Answer Set Programming: Computation \& Characterization

Sebastian Rudolph

Computational Logic Group
Technische Universität Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub.
Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Consequence operator

■ Let P be a positive program and X a set of atoms

- The consequence operator T_{P} is defined as follows:

$$
T_{P} X=\{\text { head }(r) \mid r \in P \text { and } \operatorname{body}(r) \subseteq X\}
$$

- For any positive program P, we have

Consequence operator

■ Let P be a positive program and X a set of atoms

- The consequence operator T_{P} is defined as follows:

$$
T_{P} X=\{\text { head }(r) \mid r \in P \text { and } \operatorname{body}(r) \subseteq X\}
$$

- Iterated applications of T_{P} are written as T_{P}^{j} for $j \geq 0$, where
- $T_{P}^{0} X=X$ and
- $T_{P}^{i} X=T_{P} T_{P}^{i-1} X$ for $i \geq 1$
- $C n(P)$ is the smallest fixpoint of T_{P}

Consequence operator

■ Let P be a positive program and X a set of atoms

- The consequence operator T_{P} is defined as follows:

$$
T_{P} X=\{\text { head }(r) \mid r \in P \text { and } \operatorname{body}(r) \subseteq X\}
$$

- Iterated applications of T_{P} are written as T_{P}^{j} for $j \geq 0$, where
- $T_{P}^{0} X=X$ and
- $T_{P}^{i} X=T_{P} T_{P}^{i-1} X$ for $i \geq 1$
- For any positive program P, we have
- $C n(P)=\bigcup_{i \geq 0} T_{P}^{i} \emptyset$
- $X \subseteq Y$ implies $T_{P} X \subseteq T_{P} Y$
- $C n(P)$ is the smallest fixpoint of T_{P}

An example

- Consider the program

$$
P=\{p \leftarrow, q \leftarrow, r \leftarrow p, s \leftarrow q, t, t \leftarrow r, u \leftarrow v\}
$$

An example

- Consider the program

$$
P=\{p \leftarrow, q \leftarrow, r \leftarrow p, s \leftarrow q, t, t \leftarrow r, u \leftarrow v\}
$$

- We get

$$
\begin{aligned}
& T_{P}^{0} \emptyset=\emptyset \\
& T_{P}^{1} \emptyset=\{p, q\} \\
& T_{P}^{2} \emptyset=\{p, q, r\} \\
& T_{P}^{3} \emptyset=\{p, q, r, t\}=T_{P} T_{P}^{0} \emptyset=T_{P} \emptyset \\
& T_{P}^{4} \emptyset=T_{P} T_{P}^{2} \emptyset=T_{P}\{p, q\} \\
& T_{P}^{5} \emptyset=\{p, q, r, t, s\}=T_{P} T_{P}^{3} \emptyset=T_{P}\{p, q, r\} \\
& T_{P}^{6} \emptyset=\{p, q, r, t, s\}=T_{P} T_{P}^{4} \emptyset=T_{P}\{p, q, r, t, s\} \\
&\{p, q, r, t, s\}=T_{P} T_{P}^{5} \emptyset=T_{P}\{p, q, r, t, s\}
\end{aligned}
$$

An example

- Consider the program

$$
P=\{p \leftarrow, q \leftarrow, r \leftarrow p, s \leftarrow q, t, t \leftarrow r, u \leftarrow v\}
$$

- We get

$$
\begin{aligned}
& T_{P}^{0} \emptyset=\emptyset \\
& T_{P}^{1} \emptyset=\{p, q\} \\
& T_{P}^{2} \emptyset=\{p, q, r\}=T_{P} T_{P}^{0} \emptyset=T_{P} \emptyset \\
& T_{P}^{3} \emptyset=\{p, q, r, t\}=T_{P} T_{P}^{1} \emptyset=T_{P}\{p, q\} \\
& \left.T_{P}^{4} \emptyset=\{p, q, r, t, s\}=T_{P} T_{P}^{3} \emptyset p, q, r\right\} \\
& T_{P}^{5} \emptyset=\{p, q, r, t, s\}=T_{P}\{p, q, r, t\} \\
& T_{P}^{6} \emptyset=\{p, q, r, t, s\}=T_{P}=T_{P}^{4} \emptyset=T_{P}^{5}\{p, q, r, t, s\} \\
& \left.T_{P}^{5} \emptyset p, q, r, t, s\right\}
\end{aligned}
$$

- Cn $(P)=\{p, q, r, t, s\}$ is the smallest fixpoint of T_{P} because
- $T_{P}\{p, q, r, t, s\}=\{p, q, r, t, s\}$ and
- $T_{P} X \neq X$ for each $X \subset\{p, q, r, t, s\}$

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Approximating stable models

■ First Idea Approximate a stable model X by two sets of atoms L and U such that $L \subseteq X \subseteq U$

■ L and U constitute lower and upper bounds on X
■ L and $(\mathcal{A} \backslash U)$ describe a three-valued model of the program

Approximating stable models

■ First Idea Approximate a stable model X by two sets of atoms L and U such that $L \subseteq X \subseteq U$

■ L and U constitute lower and upper bounds on X
■ L and $(\mathcal{A} \backslash U)$ describe a three-valued model of the program

- Observation

$$
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
$$

Approximating stable models

■ First Idea Approximate a stable model X by two sets of atoms L and U such that $L \subseteq X \subseteq U$

■ L and U constitute lower and upper bounds on X
■ L and $(\mathcal{A} \backslash U)$ describe a three-valued model of the program

- Observation

$$
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
$$

- Properties Let X be a stable model of normal logic program P

Approximating stable models

■ First Idea Approximate a stable model X by two sets of atoms L and U such that $L \subseteq X \subseteq U$

■ L and U constitute lower and upper bounds on X
■ L and $(\mathcal{A} \backslash U)$ describe a three-valued model of the program

- Observation

$$
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
$$

■ Properties Let X be a stable model of normal logic program P

- If $L \subseteq X$,

Approximating stable models

■ First Idea Approximate a stable model X by two sets of atoms L and U such that $L \subseteq X \subseteq U$

■ L and U constitute lower and upper bounds on X
■ L and $(\mathcal{A} \backslash U)$ describe a three-valued model of the program

- Observation

$$
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
$$

■ Properties Let X be a stable model of normal logic program P

- If $L \subseteq X$, then $X \subseteq \operatorname{Cn}\left(P^{L}\right)$

Approximating stable models

■ First Idea Approximate a stable model X by two sets of atoms L and U such that $L \subseteq X \subseteq U$

■ L and U constitute lower and upper bounds on X
■ L and $(\mathcal{A} \backslash U)$ describe a three-valued model of the program

- Observation

$$
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
$$

■ Properties Let X be a stable model of normal logic program P

- If $L \subseteq X$, then $X \subseteq \operatorname{Cn}\left(P^{L}\right)$
- If $X \subseteq U$,

Approximating stable models

■ First Idea Approximate a stable model X by two sets of atoms L and U such that $L \subseteq X \subseteq U$

- L and U constitute lower and upper bounds on X
- L and $(\mathcal{A} \backslash U)$ describe a three-valued model of the program
- Observation

$$
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
$$

■ Properties Let X be a stable model of normal logic program P

- If $L \subseteq X$, then $X \subseteq \operatorname{Cn}\left(P^{L}\right)$
- If $X \subseteq U$, then $\operatorname{Cn}\left(P^{U}\right) \subseteq X$

Approximating stable models

- First Idea Approximate a stable model X by two sets of atoms L and U such that $L \subseteq X \subseteq U$
- L and U constitute lower and upper bounds on X
- L and $(\mathcal{A} \backslash U)$ describe a three-valued model of the program
- Observation

$$
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
$$

■ Properties Let X be a stable model of normal logic program P

- If $L \subseteq X$, then $X \subseteq C n\left(P^{L}\right)$
- If $X \subseteq U$, then $\operatorname{Cn}\left(P^{U}\right) \subseteq X$
- If $L \subseteq X \subseteq U$,

Approximating stable models

- First Idea Approximate a stable model X by two sets of atoms L and U such that $L \subseteq X \subseteq U$
- L and U constitute lower and upper bounds on X
- L and $(\mathcal{A} \backslash U)$ describe a three-valued model of the program
- Observation

$$
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
$$

■ Properties Let X be a stable model of normal logic program P

- If $L \subseteq X$, then $X \subseteq C n\left(P^{L}\right)$
- If $X \subseteq U$, then $\operatorname{Cn}\left(P^{U}\right) \subseteq X$
- If $L \subseteq X \subseteq U$, then $L \cup C n\left(P^{U}\right) \subseteq X \subseteq U \cap C n\left(P^{L}\right)$

Approximating stable models

- Second Idea

repeat

replace L by $L \cup C n\left(P^{U}\right)$ replace U by $U \cap \operatorname{Cn}\left(P^{L}\right)$

until L and U do not change anymore

- At each iteration step
- L becomes larger (or equal)
- U becomes smaller (or equal)

Approximating stable models

- Second Idea

repeat

replace L by $L \cup C n\left(P^{U}\right)$
replace U by $U \cap C n\left(P^{L}\right)$
until L and U do not change anymore
■ Observations
■ At each iteration step

- L becomes larger (or equal)
- U becomes smaller (or equal)
- $L \subseteq X \subseteq U$ is invariant for every stable model X of P
- If $L \nsubseteq U$, then P has no stable mode
- If $L=U$, then L is a stable model of P

Approximating stable models

- Second Idea

repeat

replace L by $L \cup C n\left(P^{U}\right)$
replace U by $U \cap C n\left(P^{L}\right)$
until L and U do not change anymore
■ Observations
■ At each iteration step

- L becomes larger (or equal)
- U becomes smaller (or equal)
- $L \subseteq X \subseteq U$ is invariant for every stable model X of P
- If $L \nsubseteq U$, then P has no stable model

Approximating stable models

- Second Idea

repeat

replace L by $L \cup C n\left(P^{U}\right)$
replace U by $U \cap \operatorname{Cn}\left(P^{L}\right)$
until L and U do not change anymore
■ Observations

- At each iteration step
- L becomes larger (or equal)

■ U becomes smaller (or equal)
■ $L \subseteq X \subseteq U$ is invariant for every stable model X of P
■ If $L \nsubseteq U$, then P has no stable model

- If $L=U$, then L is a stable model of P

The simplistic expand algorithm

$\operatorname{expand}_{P}(L, U)$ repeat

$L^{\prime} \leftarrow L$
$U^{\prime} \leftarrow U$
$L \leftarrow L^{\prime} \cup C n\left(P^{U^{\prime}}\right)$
$U \leftarrow U^{\prime} \cap C n\left(P^{L^{\prime}}\right)$
if $L \nsubseteq U$ then return
until $L=L^{\prime}$ and $U=U^{\prime}$

An example

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
$$

An example

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
$$

	L^{\prime}	$C n\left(P^{U^{\prime}}\right)$	L	U^{\prime}	$C n\left(P^{L^{\prime}}\right)$	U
1	\emptyset	$\{a\}$	$\{a\}$	$\{a, b, c, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$
2	$\{a\}$	$\{a, b\}$	$\{a, b\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$
3	$\{a, b\}$	$\{a, b\}$	$\{a, b\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$

An example

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
$$

	L^{\prime}	$C n\left(P^{U^{\prime}}\right)$	L	U^{\prime}	$C n\left(P^{L^{\prime}}\right)$	U
1	\emptyset	$\{a\}$	$\{a\}$	$\{a, b, c, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$
2	$\{a\}$	$\{a, b\}$	$\{a, b\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$
3	$\{a, b\}$	$\{a, b\}$	$\{a, b\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$

- Note We have $\{a, b\} \subseteq X$ and $(\mathcal{A} \backslash\{a, b, d, e\}) \cap X=(\{c\} \cap X)=\emptyset$ for every stable model X of P

The simplistic expand algorithm

- expand $_{P}$

■ tightens the approximation on stable models

- is stable model preserving

Let's expand with d!

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
$$

Let's expand with d!

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
$$

	L^{\prime}	$C n\left(P^{U^{\prime}}\right)$	L	U^{\prime}	$C n\left(P^{L^{\prime}}\right)$	U
1	$\{d\}$	$\{a\}$	$\{a, d\}$	$\{a, b, c, d, e\}$	$\{a, b, d\}$	$\{a, b, d\}$
2	$\{a, d\}$	$\{a, b, d\}$				
3	$\{a, b, d\}$					

Let's expand with d !

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
$$

	L^{\prime}	$C n\left(P^{U^{\prime}}\right)$	L	U^{\prime}	$C n\left(P^{L^{\prime}}\right)$	U
1	$\{d\}$	$\{a\}$	$\{a, d\}$	$\{a, b, c, d, e\}$	$\{a, b, d\}$	$\{a, b, d\}$
2	$\{a, d\}$	$\{a, b, d\}$				
3	$\{a, b, d\}$					

- Note $\{a, b, d\}$ is a stable model of P

Let's expand with $\sim d$!

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
$$

Let's expand with $\sim d$!

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
$$

	L^{\prime}	$C n\left(P^{U^{\prime}}\right)$	L	U^{\prime}	$C n\left(P^{L^{\prime}}\right)$	U
1	\emptyset	$\{a, e\}$	$\{a, e\}$	$\{a, b, c, e\}$	$\{a, b, d, e\}$	$\{a, b, e\}$
2	$\{a, e\}$	$\{a, b, e\}$				
3	$\{a, b, e\}$					

Let's expand with $\sim d$!

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
$$

	L^{\prime}	$C n\left(P^{U^{\prime}}\right)$	L	U^{\prime}	$C n\left(P^{L^{\prime}}\right)$	U
1	\emptyset	$\{a, e\}$	$\{a, e\}$	$\{a, b, c, e\}$	$\{a, b, d, e\}$	$\{a, b, e\}$
2	$\{a, e\}$	$\{a, b, e\}$				
3	$\{a, b, e\}$					

■ Note $\{a, b, e\}$ is a stable model of P

A simplistic solving algorithm

solve $_{P}(L, U)$
$(L, U) \leftarrow \operatorname{expand}_{P}(L, U) \quad / /$ propagation
if $L \nsubseteq U$ then failure // failure
if $L=U$ then output $L \quad / /$ success
else choose $a \in U \backslash L \quad / /$ choice
solve $_{P}(L \cup\{a\}, U)$
solve $_{P}(L, U \backslash\{a\})$

A simplistic solving algorithm

■ Close to the approach taken by the ASP solver smodels, inspired by the Davis-Putman-Logemann-Loveland (DPLL) procedure
deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

A simplistic solving algorithm

■ Close to the approach taken by the ASP solver smodels, inspired by the Davis-Putman-Logemann-Loveland (DPLL) procedure

- Backtracking search building a binary search tree
- A node in the search tree corresponds to a three-valued interpretation
- deriving deterministic consequences and detecting conflicts (expand)
\square making one choice at a time by appeal to a heuristic (choose)

A simplistic solving algorithm

■ Close to the approach taken by the ASP solver smodels, inspired by the Davis-Putman-Logemann-Loveland (DPLL) procedure

- Backtracking search building a binary search tree
- A node in the search tree corresponds to a three-valued interpretation
- The search space is pruned by

■ deriving deterministic consequences and detecting conflicts (expand)
■ making one choice at a time by appeal to a heuristic (choose)

- Heuristic choices are made on atoms

A simplistic solving algorithm

■ Close to the approach taken by the ASP solver smodels, inspired by the Davis-Putman-Logemann-Loveland (DPLL) procedure

- Backtracking search building a binary search tree
- A node in the search tree corresponds to a three-valued interpretation
- The search space is pruned by

■ deriving deterministic consequences and detecting conflicts (expand)
■ making one choice at a time by appeal to a heuristic (choose)

- Heuristic choices are made on atoms

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Complexity

Let a be an atom and X be a set of atoms

Complexity

Let a be an atom and X be a set of atoms

- For a positive normal logic program P :
- Deciding whether X is the stable model of P is P-complete
- Deciding whether a is in the stable model of P is P-complete

Complexity

Let a be an atom and X be a set of atoms
■ For a positive normal logic program P :

- Deciding whether X is the stable model of P is P-complete
- Deciding whether a is in the stable model of P is P-complete
- For a normal logic program P :
- Deciding whether X is a stable model of P is P-complete
- Deciding whether a is in a stable model of P is $N P$-complete

Complexity

Let a be an atom and X be a set of atoms
■ For a positive normal logic program P :

- Deciding whether X is the stable model of P is P-complete
- Deciding whether a is in the stable model of P is P-complete

■ For a normal logic program P :

- Deciding whether X is a stable model of P is P-complete
- Deciding whether a is in a stable model of P is $N P$-complete

■ For a normal logic program P with optimization statements:

- Deciding whether X is an optimal stable model of P is co $-N P$-complete
- Deciding whether a is in an optimal stable model of P is Δ_{2}^{p}-complete

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Motivation

- Question Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?

Motivation

■ Question Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?

■ Observation Although each atom is defined through a set of rules, each such rule provides only a sufficient condition for its head atom

- Idea The idea of program completion is to turn such implications into a definition by adding the corresponding necessary counterpart

Motivation

■ Question Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?

■ Observation Although each atom is defined through a set of rules, each such rule provides only a sufficient condition for its head atom

- Idea The idea of program completion is to turn such implications into a definition by adding the corresponding necessary counterpart

Program completion

Let P be a normal logic program

- The completion $C F(P)$ of P is defined as follows

$$
C F(P)=\left\{a \leftrightarrow \bigvee_{r \in P, \text { head }(r)=a} B F(\operatorname{bod} y(r)) \mid a \in \operatorname{atom}(P)\right\}
$$

where

$$
B F(\operatorname{body}(r))=\bigwedge_{a \in \operatorname{body}(r)^{+} a} \wedge \bigwedge_{a \in \operatorname{body}(r)^{-} \neg a}
$$

An example

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\}
$$

An example

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\} \quad C F(P)=\left\{\begin{array}{l}
a \leftrightarrow \top \\
b \leftrightarrow \neg a \\
c \leftrightarrow a \wedge \neg d \\
d \leftrightarrow \neg c \wedge \neg e \\
e \leftrightarrow(b \wedge \neg f) \vee e \\
f \leftrightarrow \perp
\end{array}\right\}
$$

A closer look

- CF(P) is logically equivalent to $\overleftarrow{C F}(P) \cup \overrightarrow{C F}(P)$, where

$$
\begin{aligned}
\overleftarrow{C F}(P) & =\left\{a \leftarrow \bigvee_{B \in \operatorname{body}_{P}(a)} B F(B) \mid a \in \operatorname{atom}(P)\right\} \\
\stackrel{C F}{C F}(P) & =\left\{a \rightarrow \bigvee_{B \in \operatorname{body}_{P}(a)} B F(B) \mid a \in \operatorname{atom}(P)\right\} \\
\operatorname{body}_{P}(a) & =\{\operatorname{body}(r) \mid r \in P \text { and } \operatorname{head}(r)=a\}
\end{aligned}
$$

A closer look

- CF(P) is logically equivalent to $\overleftarrow{C F}(P) \cup \overrightarrow{C F}(P)$, where

$$
\begin{aligned}
\overleftarrow{C F}(P) & =\left\{a \leftarrow \bigvee_{B \in \operatorname{body}_{P}(a)} B F(B) \mid a \in \operatorname{atom}(P)\right\} \\
\stackrel{C F}{C F}(P) & =\left\{a \rightarrow \bigvee_{B \in \operatorname{body}_{P}(a)} B F(B) \mid a \in \operatorname{atom}(P)\right\} \\
\operatorname{body}_{P}(a) & =\{\operatorname{body}(r) \mid r \in P \text { and } \operatorname{head}(r)=a\}
\end{aligned}
$$

- $\overleftarrow{C F}(P)$ characterizes the classical models of P
- $\overrightarrow{C F}(P)$ completes P by adding necessary conditions for all atoms

A closer look

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\}
$$

A closer look

$$
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\} \quad \overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow \top \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}
$$

A closer look

$$
\overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow T \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}
$$

A closer look

$$
\overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow T \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}\left\{\begin{array}{l}
a \rightarrow T \\
b \rightarrow \neg a \\
c \rightarrow a \wedge \neg d \\
d \rightarrow \neg c \wedge \neg e \\
e \rightarrow(b \wedge \neg f) \vee e \\
f \rightarrow \perp
\end{array}\right\}=\overrightarrow{C F}(P)
$$

A closer look

$$
\begin{aligned}
& \overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow T \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}\left\{\begin{array}{l}
a \rightarrow \square \\
b \rightarrow \neg a \\
c \rightarrow a \wedge \neg d \\
d \rightarrow \neg c \wedge \neg e \\
e \rightarrow(b \wedge \neg f) \vee e \\
f \rightarrow \perp
\end{array}\right\}=\overrightarrow{C F}(P) \\
& C F(P)=\left\{\begin{array}{l}
a \leftrightarrow T \\
b \leftrightarrow \neg a \\
c \leftrightarrow a \wedge \neg d \\
d \leftrightarrow \neg c \wedge \neg e \\
e \leftrightarrow(b \wedge \neg f) \vee e \\
f \leftrightarrow \perp
\end{array}\right\}
\end{aligned}
$$

A closer look

$$
\begin{aligned}
& \overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow \top \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}\left\{\begin{array}{l}
a \rightarrow T \\
b \rightarrow \neg a \\
c \rightarrow a \wedge \neg d \\
d \rightarrow \neg c \wedge \neg e \\
e \rightarrow(b \wedge \neg f) \vee e \\
f \rightarrow \perp
\end{array}\right\}=\overrightarrow{C F}(P) \\
& C F(P)=\left\{\begin{array}{l}
a \leftrightarrow \top \\
b \leftrightarrow \neg a \\
c \leftrightarrow a \wedge \neg d \\
d \leftrightarrow \neg c \wedge \neg e \\
e \leftrightarrow(b \wedge \neg f) \vee e \\
f \leftrightarrow \perp
\end{array}\right\} \equiv \overleftarrow{C F}(P) \cup \overrightarrow{C F}(P)
\end{aligned}
$$

Supported models

■ Every stable model of P is a model of $C F(P)$,

Supported models

■ Every stable model of P is a model of $C F(P)$, but not vice versa - Models of CF (P) are called the supported models of P - In other words, every stable model of P is a supported model of P

Supported models

- Every stable model of P is a model of $C F(P)$, but not vice versa
- Models of $C F(P)$ are called the supported models of P
- In other words, every stable model of P is a supported model of P

Supported models

- Every stable model of P is a model of $C F(P)$, but not vice versa

■ Models of $C F(P)$ are called the supported models of P

■ In other words, every stable model of P is a supported model of P
■ By definition, every supported model of P is also a model of P

An example

$$
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
$$

An example

$$
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
$$

- P has 21 models, including $\{a, c\},\{a, d\}$, but also $\{a, b, c, d, e, f\}$

An example

$$
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
$$

■ P has 21 models, including $\{a, c\},\{a, d\}$, but also $\{a, b, c, d, e, f\}$
■ P has 3 supported models, namely $\{a, c\},\{a, d\}$, and $\{a, c, e\}$

An example

$$
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
$$

■ P has 21 models, including $\{a, c\},\{a, d\}$, but also $\{a, b, c, d, e, f\}$
■ P has 3 supported models, namely $\{a, c\},\{a, d\}$, and $\{a, c, e\}$
■ P has 2 stable models, namely $\{a, c\}$ and $\{a, d\}$

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

The mismatch

■ Question What causes the mismatch between supported models and stable models?

- Hint Consider the unstable yet supported model $\{a, c, e\}$ of P !

The mismatch

■ Question What causes the mismatch between supported models and stable models?

■ Hint Consider the unstable yet supported model $\{a, c, e\}$ of P !

The mismatch

■ Question What causes the mismatch between supported models and stable models?

■ Hint Consider the unstable yet supported model $\{a, c, e\}$ of P !

- Answer Cyclic derivations are causing the mismatch between supported and stable models

The mismatch

■ Question What causes the mismatch between supported models and stable models?

■ Hint Consider the unstable yet supported model $\{a, c, e\}$ of P !
■ Answer Cyclic derivations are causing the mismatch between supported and stable models

- Atoms in a stable model can be "derived" from a program in a finite number of steps

The mismatch

■ Question What causes the mismatch between supported models and stable models?

■ Hint Consider the unstable yet supported model $\{a, c, e\}$ of P !

- Answer Cyclic derivations are causing the mismatch between supported and stable models
- Atoms in a stable model can be "derived" from a program in a finite number of steps
■ Atoms in a cycle (not being "supported from outside the cycle") cannot be "derived" from a program in a finite number of steps
and do thus not eliminate an unstable supported model

The mismatch

■ Question What causes the mismatch between supported models and stable models?
■ Hint Consider the unstable yet supported model $\{a, c, e\}$ of P !
■ Answer Cyclic derivations are causing the mismatch between supported and stable models

- Atoms in a stable model can be "derived" from a program in a finite number of steps
- Atoms in a cycle (not being "supported from outside the cycle") cannot be "derived" from a program in a finite number of steps Note But such atoms do not contradict the completion of a program and do thus not eliminate an unstable supported model

Non-cyclic derivations

Let X be a stable model of normal logic program P

- For every atom $A \in X$, there is a finite sequence of positive rules

$$
\left\langle r_{1}, \ldots, r_{n}\right\rangle
$$

such that
1 head $\left(r_{1}\right)=A$
$2 \operatorname{body}\left(r_{i}\right)^{+} \subseteq\left\{\operatorname{head}\left(r_{j}\right) \mid i<j \leq n\right\}$ for $1 \leq i \leq n$
3 $r_{i} \in P^{X}$ for $1 \leq i \leq n$

- That is, each atom of X has a non-cyclic derivation from P^{X}

Non-cyclic derivations

Let X be a stable model of normal logic program P

- For every atom $A \in X$, there is a finite sequence of positive rules

$$
\left\langle r_{1}, \ldots, r_{n}\right\rangle
$$

such that
1 head $\left(r_{1}\right)=A$
$2 \operatorname{body}\left(r_{i}\right)^{+} \subseteq\left\{\operatorname{head}\left(r_{j}\right) \mid i<j \leq n\right\}$ for $1 \leq i \leq n$
3 $r_{i} \in P^{X}$ for $1 \leq i \leq n$

- That is, each atom of X has a non-cyclic derivation from P^{X}
\square

Non-cyclic derivations

Let X be a stable model of normal logic program P

- For every atom $A \in X$, there is a finite sequence of positive rules

$$
\left\langle r_{1}, \ldots, r_{n}\right\rangle
$$

such that
1 head $\left(r_{1}\right)=A$
$2 \operatorname{body}\left(r_{i}\right)^{+} \subseteq\left\{\operatorname{head}\left(r_{j}\right) \mid i<j \leq n\right\}$ for $1 \leq i \leq n$
3 $r_{i} \in P^{X}$ for $1 \leq i \leq n$

- That is, each atom of X has a non-cyclic derivation from P^{X}
- Example There is no finite sequence of rules providing a derivation for e from $P^{\{a, c, e\}}$

Positive atom dependency graph

- The origin of (potential) circular derivations can be read off the positive atom dependency graph $G(P)$ of a logic program P given by

$$
\left(\operatorname{atom}(P),\left\{(a, b) \mid r \in P, a \in \operatorname{body}(r)^{+}, \operatorname{head}(r)=b\right\}\right)
$$

Positive atom dependency graph

- The origin of (potential) circular derivations can be read off the positive atom dependency graph $G(P)$ of a logic program P given by

$$
\left(\operatorname{atom}(P),\left\{(a, b) \mid r \in P, a \in \operatorname{body}(r)^{+}, \operatorname{head}(r)=b\right\}\right)
$$

- A logic program P is called tight, if $G(P)$ is acyclic

Example

$$
\square P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
$$

Example

■ $P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$
■ $G(P)=(\{a, b, c, d, e\},\{(a, c),(b, e),(e, e)\})$

Example

■ $P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$
■ $G(P)=(\{a, b, c, d, e\},\{(a, c),(b, e),(e, e)\})$

- P has supported models: $\{a, c\},\{a, d\}$, and $\{a, c, e\}$ ■ P has stable models:

Example

$\square P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$
■ $G(P)=(\{a, b, c, d, e\},\{(a, c),(b, e),(e, e)\})$

■ P has supported models: $\{a, c\},\{a, d\}$, and $\{a, c, e\}$

- P has stable models: $\{a, c\}$ and $\{a, d\}$

Tight programs

■ A logic program P is called tight, if $G(P)$ is acyclic - For tight programs, stable and supported models coincide

Tight programs

■ A logic program P is called tight, if $G(P)$ is acyclic

- For tight programs, stable and supported models coincide

Tight programs

- A logic program P is called tight, if $G(P)$ is acyclic

■ For tight programs, stable and supported models coincide:

Fages' Theorem
Let P be a tight normal logic program and $X \subseteq \operatorname{atom}(P)$ Then, X is a stable model of P iff $X \models C F(P)$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right\}$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right\}$

■ $G(P)=(\{a, b, c, d, e\},\{(a, c),(a, d),(b, c),(b, d),(c, d),(d, c)\})$

- P has supported models: $\{a, c, d\},\{b\}$, and $\{b, c, d\}$- P has stable models: $\{a, c, d\}$ and $\{b\}$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c\end{array}\right\}$
- $G(P)=(\{a, b, c, d, e\},\{(a, c),(a, d),(b, c),(b, d),(c, d),(d, c)\})$

- P has supported models: $\{a, c, d\},\{b\}$, and $\{b, c, d\}$ - P has stable models: $\{a, c, d\}$ and $\{b\}$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right\}$
- $G(P)=(\{a, b, c, d, e\},\{(a, c),(a, d),(b, c),(b, d),(c, d),(d, c)\})$

■ P has supported models: $\{a, c, d\},\{b\}$, and $\{b, c, d\}$
■ P has stable models: $\{a, c, d\}$ and $\{b\}$

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Motivation

■ Question Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?

- Observation Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program

Motivation

■ Question Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?

- Observation Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program
- Idea Add formulas prohibiting circular support of sets of atoms

■ Note Circular support between atoms a and b is possible, in the program's positive atom dependency graph

Motivation

■ Question Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?

- Observation Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program

■ Idea Add formulas prohibiting circular support of sets of atoms
\qquad

Motivation

■ Question Is there a propositional formula $F(P)$ such that the models of $F(P)$ correspond to the stable models of P ?

■ Observation Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program

- Idea Add formulas prohibiting circular support of sets of atoms

■ Note Circular support between atoms a and b is possible, if a has a path to b and b has a path to a in the program's positive atom dependency graph

Loops

Let P be a normal logic program, and let $G(P)=(\operatorname{atom}(P), E)$ be the positive atom dependency graph of P

Loops

Let P be a normal logic program, and let $G(P)=(\operatorname{atom}(P), E)$ be the positive atom dependency graph of P

- A set $\emptyset \subset L \subseteq \operatorname{atom}(P)$ is a loop of P if it induces a non-trivial strongly connected subgraph of $G(P)$
- We denote the set of all loops of P by loop(P)

Loops

Let P be a normal logic program, and let $G(P)=(\operatorname{atom}(P), E)$ be the positive atom dependency graph of P

- A set $\emptyset \subset L \subseteq \operatorname{atom}(P)$ is a loop of P if it induces a non-trivial strongly connected subgraph of $G(P)$
That is, each pair of atoms in L is connected by a path of non-zero length in $(L, E \cap(L \times L))$
- We denote the set of all loops of P by loop (P)
- Note A program P is tight iff $\operatorname{loop}(D)=\varnothing$

Loops

Let P be a normal logic program, and let $G(P)=(\operatorname{atom}(P), E)$ be the positive atom dependency graph of P

- A set $\emptyset \subset L \subseteq \operatorname{atom}(P)$ is a loop of P if it induces a non-trivial strongly connected subgraph of $G(P)$
That is, each pair of atoms in L is connected by a path of non-zero length in $(L, E \cap(L \times L))$
- We denote the set of all loops of P by loop (P)
\square

Loops

Let P be a normal logic program, and let $G(P)=(\operatorname{atom}(P), E)$ be the positive atom dependency graph of P

- A set $\emptyset \subset L \subseteq \operatorname{atom}(P)$ is a loop of P if it induces a non-trivial strongly connected subgraph of $G(P)$
That is, each pair of atoms in L is connected by a path of non-zero length in $(L, E \cap(L \times L))$
- We denote the set of all loops of P by loop (P)
- Note A program P is tight iff $\operatorname{loop}(P)=\emptyset$

Example

$■ P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$

Example

$■ P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$

- $\operatorname{loop}(P)=\{\{e\}\}$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c\end{array}\right\}$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c\end{array}\right\}$

■ $\operatorname{loop}(P)=\{\{c, d\}\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

$\square \operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$

Loop formulas

Let P be a normal logic program
■ For $L \subseteq \operatorname{atom}(P)$, define the external supports of L for P as

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

Loop formulas

Let P be a normal logic program
■ For $L \subseteq \operatorname{atom}(P)$, define the external supports of L for P as

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- Define the external bodies of L in P as $E B_{P}(L)=\operatorname{body}\left(E S_{P}(L)\right)$

Loop formulas

Let P be a normal logic program
■ For $L \subseteq \operatorname{atom}(P)$, define the external supports of L for P as

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

■ Define the external bodies of L in P as $E B_{P}(L)=\operatorname{body}\left(E S_{P}(L)\right)$

- The (disjunctive) loop formula of L for P is

$$
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{a \in L} a\right) \rightarrow\left(\bigvee_{B \in E B_{P}(L)} B F(B)\right) \\
& \equiv\left(\bigwedge_{B \in E B_{P}(L)} \neg B F(B)\right) \rightarrow\left(\bigwedge_{a \in L} \neg a\right)
\end{aligned}
$$

Loop formulas

Let P be a normal logic program
■ For $L \subseteq \operatorname{atom}(P)$, define the external supports of L for P as

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- Define the external bodies of L in P as $E B_{P}(L)=\operatorname{body}\left(E S_{P}(L)\right)$
- The (disjunctive) loop formula of L for P is

$$
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{a \in L} a\right) \rightarrow\left(\bigvee_{B \in E B_{P}(L)} B F(B)\right) \\
& \equiv\left(\bigwedge_{B \in E B P(L)} \neg B F(B)\right) \rightarrow\left(\bigwedge_{a \in L} \neg a\right)
\end{aligned}
$$

■ Note The loop formula of L enforces all atoms in L to be false whenever L is not externally supported
■ Define $L F(P)=\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right\}$

Example

$\square P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$

- $\operatorname{loop}(P)=\{\{e\}\}$

Example

$■ P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}$

- $\operatorname{loop}(P)=\{\{e\}\}$

■ $L F(P)=\{e \rightarrow b \wedge \neg f\}$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c\end{array}\right\}$

■ $\operatorname{loop}(P)=\{\{c, d\}\}$

Another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c\end{array}\right\}$

■ $\operatorname{loop}(P)=\{\{c, d\}\}$

- $L F(P)=\{c \vee d \rightarrow(a \wedge b) \vee a\}$

Yet another example

$\square P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

$\square \operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

$\square \operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$
$\boxed{L F}(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

$\square \operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$
■ $L F(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

$\square \operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$
$\boxed{L F}(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}$

Yet another example

- $P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}$

$\square \operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}$
$\boxed{L F}(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}$

Lin-Zhao Theorem

Theorem

Let P be a normal logic program and $X \subseteq$ atom (P) Then, X is a stable model of P iff $X \models C F(P) \cup L F(P)$

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

- Then, X is a stable model of P iff

■ $X \models\left\{L F_{P}(U) \mid U \subseteq \operatorname{atom}(P)\right\}$;

- $X \equiv\left\{L F_{P}(U) \mid U \subseteq X\right\}$;
- $X \models\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right\}$, that is, $X \models L F(P)$;
- $X \in\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right.$ and $\left.L \subseteq X\right\}$

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

- Then, X is a stable model of P iff

■ $X \models\left\{L F_{P}(U) \mid U \subseteq \operatorname{atom}(P)\right\}$;

- $X \equiv\left\{L F_{P}(U) \mid U \subseteq X\right\}$;
- $X \models\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right\}$, that is, $X \models L F(P)$;
- $X \models\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right.$ and $\left.L \subseteq X\right\}$
- Note If X is not a stable model of P, then there is a loop $L \subseteq X \backslash \operatorname{Cn}\left(P^{X}\right)$ such that $X \not \vDash L F_{P}(L)$

