Answer Set Programming: Computation &
Characterization

Sebastian Rudolph

Computational Logic Group
Technische Universitat Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub.
Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0

Unported License.

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 1/43

Consequence operator

Outline

Consequence operator

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 2/43

Consequence operator

Consequence operator

m Let P be a positive program and X a set of atoms

m The consequence operator Tp is defined as follows:

TpX = {head(r) | r € P and body(r) C X}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 3/43

Consequence operator

Consequence operator

m Let P be a positive program and X a set of atoms

m The consequence operator Tp is defined as follows:
TpX = {head(r) | r € P and body(r) C X}

m lIterated applications of Tp are written as T,j, forj >0,
where

[TBX =X and
B TLX =TpTh X for i > 1

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 3/43

Consequence operator

Consequence operator

m Let P be a positive program and X a set of atoms

m The consequence operator Tp is defined as follows:
TpX = {head(r) | r € P and body(r) C X}

m lIterated applications of Tp are written as T,j, forj >0,
where

[TEX =X and
B TLX =TpTh X for i > 1

m For any positive program P, we have
m Cn(P) =U>o Tr0
m X C Y implies TpX C TpY
m Cn(P) is the smallest fixpoint of Tp

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 3/43

Consequence operator

An example
m Consider the program

P={p<«, g, r<p, s<q,t, t<r, u< v}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 4 /43

Consequence operator

m Consider the program

An example

P={p<«, g, r<p, s<q,t, t<r, u« v}

m We get

T30
T50
T30
T30
T30
T20
T80

Sebastian Rudolph (TUD)

0
{p.q} = TpTp0 = Tpl
{P, q, r} = TPT,%(Z) — Tp{p7 q}
{p.q.r,it} = TpTpb = Tp{p.q.r}
{P, q,r, t,S} - TPTE)(D = Tp{p, q,r, t}
{p,q,r,t,s} = TpTED = Tp{p,q,r, t,s}
{p7 q,r, t,S} = TPTE)(D = Tp{p, q,r,t, S}
Answer Set Programming: Computation & Characterization 4 /43

Consequence operator

An example
m Consider the program

P={p<«, g, r<p, s<q,t, t<r, u« v}

m We get
T30 = 0
a0 = {p.q} — TpTR = Tpl
T30 = {p.q.r} = TpTED = Tp{p,q}
T30 = {p,q,r t} = TpT30 = Tp{p,q,r}
TI?’(Z) = {p.q,r.t,s} = TPTE’(D = Tp{p,q,r, t}
T30 = {p,q,r,t,s} = TpTpd = Tp{p,q,r, t,s}
T,g(b = {p7q7r>t’5} = TPTE’(D = Tp{p,q,r,t,S}

m Cn(P) ={p,q,r,t,s} is the smallest fixpoint of Tp because

m Tp{p,q,r,t,st ={p,q,r,t,s} and
m TpX # X for each X C {p,q,r,t,s}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 4 /43

Computation from first principles

Outline

Computation from first principles

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 5/43

Computation from first principles

Approximating stable models

m First [dea Approximate a stable model X by two sets of atoms
L and U such that LC X C U

m L and U constitute lower and upper bounds on X
m L and (A\ U) describe a three-valued model of the program

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 /43

Computation from first principles

Approximating stable models

m First [dea Approximate a stable model X by two sets of atoms
L and U such that LC X C U

m L and U constitute lower and upper bounds on X
m L and (A\ U) describe a three-valued model of the program

m Observation

X C Y implies PY C PX implies Cn(PY) C Cn(PX)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 /43

Computation from first principles

Approximating stable models

m First [dea Approximate a stable model X by two sets of atoms
L and U such that LC X C U

m L and U constitute lower and upper bounds on X
m L and (A\ U) describe a three-valued model of the program

m Observation
X C Y implies PY C PX implies Cn(PY) C Cn(PX)

m Properties Let X be a stable model of normal logic program P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 /43

Computation from first principles

Approximating stable models

m First [dea Approximate a stable model X by two sets of atoms
L and U such that LC X C U

m L and U constitute lower and upper bounds on X
m L and (A\ U) describe a three-valued model of the program

m Observation
X C Y implies PY C PX implies Cn(PY) C Cn(PX)

m Properties Let X be a stable model of normal logic program P
m If LCX,

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 /43

Computation from first principles

Approximating stable models

m First [dea Approximate a stable model X by two sets of atoms
L and U such that LC X C U

m L and U constitute lower and upper bounds on X
m L and (A\ U) describe a three-valued model of the program

m Observation
X C Y implies PY C PX implies Cn(PY) C Cn(PX)

m Properties Let X be a stable model of normal logic program P
m If L C X, then X C Cn(P")

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 /43

Computation from first principles

Approximating stable models

m First [dea Approximate a stable model X by two sets of atoms
L and U such that LC X C U

m L and U constitute lower and upper bounds on X
m L and (A\ U) describe a three-valued model of the program

m Observation
X C Y implies PY C PX implies Cn(PY) C Cn(PX)

m Properties Let X be a stable model of normal logic program P
m If L C X, then X C Cn(P")
mIf XCU,

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 /43

Computation from first principles

Approximating stable models

m First [dea Approximate a stable model X by two sets of atoms
L and U such that LC X C U

m L and U constitute lower and upper bounds on X
m L and (A\ U) describe a three-valued model of the program

m Observation
X C Y implies PY C PX implies Cn(PY) C Cn(PX)

m Properties Let X be a stable model of normal logic program P
m If L C X, then X C Cn(P")
m If X C U, then Cn(PY) C X

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 /43

Computation from first principles

Approximating stable models

m First [dea Approximate a stable model X by two sets of atoms
L and U such that LC X C U

m L and U constitute lower and upper bounds on X
m L and (A\ U) describe a three-valued model of the program

m Observation
X C Y implies PY C PX implies Cn(PY) C Cn(PX)

m Properties Let X be a stable model of normal logic program P
m If L C X, then X C Cn(P")
m If X C U, then Cn(PY) C X
mIfLCXCU,

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

6/ 43

Computation from first principles

Approximating stable models

m First [dea Approximate a stable model X by two sets of atoms
L and U such that LC X C U

m L and U constitute lower and upper bounds on X
m L and (A\ U) describe a three-valued model of the program

m Observation
X C Y implies PY C PX implies Cn(PY) C Cn(PX)

m Properties Let X be a stable model of normal logic program P
m If L C X, then X C Cn(Ph)
m If X C U, then Cn(PY) C X
m If LC X C U, then LUCn(PY) C X C Un Cn(Pt)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 /43

Computation from first principles

Approximating stable models

m Second ldea

repeat

replace L by L U Cn(PY)
replace U by U N Cn(Pl)

until L and U do not change anymore

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 7/43

Computation from first principles

Approximating stable models

m Second ldea

repeat
replace L by L U Cn(PY)
replace U by U N Cn(Pl)

until L and U do not change anymore

m Observations
m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

m L C X C U is invariant for every stable model X of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 7/43

Computation from first principles

Approximating stable models

m Second ldea

repeat
replace L by L U Cn(PY)
replace U by U N Cn(Pl)

until L and U do not change anymore

m Observations
m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

m L C X C U is invariant for every stable model X of P

m If L £ U, then P has no stable model

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 7/43

Computation from first principles

Approximating stable models

m Second ldea

repeat
replace L by L U Cn(PY)
replace U by U N Cn(Pl)

until L and U do not change anymore

m Observations
m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

m L C X C U is invariant for every stable model X of P

m If L £ U, then P has no stable model
m If L = U, then L is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 7/43

Computation from first principles

The simplistic expand algorithm

expandp(L, U)
repeat
L'+ L
U+Uu
L+ L'UCn(PY)
U« U N Cn(PY)
if L Z U then return
until L=L"and U=U'

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 8 /43

Computation from first principles

An example
a<«
b+« a,~c
d < b,~e
e+ ~d

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 9 /43

Computation from first principles

An example
a <
b+« a,~c
P= d < b, ~e
e+ ~d
L Cn(PY) L U cn(PYy U
10 {a} {a} ~ {a,b,c,d.e} {a,bd e} {ab,d e}

2 {a} {a, b} {a,b} {a,b,d, e} {a,b,d,e} {a,b,d, e}
3 {a, b} {a,b} {a,b} {a,b,d, e} {a,b,d,e} {a,b,d, e}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 9 /43

Computation from first principles

An example
a <
b+« a,~c
P= d < b, ~e
e+ ~d
L Cn(PY) L U cn(PYy U
10 {a} {a} ~ {a,b,c,d.e} {a,bd e} {ab,d e}

2 {a} {a, b} {a,b} {a,b,d, e} {a,b,d,e} {a,b,d, e}
3 {a, b} {a,b} {a,b} {a,b,d, e} {a,b,d,e} {a,b,d, e}

m Note We have {a,b} C X and (A\{a,b,d,e})NX =({c}nX)=10
for every stable model X of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 9/43

Computation from first principles

The simplistic expand algorithm

m expandp

m tightens the approximation on stable models
m is stable model preserving

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 10 / 43

Computation from first principles

Let's expand with d !

a<+

b<+ a,~c
d < b,~e
e+ ~d

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 11 / 43

Computation from first principles

Let's expand with d !

a<
b<+ a,~c
P= d < b,~e
e+ ~d
L Cn(PY) L U cn(PYy U
1 {d} {a} {a,d} {a,b,c,d,e} {a,b,d} {a b,d}
{a,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}
3 {a b, d} {a b, d} {a b,d} {a b,d} {a,b,d} {a,b,d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 11 / 43

Computation from first principles

Let's expand with d !

a<
b<+ a,~c
P= d < b,~e
e+ ~d
L' Cn(PY) L v Cn(PY) U
1 {d} {a} {a,d} {a,b,c,d,e} {a,b,d} {a,b,d}
{a,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}
3 {a b, d} {a b, d} {a b,d} {a b,d} {a,b,d} {a,b,d}

m Note {a, b,d} is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

11/ 43

Computation from first principles

Let's expand with ~d !

a<+

b<+ a,~c
d < b,~e
e+ ~d

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 12 / 43

Computation from first principles

Let's expand with ~d !

a+
b<+ a,~c
P= d < b, ~e
e+ ~d
L Cn(PY) L U cn(PYy U
10 {a, e} {a, e} {a,b,c,e} {a,b,d,e} {a, b, e}

2 {a e} {a,b,e} {a,b,e} {a,b,e} {a, b, e} {a, b, e}
3 {a,b,e} {a b,e} {a b,e} {a b, e} {a, b, e} {a, b, e}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 12 / 43

Computation from first principles

Let's expand with ~d !

a+
b<+ a,~c
P= d < b, ~e
e+ ~d
L Cn(PY) L U cn(PYy U
10 {a, e} {a, e} {a,b,c,e} {a,b,d,e} {a, b, e}

2 {a e} {a,b,e} {a,b,e} {a,b,e} {a, b, e} {a, b, e}
3 {a,b,e} {a b,e} {a b,e} {a b, e} {a, b, e} {a, b, e}

m Note {a, b, e} is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 12 / 43

Computation from first principles
A simplistic solving algorithm

solvep(L, U)
(L, U) < expandp(L, U) // propagation

if L Z U then failure // failure
if L = U then output L // success
else choose a € U\ L // choice

solvep(L U {a}, U)
solvep(L, U\ {a})

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 13 / 43

Computation from first principles
A simplistic solving algorithm

m Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 14 / 43

Computation from first principles
A simplistic solving algorithm

m Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

m Backtracking search building a binary search tree
m A node in the search tree corresponds to a three-valued interpretation

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 14 / 43

Computation from first principles
A simplistic solving algorithm

m Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

m Backtracking search building a binary search tree
m A node in the search tree corresponds to a three-valued interpretation

m The search space is pruned by

m deriving deterministic consequences and detecting conflicts (expand)
B making one choice at a time by appeal to a heuristic (choose)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 14 / 43

Computation from first principles
A simplistic solving algorithm

m Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

m Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

m deriving deterministic consequences and detecting conflicts (expand)
B making one choice at a time by appeal to a heuristic (choose)

m Heuristic choices are made on atoms

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 14 / 43

Complexity

Outline

Complexity

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 15 / 43

Complexity

Complexity

Let a be an atom and X be a set of atoms

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 16 / 43

Complexity

Complexity

Let a be an atom and X be a set of atoms

m For a positive normal logic program P:

m Deciding whether X is the stable model of P is P-complete
m Deciding whether a is in the stable model of P is P-complete

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 16 / 43

Complexity

Complexity

Let a be an atom and X be a set of atoms

m For a positive normal logic program P:

m Deciding whether X is the stable model of P is P-complete
m Deciding whether a is in the stable model of P is P-complete

m For a normal logic program P:

m Deciding whether X is a stable model of P is P-complete
m Deciding whether a is in a stable model of P is NP-complete

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 16 / 43

Complexity

Complexity

Let a be an atom and X be a set of atoms

m For a positive normal logic program P:

m Deciding whether X is the stable model of P is P-complete
m Deciding whether a is in the stable model of P is P-complete

m For a normal logic program P:

m Deciding whether X is a stable model of P is P-complete
m Deciding whether a is in a stable model of P is NP-complete

m For a normal logic program P with optimization statements:

m Deciding whether X is an optimal stable model of P is co-NP-complete
m Deciding whether a is in an optimal stable model of P is A5-complete

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 16 / 43

Completion

Outline

Completion

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 17 / 43

Completion

Motivation

m Question Is there a propositional formula F(P) such that the models
of F(P) correspond to the stable models of P ?

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 18 / 43

Completion

Motivation

m Question Is there a propositional formula F(P) such that the models
of F(P) correspond to the stable models of P ?

m Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 18 / 43

Completion

Motivation

m Question Is there a propositional formula F(P) such that the models
of F(P) correspond to the stable models of P ?

m Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

m |dea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 18 / 43

Completion

Program completion

Let P be a normal logic program
m The completion CF(P) of P is defined as follows

CF(P) = {2 V,cp head(r)—sBF (body(r)) | a € atom(P)}

where

BF (body(r)) = Aacbody(r)* @ N Nacbody(r)~ 72

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 19 / 43

Completion

An example

a<+

b+ ~a

c <+ a,~d
d + ~c,~e
e+ b,~f
e+ e

\

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 20 / 43

Completion

An example
a< (a+ T
b+ ~a b+ —a
c <+ a,~d) caN—d
P= d + ~c,~e CF(P) = d < ~c A —e
e < b,~f e<>(bA-f)Ve
| e+ e | fe L

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 20 / 43

Completion
A closer look
<_
m CF(P) is logically equivalent to CF(P) U C?(P) where

%
CF(P) = {a Vbebody () BF(B) | a € atom(P)

}
CE(P) = {a —Vebody(a)BF(B) | a € atom(P)}

bodyp(a) = {body(r)|r € P and head(r) = a}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 21 /43

Completion
A closer look
<_
m CF(P) is logically equivalent to CF(P) U C?(P) where

%
CF(P) = {a Vbebody () BF(B) | a € atom(P)

}
CE(P) = {a —Vebody(a)BF(B) | a € atom(P)}

bodyp(a) = {body(r)|r € P and head(r) = a}

<_
m CF(P) characterizes the classical models of P

| ﬁ(P) completes P by adding necessary conditions for all atoms

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 21 /43

Completion

A closer look

a<+

b+ ~a

c <+ a,~d
d + ~c,~e
e+ b,~f
e+ e

\

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 22 /43

Completion

A closer look

a< (a<+ T
b+ ~a b+ —a
c<+ a,~d —) c+=an—d
P= d + ~c,~e CF(P) = d < —c A\ —e
e < b,~f e« (bA—-f)Ve
e+ e | F+ L

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 22 /43

Completion

A closer look

a+ T)
b+ —a
c+an—d

d+ —cNh—e
e« (bA—f)Ve
| F+ L

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 22 /43

Completion

A closer look

a« T) a—T)
b+ —a b— —a
<C_F(P): c+an—d c—aNn—d :ﬁ(P)
d+ —cNh—e d — —cN—e
e« (bA—-f)Ve e—~(bA-f)Ve
| F+ L) f— L)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 22 /43

\

Sebastian Rudolph (TUD)

Completion

a+ T

b+ —a
c+an—d

d+ —cNh—e
e« (bA—-f)Ve
f+_1

as< T

b+ —a
c+aN—d

d < —c A —e
e+ (bA—-f)Ve
fe L

A closer look

a—T)
b— —a
c—aN-d

d — —c AN —e
e—~(bA-f)Ve
f— L

Answer Set Programming: Computation & Characterization

22 /43

\

Sebastian Rudolph (TUD)

Completion

a+ T

b+ —a
c+an—d

d+ —cNh—e
e« (bA—-f)Ve
f+_1

as< T

b+ —a
c+aN—d

d < —c A —e
e+ (bA—-f)Ve
fe L

A closer look

a—T)
b— —a
c—aN-d

d — —c AN —e
e—~(bA-f)Ve
f— L

= CF(P)UCE(P)

Answer Set Programming: Computation & Characterization

22 /43

Completion

Supported models

m Every stable model of P is a model of CF(P),

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 23 /43

Completion

Supported models

m Every stable model of P is a model of CF(P), but not vice versa

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 23 /43

Completion

Supported models

m Every stable model of P is a model of CF(P), but not vice versa

m Models of CF(P) are called the supported models of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 23 /43

Completion

Supported models

Every stable model of P is a model of CF(P), but not vice versa

Models of CF(P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

23 /43

Completion

An example
a<+ c <+ a,~d e+ b,~f
P =
b+ ~a d < ~c,~e e+ e

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 24 /43

Completion

An example
a<+ c <+ a,~d e+ b,~f
P =
b« ~a d(—wc,we e e

m P has 21 models, including {a, c}, {a,d}, but also {a, b,c,d, e, f}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 24 /43

Completion

An example
a<+ c <+ a,~d e+ b,~f
P =
b« ~a d(—wc,we e e

m P has 21 models, including {a, c}, {a,d}, but also {a, b,c,d, e, f}
m P has 3 supported models, namely {a, ¢}, {a,d}, and {a,c, e}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 24 /43

Completion

An example
a<+ c <+ a,~d e+ b,~f
P =
b« ~a d(—wc,we e e

m P has 21 models, including {a, c}, {a,d}, but also {a, b,c,d, e, f}
m P has 3 supported models, namely {a, ¢}, {a,d}, and {a,c, e}
m P has 2 stable models, namely {a, c} and {a, d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 24 /43

Tightness

Outline

Tightness

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 25 /43

Tightness

The mismatch

m Question What causes the mismatch between supported models and
stable models?

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

The mismatch

m Question What causes the mismatch between supported models and
stable models?

m Hint Consider the unstable yet supported model {a, c, e} of P!

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

The mismatch

m Question What causes the mismatch between supported models and
stable models?

m Hint Consider the unstable yet supported model {a, c, e} of P!

m Answer Cyclic derivations are causing the mismatch between
supported and stable models

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

The mismatch
m Question What causes the mismatch between supported models and
stable models?

m Hint Consider the unstable yet supported model {a, c, e} of P!

m Answer Cyclic derivations are causing the mismatch between
supported and stable models

m Atoms in a stable model can be “derived” from a program in a finite
number of steps

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

The mismatch

m Question What causes the mismatch between supported models and
stable models?

m Hint Consider the unstable yet supported model {a, c, e} of P!

m Answer Cyclic derivations are causing the mismatch between
supported and stable models
m Atoms in a stable model can be “derived” from a program in a finite
number of steps
m Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

The mismatch

m Question What causes the mismatch between supported models and
stable models?

m Hint Consider the unstable yet supported model {a, c, e} of P!

m Answer Cyclic derivations are causing the mismatch between
supported and stable models

m Atoms in a stable model can be “derived” from a program in a finite
number of steps

m Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

m For every atom A € X, there is a finite sequence of positive rules

<r1,...,r,,>

such that

head(r;) = A
body(r;)" C {head(r;) | i<j<n}forl<i<n
rePXforl1<i<n

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 27 / 43

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P
m For every atom A € X, there is a finite sequence of positive rules

<r1,...,r,,>

such that
head(r;) = A
body(r;)" C {head(r;) | i<j<n}forl<i<n
rePXforl1<i<n

m That is, each atom of X has a non-cyclic derivation from PX

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 27 / 43

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P
m For every atom A € X, there is a finite sequence of positive rules

(M. . rn)

such that
head(r;) = A
body(r;)" C {head(r;) | i<j<n}forl<i<n
rePXforl1<i<n

m That is, each atom of X has a non-cyclic derivation from PX

m Example There is no finite sequence of rules providing a derivation
for e from P{a:c.e}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 27 / 43

Tightness

Positive atom dependency graph

m The origin of (potential) circular derivations can be read off the
positive atom dependency graph G(P) of a logic program P given by

(atom(P),{(a,b) | r € P,a € body(r)", head(r) = b})

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 28 /43

Tightness

Positive atom dependency graph

m The origin of (potential) circular derivations can be read off the
positive atom dependency graph G(P) of a logic program P given by

(atom(P),{(a,b) | r € P,a € body(r)", head(r) = b})

m A logic program P is called tight, if G(P) is acyclic

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 28 /43

Tightness

Example

a <4 c+ a,r~d e <+ b, ~f
m P=
b+ ~a d + ~c,~e e+ e

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 29 /43

Tightness

Example

a < c+ a,r~d e <+ b, ~f
m P=
b+ ~a d + ~c,~e e+ e

m G(P)=({a,b,c,d,e},{(a,c),(b,e) (e e)})

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 29 /43

Tightness

Example

a < c+ a,r~d e <+ b, ~f
m P=
b+ ~a d + ~c,~e e+ e

m G(P)=({a,b,c,d,e},{(a,c),(b,e) (e e)})
(D~ @

@

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 29 /43

Tightness

Example

P:{a<— c <+ a,~d e%b,wf}

b+ ~a d + ~c,~e e<e
G(P)=({a,b,c,d, e}, {(a,¢), (b, e), (e, €)})
P has supported models: {a,c}, {a,d}, and {a,c, e}
P has stable models: {a,c} and {a,d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

20 /43

Tight programs

m A logic program P is called tight, if G(P) is acyclic

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 30/ 43

Tight programs

m A logic program P is called tight, if G(P) is acyclic

m For tight programs, stable and supported models coincide

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 30/ 43

Tight programs

m A logic program P is called tight, if G(P) is acyclic

m For tight programs, stable and supported models coincide:

Fages' Theorem

Let P be a tight normal logic program and X C atom(P)
Then, X is a stable model of P iff X = CF(P)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

30 /43

Tightness

Another example

o P a+n~b c<«ab d+ a e + ~a,~b
| b<—~a c+d d<+ b,c

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 31/43

Tightness

Another example

o P a<~b c+ab d+ a e + ~a,~b
| b<—~a c+d d<+ b,c

m G(P)=({a,b,c,d,e}, {(a,c),(ad),(b,c),(b,d),(c,d)(d,c)})

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 31/43

Tightness

Another example

o P a<~b c+ab d+ a e + ~a,~b
| b<—~a c+d d<+ b,c

m G(P)=({a,b,c,d,e}, {(a,c),(ad),(b,c),(b,d),(c,d)(d,c)})
(&)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 31/43

Tightness

Another example

p_ a<~b c+ab d+ a e + ~a,~b
| b<—~a c+d d<+ b,c

G(P) =({a,b,c,d,e},{(a,c),(a,d),(b,c),(b,d),(c,d),(d,c)})
(6)

P has supported models: {a,c,d}, {b}, and {b,c,d}
P has stable models: {a,c,d} and {b}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

31/ 43

Loops and Loop Formulas

Outline

@ Loops and Loop Formulas

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 32/43

Loops and Loop Formulas

Motivation

m Question Is there a propositional formula F(P) such that the models
of F(P) correspond to the stable models of P ?

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 33/43

Loops and Loop Formulas

Motivation

m Question Is there a propositional formula F(P) such that the models
of F(P) correspond to the stable models of P ?

m Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 33 /43

Loops and Loop Formulas

Motivation

m Question Is there a propositional formula F(P) such that the models
of F(P) correspond to the stable models of P ?

m Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

m |dea Add formulas prohibiting circular support of sets of atoms

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 33/43

Loops and Loop Formulas

Motivation

m Question Is there a propositional formula F(P) such that the models
of F(P) correspond to the stable models of P ?

m Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

m |dea Add formulas prohibiting circular support of sets of atoms

m Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program'’s positive atom dependency graph

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 33/43

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 34 /43

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

m Aset () C L C atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G(P)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 34 /43

Loops and Loop Formulas

Loops
Let P be a normal logic program, and

let G(P) = (atom(P), E) be the positive atom dependency graph of P

m Aset () C L C atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L, EN(L x L))

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 34 /43

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

m Aset () C L C atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G(P)
That is, each pair of atoms in L is connected by a path of non-zero
length in (L, EN(L x L))

m We denote the set of all loops of P by loop(P)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 34 /43

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G(P) = (atom(P), E) be the positive atom dependency graph of P

m Aset () C L C atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G(P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L, EN(L x L))

m We denote the set of all loops of P by loop(P)

m Note A program P is tight iff loop(P) = ()

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 34 /43

Loops and Loop Formulas

Example

a< c+ a,~d e+ b, ~f
m P=
b «— ~a d + ~c,~e e e

(@0 @

&3@

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 35 /43

Loops and Loop Formulas

Example

a < c+ a,~d e <+ b, ~f
m P=
b «— ~a d + ~c,~e e e

(@0 @

&3@

m loop(P) = {{e}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 35 /43

Loops and Loop Formulas

Another example

. P a+~b c+ab d+ a e+ ~a,~b
| bi—~a c+d d<+ b,c

a?e ®

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 36 /43

Loops and Loop Formulas

Another example

. P a+~b c+ab d+ a e+ ~a,~b
| bn~a c+d d+ b,c

a?e ®

= loop(P) = {{c,d}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

36 / 43

Loops and Loop Formulas

Yet another example

p_ a<~b c+a d<+ b,c e+ b,~a
"7 b ~a c+bd d«e e+ c,d

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 37 /43

Loops and Loop Formulas

Yet another example

p_ a<~b c+a d<+ b,c e+ b,~a
"7 b ~a c+bd d«e e+ c,d

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 37 /43

Loops and Loop Formulas

Yet another example

p_ a<~b c+a d<+ b,c e+ b,~a
"7 b ~a c+bd d«e e+ c,d

0
o¥c40s0

m loop(P) = {{c,d},{d, e}, {c,d,e}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 37 /43

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program
m For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)* N L =0}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

38 /43

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program
m For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)* N L =0}

m Define the external bodies of L in P as EBp(L) = body(ESp(L))

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 38 /43

Loops and Loop Formulas

Loop formulas
Let P be a normal logic program
m For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)* N L =0}

m Define the external bodies of L in P as EBp(L) = body(ESp(L))
m The (disjunctive) loop formula of L for P is

LFp(L) = (Vaer2) = (Veees.yBF(B))
(Ageeso(1y"BF(B)) = (Aser™a)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 38 /43

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program
m For L C atom(P), define the external supports of L for P as

ESp(L) = {r € P | head(r) € L and body(r)* N L =0}

Define the external bodies of L in P as EBp(L) = body(ESp(L))
The (disjunctive) loop formula of L for P is
LFp(L) = (Vaer2) = (Veees.yBF(B))

= (ApeesoyBF(B)) = (Nser™a)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

m Define LF(P)={LFp(L)|L € loop(P)}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 38 /43

Loops and Loop Formulas

Example

a< c <+ a,~d e <+ b,~f
mP=
b+ ~a d < ~c,~e e<—e

(@~ @

@

m Joop(P) = {{e}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 39 /43

Loops and Loop Formulas

Example

a< c <+ a,~d e <+ b,~f
mP=
b+ ~a d < ~c,~e e<—e

(@~ @

@

m Joop(P) = {{e}}
m LF(P)={e— bA~f}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 39 /43

Loops and Loop Formulas

Another example

o P a<—~b c<ab d<a e < ~a,~b
" | b<—~a c+d d+ b,c

e?e ®

= loop(P) = {{c.d}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

40 / 43

Loops and Loop Formulas

Another example

o P a<—~b c<ab d<a e < ~a,~b
" | b<—~a c+d d+ b,c

e?e ®

« loop(P) = {{c,d}}
m LF(P)={cVvd—(anb)Va}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 40 / 43

Loops and Loop Formulas

Yet another example

p_ a+~b c+ a d<+ b,c e+ b,~a
"TTY b ~a c+ b,d d«e e+ c,d

0
o¥GA0s0

m Joop(P) = {{c,d},{d, e}, {c,d,e}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 41 /43

Loops and Loop Formulas

Yet another example

{a<—~b c+ a d<+ b, c e%b,wa}
m P=

b+ ~a c+ bd d+ e e+ c,d

0
o¥GA0s0

m Joop(P) = {{c,d},{d,e},{c,d,e}}

cvd—=aVe
mLF(P)=¢ dVe— (bAc)V(bA-a)
cvdVe—aV(bA-a)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

41/ 43

Loops and Loop Formulas

Yet another example

{a<—~b c+ a d<+ b, c e%b,wa}
m P=

b+ ~a c+ bd d+ e e+ c,d

0
o¥GA0s0

m Joop(P) = {{c,d},{d, e}, {c,d,e}}

cvd—aVe
mLF(P)=¢ dVe— (bAc)V(bA-a)
cvdVe—aV(bA-a)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

41/ 43

Loops and Loop Formulas

Yet another example

{a<—~b c+ a d<+ b, c e%b,wa}
m P=

b+ ~a c+ bd d+ e e+ c,d

0
o¥GA0s0

m Joop(P) = {{c,d},{d, e}, {c,d,e}}

cvd—=aVe
mLF(P)=¢ dVe—(bAc)V(bA-a)
cvdVe—aV(bA-a)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

41/ 43

Loops and Loop Formulas

Yet another example

{a<—~b c+ a d<+ b, c e%b,wa}
m P=

b+ ~a c+ bd d+ e e+ c,d

0
o¥GA0s0

m Joop(P) = {{c,d},{d, e}, {c,d, e}}

cvd—=aVe
mLF(P)=¢ dVe— (bAc)V(bA-a)
cvdVe—aV(bA-a)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

41/ 43

Loops and Loop Formulas

Lin-Zhao Theorem

Theorem
Let P be a normal logic program and X C atom(P)
Then, X is a stable model of P iff X = CF(P)U LF(P)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 42 /43

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 43 /43

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

m Then, X is a stable model of P iff

X = {LFp(U) | U C atom(P)};

X = {LF(U) | U C X}

X = A{LFp(L) | L € loop(P)}, thatis, X = LF(P);
X | {LFp(L) | L € loop(P) and L C X}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization

43 / 43

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

m Then, X is a stable model of P iff

X = {LFp(U) | U C atom(P)};

X = {LF(U) | U C X}

X = A{LFp(L) | L € loop(P)}, thatis, X = LF(P);
X | {LFp(L) | L € loop(P) and L C X}

m Note If X is not a stable model of P,
then there is a loop L C X \ Cn(P%X) such that X [~ LFp(L)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 43 /43

	Consequence operator
	Computation from first principles
	Complexity
	Completion
	Tightness
	Loops and Loop Formulas

