Solving Angry Birds with Reinforcement Learning

Richard Kwasnicki & Julius Gonsior

February 23, 2017

Final presentation for INF-PM-FPA Profilmodul Forschungsprojekt Anwendung

Angry Birds - The Game

- Artillery game
- Release date: December 2009 (iPhone)
- With > 2 billion downloads in total most popular mainstream game
- Revenue of Rovio Entertainment in 2015: 142 million euro

Principle

- Primary aim: elimination of all pigs
- Secondary aim: maximize points (3 stars)
- Destroyed/damaged objects (ice, wood, stone, pig) and remaining birds = score

In the first episode "Poached Eggs' exist:

Picture	Туре	Strength	On-Click effect
٠	Red (Red)	Nothing	Nothing
8	Blue (Jim, Jake & Jay)	lce	Triplication
<u>à</u>	Yellow (Chuck)	Wood	Speed-up
۵	Black (Bomb)	Stone	Explosion
۲	White (Matilda)	Explosive egg	Drops egg

More types in later episodes ...

Solving Angry Birds with Reinforcement Learning

- Predict outcome of physical actions
- No complete knowledge of the world
- Select best action out of $(640 \times 480)^{birds \times taps}$
- * 3Birds \rightarrow 1.68 \times 10¹⁶⁴⁶
- Planning over multiple shots
- ightarrow Competition was born

JCAI-17 MELBOURNE

- Yearly competition during IJCAI
- Main goal: AI better than Human
- Unknown, newly created levels
- 4 Rounds (Elimination, highest points)
- See more on http://aibirds.org/

Existing Solutions/Approaches

Existing Solutions/Approaches

- DataLab Birds (Data Science Lab Prague, Czech Republic, 1018230 Points)
 - Heuristics for different good actions
- AngryBER (Data Science, Ioannina, Greece, 935330 Points)
 - Machine Learning
 - Calculate expected reward
- Plan A+ (Computer Engineering, Sejong, Korea, 1002380 Points)
 - Two strategy's depending on object breakability
 - Manually tuned parameters (heuristic)
- AngryHEX (974670 Points)
 - ASP Knowledge Base (heuristic)
 - Scene encoding into logic assertions

Our Approach

- Existing solutions (mainly): manual identification of rules or creation of heuristics/scores for good shots
- Our aim: automatic identification of a heuristic which means:
 - Experimental shooting
 - Learn what makes a good combination (planning)
 - Application of learned knowledge in unknown levels
- \rightarrow Reinforcement Learning

Reinforcement Learning

Origin

- Field of machine learning
- Behaviorist psychology: animal learning
- Math: optimal control

What is the main principle of Reinforcement Learning?

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \times \left(r_{t+1} + \gamma \times \max_a Q(s_{t+1}, a) - Q(s_t, a_t)\right)$$

Old Value

- s ... state
- \cdot a ... action

	12 31	14 52	IS 72	III 15 65
S 0	0	-1	27	3
S ₁	5	-1	12	-1
S ₂	-1	17	2	-10
S 3	-1	-1	-1	-1
S 4	-1	-1	-1	-1

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \frac{\alpha_t}{\alpha_t} \times \left(r_{t+1} + \gamma \times \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right)$$

Learning rate

- \cdot s ... state
- \cdot a ... action

	12 31	14 52	15 72	15 65
S 0	0	-1	27	3
S ₁	5	-1	12	-1
S ₂	-1	17	2	-10
S 3	-1	-1	-1	-1
S 4	-1	-1	-1	-1

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \times \left(\mathbf{r}_{t+1} + \gamma \times \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right)$$

Reward

- s ... state
- \cdot a ... action

	12 31	14 52	IS 72	III 15 65
s ₀	0	-1	27	3
S 1	5	-1	12	-1
S ₂	-1	17	2	-10
S 3	-1	-1	-1	-1
S 4	-1	-1	-1	-1

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \times \left(r_{t+1} + \frac{\gamma}{\gamma} \times \max_a Q(s_{t+1}, a) - Q(s_t, a_t)\right)$$

Discount factor

- s ... state
- \cdot a ... action

	12 31	14 52	15 72	III 15 65
S 0	0	-1	27	3
S ₁	5	-1	12	-1
S ₂	-1	17	2	-10
S 3	-1	-1	-1	-1
S 4	-1	-1	-1	-1

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \times \left(r_{t+1} + \gamma \times \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right)$$

Estimate of optimal future value

- s ... state
- \cdot a ... action

	12 31	14 52	15 72	15 65
S 0	0	-1	27	3
S ₁	5	-1	12	-1
S ₂	-1	17	2	-10
S 3	-1	-1	-1	-1
S 4	-1	-1	-1	-1

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \times \left(r_{t+1} + \gamma \times \max_a Q(s_{t+1}, a) - Q(s_t, a_t)\right)$$

- s ... state
- \cdot a ... action

	12 31	14 52	I5 72	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
S ₀	0	-1	27	3
S ₁	5	-1	12	-1
S ₂	-1	17	2	-10
S ₃	-1	-1	-1	-1
S 4	-1	-1	-1	-1

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \times \left(r_{t+1} + \gamma \times \max_a Q(s_{t+1}, a) - Q(s_t, a_t)\right)$$

- s ... state
- \cdot a ... action

	12 31	14 52	15 72	15 65
S 0	0	-1	27	3
S ₁	5	-1	12	-1
S ₂	-1	17	2	-10
S 3	-1	-1	-1	-1
S 4	-1	-1	-1	-1

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \times \left(r_{t+1} + \gamma \times \max_a Q(s_{t+1}, a) - Q(s_t, a_t)\right)$$

- s ... state
- \cdot a ... action

	12 31	14 52	15 72	15 65
S 0	0	15	27	3
S ₁	5	-1	12	-1
S ₂	-1	17	2	-10
S 3	-1	-1	-1	-1
S 4	-1	-1	-1	-1

- \cdot Positive reward only on last shot
- First action affected after *n* games for *n* birds

- 5 x 5 World
- Possible Actions: Up, Right, Down, Left
- Rewards per move:
 - Green tile: +1
 - Red tile: -1
 - Default tile: -0.05

Live

Solving Angry Birds with Reinforcement Learning

- State: Serialized screenshot with
 - rounded coordinates
 - object-type
 - object-shape
- Action: Shoot on center of an object (Limitation: object direct reachable)
- Reward: Score after successful finishing the level

State: RedBird 19 32 Rect ... Wood 59 35 Rect Pig 54 29 Rect Action: Wood 49 35 Rect Wood 54 31 Rect ...

Solving Angry Birds with Reinforcement Learning

Observation of pure Reinforcement Learning Approach

Observation of pure Reinforcement Learning Approach

Played levels after 1 week:
 3.217 on a VM from the ZIH
 with 16 cores and 32GB
 ram

Observation of pure Reinforcement Learning Approach

- Played levels after 1 week: 3.217 on a VM from the ZIH with 16 cores and 32GB ram
 - → much too less for proper Reinforcement Learning
 - → delayed feedback!

Observation of pure Reinforcement Learning Approach

- Played levels after 1 week:
 3.217 on a VM from the ZIH
 with 16 cores and 32GB
 ram
 - → much too less for proper Reinforcement Learning
 - → delayed feedback!
- Achieved scores similar to naïve agent
 - \rightarrow suggests that nothing was learned

Encountered practical Problems while implementing the Theory

Game is implemented as closed source Chrome plugin

- Chrome plugin and screenshot analysis needs lots of resources
 - $\rightarrow\,$ couldn't run more than 4 Chrome processes in parallel on a ZIH VM with 16 cores and 32GB ram

Game is implemented as closed source Chrome plugin

- Chrome plugin and screenshot analysis needs lots of resources
 - $\rightarrow\,$ couldn't run more than 4 Chrome processes in parallel on a ZIH VM with 16 cores and 32GB ram
- + Game is slow: one shot takes \sim 20 seconds
 - ightarrow 1.000.000 shots will take \sim 232 days

Game is implemented as closed source Chrome plugin

- Chrome plugin and screenshot analysis needs lots of resources
 - $\rightarrow\,$ couldn't run more than 4 Chrome processes in parallel on a ZIH VM with 16 cores and 32GB ram
- + Game is slow: one shot takes \sim 20 seconds
 - ightarrow 1.000.000 shots will take \sim 232 days
- Not possible to create new levels \rightarrow overfitting!

Given Vision Module is not working exactly

• Object coordinates differ in each run
- \cdot Object coordinates differ in each run
- Wrong object recognition results in:

- Object coordinates differ in each run
- Wrong object recognition results in:
 - \cdot same action can lead to multiple states

- Object coordinates differ in each run
- Wrong object recognition results in:
 - same action can lead to multiple states
 - same target object didn't result always in same states

Solving Angry Birds with Reinforcement Learning

- Object coordinates differ in each run
- Wrong object recognition results in:
 - same action can lead to multiple states
 - same target object didn't result always in same states

\rightarrow increases exponentially search space

- Reimplement game without GUI and actual API
 - \rightarrow takes a lot of time

- Reimplement game without GUI and actual API \rightarrow takes a lot of time
- Try to optimize/speed up existing game implementation
 → will never be as performant as reimplementation

- Reimplement game without GUI and actual API
 → takes a lot of time
- Try to optimize/speed up existing game implementation
 → will never be as performant as reimplementation
- Limit search space
 - \rightarrow need to manually discard possible solutions

- Reimplement game without GUI and actual API
 → takes a lot of time
- Try to optimize/speed up existing game implementation
 → will never be as performant as reimplementation
- Limit search space
 - \rightarrow need to manually discard possible solutions
- Use much more computating power

- Reimplement game without GUI and actual API
 → takes a lot of time
- Try to optimize/speed up existing game implementation
 → will never be as performant as reimplementation
- Limit search space
 - \rightarrow need to manually discard possible solutions
- Use much more computating power

New approach

• Difference to previous solution: drastically reduced search space by limiting possible target actions

- Difference to previous solution: drastically reduced search space by limiting possible target actions
- Instead of proposing all possible target objects, low/high trajectories and tap time a preselection of most promising targets

- Difference to previous solution: drastically reduced search space by limiting possible target actions
- Instead of proposing all possible target objects, low/high trajectories and tap time a preselection of most promising targets
- Reinforcement learning shall again select, based on the current state, which preselected action to take

- Difference to previous solution: drastically reduced search space by limiting possible target actions
- Instead of proposing all possible target objects, low/high trajectories and tap time a preselection of most promising targets
- Reinforcement learning shall again select, based on the current state, which preselected action to take
- Drawback: learned strategy is limited by preselected actions
 - \rightarrow no totally new strategies

Heuristics used for preselection of possible targets:

Big round objects ●

- Big round objects ●
- TNT 🖾

- Big round objects ●
- TNT 🔤
- Multiple pig shot

- Big round objects ●
- TNT 🔤
- Multiple pig shot

- Score depending on following factors:
 - Number of objects above

- Big round objects ●
- TNT 🔤
- Multiple pig shot

- Score depending on following factors:
 - Number of objects above
 - Number of objects in trajectory

- Big round objects ●
- TNT 🔤
- Multiple pig shot

- Score depending on following factors:
 - Number of objects above
 - Number of objects in trajectory
 - Number of objects to the right

- Big round objects ●
- TNT 🔤
- Multiple pig shot

- Score depending on following factors:
 - Number of objects above
 - Number of objects in trajectory
 - Number of objects to the right
 - Number of objects below

- Big round objects ●
- TNT 🔤
- Multiple pig shot

- Score depending on following factors:
 - Number of objects above
 - Number of objects in trajectory
 - Number of objects to the right
 - Number of objects below
 - How many shots are left left

- Big round objects ●
- TNT 🔤
- Multiple pig shot

- Score depending on following factors:
 - Number of objects above
 - Number of objects in trajectory
 - Number of objects to the right
 - Number of objects below
 - How many shots are left I
 - Material 📐

- Big round objects ●
- TNT 🔤
- Multiple pig shot

- Score depending on following factors:
 - Number of objects above
 - Number of objects in trajectory
 - Number of objects to the right
 - Number of objects below
 - How many shots are left I
 - Material 📐
 - Orientation

Heuristics used for preselection of possible targets:

- Big round objects ●
- TNT 🖾
- Multiple pig shot

- Score depending on following factors:
 - Number of objects above
 - Number of objects in trajectory
 - Number of objects to the right
 - Number of objects below
 - How many shots are left I
 - Material 📐
 - Orientation
 - Distance to pigs 🛎

Solving Angry Birds with Reinforcement Learning

Observation again

Observation of Reinforcement Learning and Heuristic

• Played levels after 2 weeks: 5172

Observation of Reinforcement Learning and Heuristic

- Played levels after 2 weeks: 5172
- 1–2 tries needed to solve first level, later level needed comparably much more tries

• Max values suggest that reinforcement learning is a suitable promising method for solving of Angry Birds

- Max values suggest that reinforcement learning is a suitable promising method for solving of Angry Birds
- But: good results aren't reproducible yet because the really good shots haven't been remembered
 - \rightarrow delayed feedback in Q-learning

- Max values suggest that reinforcement learning is a suitable promising method for solving of Angry Birds
- But: good results aren't reproducible yet because the really good shots haven't been remembered
 → delayed feedback in Q-learning
- \cdot for competition the overfitting still needs to be checked

- Max values suggest that reinforcement learning is a suitable promising method for solving of Angry Birds
- But: good results aren't reproducible yet because the really good shots haven't been remembered
 → delayed feedback in Q-learning
- \cdot for competition the overfitting still needs to be checked
- not yet implemented strategy for solving unknown level in competition modus

Outlook

What would we do different if we were starting all over?

• Reimplement the game in a more machine learning friendly way

What would we do different if we were starting all over?

- Reimplement the game in a more machine learning friendly way
 - API to get current objects
What would we do different if we were starting all over?

- Reimplement the game in a more machine learning friendly way
 - API to get current objects
 - Direct output of computed resulted state after shooting an object (no useless wait for pretty animation to finish)

- Reimplement the game in a more machine learning friendly way
 - API to get current objects
 - Direct output of computed resulted state after shooting an object (no useless wait for pretty animation to finish)
- Can't discourage to not use Reinforcement Learning, result of second approach looked promising
 → leads to speculation that first approach probably would have worked with more iterations

Questions?

