a finite set of concept
descriptions. An individual name a occurring in A gives rise to the partial object
description podT ,A(a, M) := (A, S) where

A := {C ∈ M | T ,A |= C(a)} and S := {C ∈ M | T ,A |= ¬C(a)}.

The whole ABox induces the partial context

KT ,A(M) := {podT ,A(a, M) | a an individual name in A}.

Similarly, any element d ∈ ΔI of an interpretation I gives rise to the full object
description fodI(d, M) := (A, S) where

A := {C ∈ M | d ∈ CI} and S := {C ∈ M | d ∈ (¬C)I}.

10 F. Baader and B. Sertkaya

The whole interpretation induces the full context

KI(M) := {fodI(d, M) | d ∈ ΔI}.

Proposition 4. Let (T ,A), (T ′,A′) be DL knowledge bases such that T ⊆ T ′

and A ⊆ A′, M a set of concept descriptions, and I a model of (T ′,A′). Then
KT ,A(M) ≤ KT ′,A′(M) ≤ KI(M).

We can straightforwardly transfer the notion of refutation of an implication from
partial (full) contexts to knowledge bases (interpretations).

Definition 6. The implication L → R over the attributes M is refuted by the
knowledge base (T ,A) if it is refuted by KT ,A(M), and it is refuted by the
interpretation I if it is refuted by KI(M). If an implication is not refuted by I,
then we say that it holds in I. In addition, we say that L → R follows from T if
�L �T �R, where �L and �R respectively stand for the conjunctions

�
C∈L C

and
�

D∈R D.

Obviously, the implication L → R holds in I iff (�L)I ⊆ (�R)I . As an immediate
consequence of this fact, we obtain:

Proposition 5. Let T be a TBox and I be a model of T . If L → R follows
from T , then it holds in I.

Completion of DL KBs: Formal Definition and Algorithm

We are now ready to define what we mean by a completion of a DL knowledge
base. Intuitively, the knowledge base is supposed to describe an intended model.
For a fixed set M of “interesting” concepts, the knowledge base is complete if it
contains all the relevant knowledge about implications between these concepts.
Based on the notions introduced above, this is formalized as follows.

Definition 7. Let (T ,A) be a consistent DL knowledge base, M a finite set of
concept descriptions, and I a model of (T ,A). Then (T ,A) is M -complete (or
complete if M is clear from the context) w.r.t. I if the following three statements
are equivalent for all implications L → R over M :

1. L → R holds in I;
2. L → R follows from T ;
3. L → R is not refuted by (T ,A).

Let (T0,A0) be a DL knowledge base and I a model of (T0,A0). Then (T ,A)
is an M-completion of (T0,A0) w.r.t. I if it is M-complete w.r.t. I and extends
(T0,A0), i.e., T0 ⊆ T and A0 ⊆ A.

An adaptation of the attribute exploration algorithm for partial contexts pre-
sented above can be used to compute a completion of a given knowledge base
(T0,A0) w.r.t. a fixed model I of this knowledge base. It is assumed that the
expert has or can obtain enough information about this model to be able to

Usability Issues in Description Logic Knowledge Base Completion 11

answer questions of the form “Is L → R refuted by I?”. If the answer is “no,”
then L → R holds according to the expert’s opinion, and is thus added to the
implication base computed by the algorithm. In addition, the GCI �L � �R is
added to the TBox. Since L → R is not refuted by I, the interpretation I is
still a model of the new TBox obtained this way. If the answer is “yes,” then the
expert is asked to extend the current ABox (by adding appropriate assertions on
either old or new individual names) such that the extended ABox refutes L → R
and I is still a model of this ABox.

It is possible to optimize this algorithm by employing DL reasoning. Because of
Proposition 5, before actually asking the expert whether the implication L → R
is refuted by I, we can first check whether �L � �R already follows from the
current TBox. If this is the case, then we know that L → R cannot be refuted
by I, and we tacitly accept and add this implication to the current set of impli-
cations L. Similarly, there are also cases where an implication can be rejected
without asking the expert because accepting it would make the knowledge base
inconsistent. However, in this case the expert still needs to extend the ABox such
that the implication is refuted. The following example illustrates this case, which
was not taken into account in the original version of the completion algorithm
in [5].

Example 2. Consider the knowledge base (T ,A) with the empty TBox T = ∅,
and the ABox A = {(∃r.A � ∀r.¬B)(a)}. Clearly, the implication {A} → {B}
does not follow from T . Moreover, it is not refuted by A because this ABox does
not explicitly contain a named individual that is an instance of both A and ¬B.
That is, the implication {A} → {B} is undecided. However, if the user accepted
this implication, and thus the GCI A � B were added to T , the knowledge base
would become inconsistent since the assertion in A enforces the existence of an
implicit individual that belongs to both A and ¬B. This shows that this GCI
cannot hold in the underlying model I of (T ,A), and thus it is refuted in the
full context KI(M).

The improved completion algorithm for DL knowledge bases obtained from these
considerations is described in Algorithm 2. Note that Algorithm 2, applied to T0,
A0, M with the underlying model I of (T0,A0), is an instance of Algorithm 1, ap-
plied to the partial context KT0,A0(M) with the underlying full context KI(M) as
realizer. For this reason, the next theorem is an easy consequence of Theorem 1.

Theorem 2. Let (T0,A0) be a consistent knowledge base, M a finite set of con-
cept descriptions, and I a model of (T0,A0), and let (T ,A) be the knowledge
base computed by Algorithm 2. Then (T ,A) is a completion of (T0,A0).

Let us demonstrate the execution of Algorithm 2 on an extension of the knowl-
edge base constructed in Example 1, where M consists of the concepts Coastal,
Mediterranean, EUmember, and GermanSpeaking, the ABox contains additional
information on some countries, and I is the “real world.”

Example 3. Let the partial context derived from the initial ABox be the one de-
picted in Table 2. Given this ABox, and the TBox in Example 1, the first implica-
tion question posed to the expert is {GermanSpeaking} → {EUmember, Coastal}.

12 F. Baader and B. Sertkaya

Algorithm 2. Completion of DL knowledge bases
1: Input: M = {m1, . . . , mn}, (T0,A0) {attribute set; KB with model I.}
2: T := T0, A := A0

3: L := ∅ {initial empty set of implications.}
4: P := ∅ {lectically smallest L-closed subset of M .}
5: while P �= M do
6: Compute KT ,A(P)
7: if P �= KT ,A(P) then {check whether the implication follows from T .}
8: if �P 	T �KT ,A(P) then
9: L := L ∪ {P → KT ,A(P) \ P}

10: Pnew := lectically next L-closed set after P
11: else
12: if (T ∪ {�P 	 �KT ,A(P)},A) is inconsistent then
13: Get an ABox A′ from the expert such that A ⊆ A′, I is a model of A′,

and P → KT ,A(P) is refuted by A′

14: A := A′ {extend the ABox.}
15: else
16: Ask expert if P → KT ,A(P) is refuted by I.
17: if no then {�P 	 �KT ,A(P) is satisfied in I.}
18: L := L ∪ {P → KT ,A(P) \ P}
19: Pnew := lectically next L-closed set after P
20: T := T ∪ {�P 	 �(KT ,A(P) \ P)}
21: else
22: Get an ABox A′ from the expert such that A ⊆ A′,

I is a model of A′, and P → KT ,A(P) is refuted by A′

23: A := A′ {extend the ABox.}
24: end if
25: end if
26: end if
27: else {trivial implication.}
28: Pnew := lectically next L-closed set after P
29: end if
30: P := Pnew

31: end while

The answer is “no,” since Austria is German-speaking, but it is not a coastal
country. Assume that the expert turns Austria into a counterexample by asserting
that it is German-speaking. The second question is then whether the implica-
tion {GermanSpeaking} → {EUmember} holds. The answer is again “no” since
Switzerland is a German-speaking country, but not an EU member. Assume
that the expert adds the new individual Switzerland to the ABox, and asserts
that it is an instance of GermanSpeaking and ¬EUmember. The next question
is {Mediterranean} → {EUmember, Coastal}. The answer is again “no” because
Turkey is a Mediterranean country, but it is not an EU member. Assume that
the expert adds the individual Turkey to the ABox, and asserts that it is an in-
stance of ¬EUmember. The next question {Mediterranean} → {Coastal} follows
from the TBox. Thus, it is not posed to the expert, and the algorithm continues

Usability Issues in Description Logic Knowledge Base Completion 13

Table 2. The partial context before completion

Coastal Mediterranean EUmember GermanSpeaking

Italy + + + −
India + − − −

Germany + − + +
Austria − − + ?

Table 3. The partial context after completion

Coastal Mediterranean EUmember GermanSpeaking

Italy + + + −
India + − − −

Germany + − + +
Austria − − + +

Switzerland − − − +
Turkey + + − −

with the last question {Coastal, GermanSpeaking} → {EUmember}. The answer
to this question is “yes” because the only countries that are both coastal and
German-speaking (Germany and Belgium) are also EU members. Thus the GCI
Coastal � GermanSpeaking � EUmember is added to the TBox, and the com-
pletion process is finished. The completion yields the final context displayed in
Table 3.

4 Improving the Usability of the Completion Procedure

Based on on the approach described in the previous section, we had implemented
a first experimental version of a DL knowledge base completion tool. Our ex-
periments with this tool showed that during completion the expert sometimes
makes errors. For better usability of the completion procedure, it is important to
support the expert in detecting and correcting these errors. Moreover, although
we assume that the expert is omniscient (i.e., is potentially able to answer all
implication questions), we have observed that it is convenient to be able to
defer a question and answer it later. In the following, we discuss these prob-
lems in more detail and show how we address them in our improved completion
tool.

Detecting Errors

We say that the expert makes an error if he extends the knowledge base such
that it no longer has the underlying model I as its model. Since the procedure
has no direct access to I, in general it cannot detect such errors without help
from the expert. The only case were the procedure can automatically detect
that an error has occurred is when the knowledge base becomes inconsistent.
Obviously, the underlying model I cannot be a model of an inconsistent KB.

14 F. Baader and B. Sertkaya

However, when an inconsistency is detected by DL reasoning, then it is not
clear at which stage the actual error was made. In fact, although only the last
extension of the knowledge base has made it inconsistent, the deviation from
what holds in I may have occurred in a previous step. Pinpointing [6,7,21,24,32]
can be used to compute all minimal subsets of the knowledge base that are
already inconsistent, and thus help the expert to find the place where the error
was made. But in the end, the expert needs to tell the completion tool which
are the erroneous assertions and/or GCIs.

The expert may also be alerted by DL reasoning to errors in cases where the
knowledge base is not inconsistent. In fact, after each extension of the KB, the
DL reasoner re-classifies it, i.e., computes the implied subsumption and instance
relationships. If one of them contradicts the experts knowledge about I, she
also knows that an error has occurred. Again, pinpointing can show all minimal
subsets of the knowledge base from which this unintended consequence already
follows.

Recovery from Errors

Once the sources of the error are found, the next task is to correct it without
producing unnecessary extra work for the expert. Of course, one can just go back
to the step where the first error was made, and continue the completion process
from there, this time with a correct answer. The problem with this simple ap-
proach is that it throws away all the information about I that the expert has
added (by answering implication queries) after the first error had occurred. Con-
sequently, the completion procedure may again pose implication queries whose
answer actually follows from this information. On the DL side, it is no prob-
lem to keep those assertions and GCIs that really hold in I. More precisely, the
completion procedure can keep the GCIs and assertions for which the expert has
stated that they are not erroneous. In fact, our completion procedure allows for
arbitrary extensions of the KB as long as the KB stays a model of I.

On the FCA side, it is less clear whether one can keep the implications that
have been added after the first error had been made. In fact, since the new (cor-
rect) answer differs from the previous incorrect one, the completion procedure
may actually produce different implication questions. The proof of correctness
of the procedure, as given in [4], strongly depends on the fact that implications
are enumerated according to the lectic ordering of their left-hand sides. Thus,
having implications in the implication set for which the left-hand side is actually
larger than the left-hand side of the implication currently under consideration
may potentially cause problems. However, not using these implications may lead
to more implication questions being generated. Fortunately, this problem can be
solved by using these implications as background knowledge [34] rather than as
part of the implication base to be generated. Thus, when correcting an error,
we move implications generated after the error had occurred, but marked by the
expert as correct, to the background knowledge. Correctness then follows from
the fact that Stumme’s extension of attribute exploration to the case of impli-
cational background knowledge [34] can further be extended to partial contexts
(see the corresponding subsection below).

Usability Issues in Description Logic Knowledge Base Completion 15

Deferring Questions

Although we assume that the expert is omniscient in the sense that she is poten-
tially able to answer all implication questions, it is convenient to be able to defer
answering certain questions. For example, in the biology application mentioned
in the introduction, answering an implication question may necessitate search-
ing the literature on human protein phosphatases, querying gene and protein
databases, or even making new experiments. This research may take quite some
time, and can possibly be delegated to other researchers. It would thus be good
if the expert could in parallel continue with the completion process.

Our approach for achieving this is that we allow the expert to stop the com-
pletion process and change the linear order on the set M of interesting concepts.
This results in a different lectic order, and thus other implication questions may
be asked before the problematic one.2 To ensure that correctness is not com-
promised by this approach, we leave the knowledge base as it is, but move all
the implications collected so far to the background knowledge. The completion
procedure is then restarted with the first set that is closed w.r.t. the background
implications, i.e., the closure of ∅.

Attribute Exploration with Background Knowledge for Partial
Contexts

Our approaches for recovering from errors and for allowing the expert to defer an-
swering a question depend on the use of implications as background knowledge.
Attribute exploration in the presence of implicational background knowledge
[34] and also non-implicational background knowledge [12,13] has already been
considered in the literature for full contexts. For partial context, it has been con-
sidered in [17]. However, as mentioned before, this work is based on assumptions
that are different from ours, and thus cannot directly be used.

In [4] we have shown termination and correctness of Algorithm 1 under the
condition that the initial set of implications L0 is empty (line 3). In the following
we show that Algorithm 1 stays correct and terminating if we modify it such
that

1. the initial set of implications L0 already contains background implications
that are not refuted by K, i.e., satisfies K ⊆ Mod(L0) (line 3); and

2. the variable P is initialized with the lectically smallest L0-closed set, i.e.,
with L0(∅) rather than with ∅ (line 4).

Theorem 3. Let M be a finite set of attributes, K and K0 respectively a full and
a partial context over the attributes in M such that K0 ≤ K, L0 an initial set of
background implications such that K ⊆ Mod(L0), and P0 the lectically smallest
L0-closed set L0(∅). Then the modified Algorithm 1 terminates on this input and
upon termination it outputs a partial context K and a set of implications L such
that
2 Note, however, that this need not always be the case, i.e., it could be that also with

the changed order the problematic question is the next one.

16 F. Baader and B. Sertkaya

1. L is a base for Imp(K), and
2. K refutes every implication that is refuted by K.

Since the proof of this theorem is almost identical to the one of Theorem 1, we
only give a sketch (see the proof of Theorem 1 given in [4] for details).

Termination is based on the following observation: in every iteration of the
algorithm, one

(a) either considers as left-hand side of the current implication a new set P that
is lectically larger than the previous one,

(b) or stays with the same left-hand side P , but decreases the cardinality of the
right-hand side.

Thus, both iterations of the form (a) and (b) cannot occur infinitely often. This
argument applies unchanged to the modified algorithm.

To show correctness, we must show 1. and 2. in the statement of the theorem.
Thus, we must show that L is both sound and complete for Imp(K), and that K
refutes every implication that is refuted by K. Soundness of L is an immediate
consequence of the fact that the invariant K ≤ K ⊆ Mod(L) holds throughout the
run of the algorithm. The only difference between the original and the modified
algorithm is that the former starts with the empty set of implications whereas
the latter starts with a possibly non-empty set L0 of implications. However, since
L0 is assumed to satisfy K ⊆ Mod(L0), the invariant is still satisfied at the start
of the modified algorithm.

Because the invariant is satisfied, completeness of L for Imp(K) as well as the
fact that K refutes every implication refuted by K follow by Proposition 2 as
soon as we have shown that every implication is decided w.r.t. K and L. Thus,
assume that L → R is undecided w.r.t. K and L, i.e., it does not follow from L
and is not refuted by K. By Proposition 3, L(L) → R also does not follow from
L. In addition, since L ⊆ L(L), it is also not refuted by K.

We claim that L(L) is equal to one of the sets Pi considered during the run of
the algorithm. In fact, since the final set Pn = M is the lectically largest subset
of M and since the lectic order < is total, there is a unique smallest i such that
L(L) < Pi. First, assume that i = 0. Then L(L) < P0 = L0(∅). However, L0 ⊆ L
implies that L(L) is as also L0-closed, which contradicts the fact that L0(∅) is
the smallest L0-closed set. If i > 0, then Pi−1 < L < Pi, and we can analogously
derive a contradiction to the fact the Pi is the lectically next Li-closed set after
Pi−1.

Thus, let i be such that L(L) = Pi. Then the implication Pi → Ki(Pi) is
considered during iteration i of the algorithm. If this implication is not refuted
by K, then one can show that R ⊆ Ki(Pi), and use this fact to show that Pi → R
follows from L, which contradicts our assumption that L → R is undecided (see
[4] for details).

If Pi → Ki(Pi) is refuted by K, then Ki is extended to a partial context Ki+1

that refutes this implication. If Ki+1 also refutes Pi → R, then this implies that
K refutes L → R, which is again a contradiction (see [4] for details). Otherwise,
note that Pi+1 = Pi and Li+1 = Li, and thus in the next iteration the expert

Usability Issues in Description Logic Knowledge Base Completion 17

gets the implication Pi → Ki+1(Pi). By our assumption, Pi → R is not refuted
by Ki+1, and thus R ⊆ Ki+1(Pi). In addition, we have Ki+1(Pi) � Ki(Pi) due
to the fact that Ki+1 refutes Pi → Ki(Pi).

If Pi → Ki+1(Pi) is not refuted by K, then we can continue as in the first case
above, and derive that Pi → R follows from L. Otherwise, we can continue as in
the second case. However, because in this case the size of the right-hand side of
the implication given to the expert strictly decreases, we cannot indefinitely get
the second case. This completes our sketch of the proof of Theorem 3.

Termination and correctness of the accordingly modified Algorithm 2 is a
trivial consequence of this theorem, i.e., we can also start this algorithm with a
non-empty set of background implications L0 provided that all implications in
L0 are not refuted by I.

5 OntoComP: Ontology Completion Plugin for Protégé

Based on the usability considerations sketched in the previous sections, we have
implemented an improved version of our completion algorithm as an open-source
tool called OntoComP,3 which stands for Ontology Completion Plugin. It is
written in Java as a plugin for the Protégé 4 ontology editor [19]. It commu-
nicates with the underlying DL reasoner over the OWL API [8].

OntoComP can easily be integrated into an existing Protégé 4 installation.
After installing this plugin, it appears in the Protégé 4 window as a new tab.
For completing a knowledge base loaded into Protégé 4, one first needs to
classify it with one of the DL reasoners supported by Protégé 4 (e.g., FaCT++
[35] or Pellet [33]). Then one can go to the OntoComP tab to start completion,
and create the set M of interesting concepts by dragging and dropping the
concept names that are supposed to be in this set from the class hierarchy
displayed in the OntoComP tab. Figure 5 displays the OntoComP window
during completion of the knowledge base of Example 3.

Counterexample Generation. OntoComP has a counterexample editor for
supporting the user during counterexample generation. When the user rejects
an implication, OntoComP opens a counterexample editor in a new tab, and
displays those individuals from the ABox that can potentially be turned into a
counterexample by adding assertions for them. Alternatively, the user can intro-
duce a new individual together with assertions that make it a counterexample.
During counterexample generation, OntoComP guides the user and notifies her
once she has created a valid counterexample to the implication question.

Error Recovery. At any point during knowledge base completion, if the user
notices that he has made a mistake in one of the previous steps, he can stop the
completion and can request to see the history of all answers he has given. Onto-
ComP displays all the questions asked in previous steps, the answers that were

3 available under http://code.google.com/p/ontocomp

http://code.google.com/p/ontocomp

18 F. Baader and B. Sertkaya

Fig. 1. OntoComP window during completion

given to these questions, and the counterexamples accompanying negative an-
swers. The user can browse the answering history, correct the wrong answers he
has given in the previous steps, and can then continue completion. OntoComP
then keeps all GCIs and counterexamples that were not marked as incorrect in
the knowledge base, and moves all implications to the background knowledge.
Pinpointing reasons for consequences (such as inconsistency or unintended sub-
sumption or instance relationships) is not directly integrated into the current
version of OntoComP. However, the user could use the pinpointing facilities
provided by Protégé 4.

Deferring Questions. OntoComP allows the user to defer a question at any
point during completion. It achieves this by the approach described in Section 4,
i.e., it tries to change the order on M such that a different question is generated as
the next question. As alreadymentioned in Section 4, this need not always succeed.

6 Future Work

In addition to further improving and evaluating our completion tool Onto-
ComP, the main topic for future research in this direction will be to look at
extensions of our definition of a complete KB. As a formalization of what “all
relationships between interesting concepts” really means, we have used subsump-
tion relationships between conjunctions of elements of a finite set of interesting

Usability Issues in Description Logic Knowledge Base Completion 19

concepts M . One could also consider more complex relationships by fixing a spe-
cific DL D, and then taking, as attributes, all the D-concept descriptions that
can be built using a finite set of interesting concept and role names. This would
result in a notion of completeness where each GCIs that can be built using D
and the given finite set of concept and role names either follows from the TBox
(in case it holds in the underlying model) or is refuted by the ABox (in case it
does not hold in the underlying model).

The obvious problem caused by this extension is that, in general, the set of
attributes becomes infinite, and thus termination of the exploration process is
no longer a priori guaranteed. Different extensions of classical attribute explo-
ration (i.e., for full contexts) in this direction are described in [30,31] for the DL
FLE , and in [2,3] for the DL EL and its extension by cyclic concept definitions
with greatest fixpoint semantics, ELgfp. In both approaches, variants of classi-
cal attribute exploration are introduced that consider as attributes all concept
descriptions built using the given DL and a given finite set of concept and role
names. It is shown that the introduced exploration algorithms terminate if the
underlying model is finite. We will investigate whether these approaches can be
adapted to knowledge base completion.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

2. Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a finite
model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933,
pp. 46–61. Springer, Heidelberg (2008)

3. Baader, F., Distel, F.: Exploring finite models in the description logic ELgfp. In:
Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, Springer,
Heidelberg (2009)

4. Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing descrip-
tion logic knowledge bases using formal concept analysis. LTCS-Report
LTCS-06-02, Chair for Automata Theory, Institute for Theoretical Com-
puter Science, Dresden University of Technology, Germany (2006),
http://lat.inf.tu-dresden.de/research/reports.html

5. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic
knowledge bases using formal concept analysis. In: Proc. of the Twentieth Int. Joint
Conf. on Artificial Intelligence (IJCAI 2007), pp. 230–235. AAAI Press, Menlo Park
(2007)

6. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI),
vol. 4667, pp. 52–67. Springer, Heidelberg (2007)

7. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Proc. of the Int. Conf. on Representing and
Sharing Knowledge Using SNOMED (KR-MED 2008), Phoenix, Arizona (2008)

8. Bechhofer, S., Volz, R., Lord, P.: Cooking the semantic web with the OWL API.
In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 659–675. Springer, Heidelberg (2003)

http://lat.inf.tu-dresden.de/research/reports.html

20 F. Baader and B. Sertkaya

9. Burmeister, P., Holzer, R.: On the treatment of incomplete knowledge in formal
concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867,
pp. 385–398. Springer, Heidelberg (2000)

10. Burmeister, P., Holzer, R.: Treating incomplete knowledge in formal concept anal-
ysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS,
vol. 3626, pp. 114–126. Springer, Heidelberg (2005)

11. Ganter, B.: Two basic algorithms in concept analysis. Technical Report Preprint-
Nr. 831, Technische Hochschule Darmstadt, Darmstadt, Germany (1984)

12. Ganter, B.: Attribute exploration with background knowledge. Theoretical Com-
puter Science 217(2), 215–233 (1999)

13. Ganter, B., Krauße, R.: Pseudo-models and propositional Horn inference. Discrete
Applied Mathematics 147(1), 43–55 (2005)

14. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin (1999)

15. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer,
Heidelberg (2001)

16. Halaschek-Wiener, C., Parsia, B., Sirin, E., Kalyanpur, A.: Description Logic rea-
soning for dynamic ABoxes. In: Proc. of the 19th Int. Workshop on Description
Logics (DL 2006). CEUR-WS, vol. 189 (2006)

17. Holzer, R.: Knowledge acquisition under incomplete knowledge using methods from
formal concept analysis: Part I. Fundamenta Informaticae 63(1), 17–39 (2004)

18. Holzer, R.: Knowledge acquisition under incomplete knowledge using methods from
formal concept analysis: Part II. Fundamenta Informaticae 63(1), 41–63 (2004)

19. Horridge, M., Tsarkov, D., Redmond, T.: Supporting early adoption of OWL 1.1
with Protege-OWL and FaCT++. In: Proc. of the Second Int. Workshop OWL:
Experiences and Directions (OWLED 2006). CEUR-WS (2006)

20. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: the making of a web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

21. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C.: Repairing unsatisfiable concepts
in OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 170–184. Springer, Heidelberg (2006)

22. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., Hendler, J.A.: Swoop: A web
ontology editing browser. Journal of Web Semantics 4(2), 144–153 (2006)

23. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL plu-
gin: An open development environment for semantic web applications. In: McIl-
raith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 229–243. Springer, Heidelberg (2004)

24. Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: Proc. of the 21st National Conf. on Artificial
Intelligence (AAAI 2006), pp. 269–274. AAAI Press/The MIT Press (2006)

25. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. Dissertation, Universität Karlsruhe (TH), Germany (2006)

26. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using
hypertableaux. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp.
67–83. Springer, Heidelberg (2007)

27. Oberle, D., Volz, R., Staab, S., Motik, B.: An extensible ontology software envi-
ronment. In: Handbook on Ontologies, Int. Handbooks on Information Systems,
pp. 299–320. Springer, Heidelberg (2004)

Usability Issues in Description Logic Knowledge Base Completion 21

28. Obiedkov, S.A.: Modal logic for evaluating formulas in incomplete contexts. In:
Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS, vol. 2393, pp.
314–325. Springer, Heidelberg (2002)

29. Reeg, S., Weiß, W.: Properties of Finite Lattices. Diplomarbeit, TH Darmstadt,
Germany (1990)

30. Rudolph, S.: Exploring relational structures via FLE . In: Wolff, K.E., Pfeiffer,
H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS, vol. 3127, pp. 196–212. Springer,
Heidelberg (2004)

31. Rudolph, S.: Relational Exploration: Combining Description Logics and Formal
Concept Analysis for Knowledge Specification. Ph.D. Dissertation, Fakultät Math-
ematik und Naturwissenschaften, TU Dresden, Germany (2006)

32. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proc. of the Eighteenth Int. Joint Conf. on
Artificial Intelligence (IJCAI 2003), pp. 355–362. Morgan Kaufmann, San Francisco
(2003)

33. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of the 2004 Int.
Workshop on Description Logics (DL 2004). CEUR Workshop Proc., vol. 104.
CEUR-WS.org (2004)

34. Stumme, G.: Attribute exploration with background implications and exceptions.
In: Data Analysis and Information Systems. Statistical and Conceptual approaches.
Proc. of GfKl 1995. Studies in Classification, Data Analysis, and Knowledge Or-
ganization, vol. 7, pp. 457–469. Springer, Heidelberg (1996)

35. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006)

36. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of con-
cepts. In: Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

37. Wolstencroft, K., Brass, A., Horrocks, I., Lord, P.W., Sattler, U., Turi, D., Stevens,
R.: A little semantic web goes a long way in biology. In: Gil, Y., Motta, E., Ben-
jamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 786–800.
Springer, Heidelberg (2005)

	Usability Issues in Description Logic Knowledge Base Completion
	Introduction
	Description Logics
	Partial Contexts, Attribute Exploration, and Completion of DL Knowledge Bases
	Improving the Usability of the Completion Procedure
	OntoComP: Ontology Completion Plugin for Protégé
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

