
Answer Set Programming: Computation &
Characterization

Sebastian Rudolph

Computational Logic Group
Technische Universität Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub.

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0

Unported License.

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 1 / 43

Consequence operator

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 2 / 43

Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TPX = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
PX = X and

T i
PX = TPT i−1

P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T i
P∅

X ⊆ Y implies TPX ⊆ TPY

Cn(P) is the smallest fixpoint of TP

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 3 / 43

Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TPX = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
PX = X and

T i
PX = TPT i−1

P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T i
P∅

X ⊆ Y implies TPX ⊆ TPY

Cn(P) is the smallest fixpoint of TP

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 3 / 43

Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TPX = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
PX = X and

T i
PX = TPT i−1

P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T i
P∅

X ⊆ Y implies TPX ⊆ TPY

Cn(P) is the smallest fixpoint of TP

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 3 / 43

Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT 0

P∅ = TP∅
T 2
P∅ = {p, q, r} = TPT 1

P∅ = TP{p, q}
T 3
P∅ = {p, q, r , t} = TPT 2

P∅ = TP{p, q, r}
T 4
P∅ = {p, q, r , t, s} = TPT 3

P∅ = TP{p, q, r , t}
T 5
P∅ = {p, q, r , t, s} = TPT 4

P∅ = TP{p, q, r , t, s}
T 6
P∅ = {p, q, r , t, s} = TPT 5

P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TPX 6= X for each X ⊂ {p, q, r , t, s}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 4 / 43

Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT 0

P∅ = TP∅
T 2
P∅ = {p, q, r} = TPT 1

P∅ = TP{p, q}
T 3
P∅ = {p, q, r , t} = TPT 2

P∅ = TP{p, q, r}
T 4
P∅ = {p, q, r , t, s} = TPT 3

P∅ = TP{p, q, r , t}
T 5
P∅ = {p, q, r , t, s} = TPT 4

P∅ = TP{p, q, r , t, s}
T 6
P∅ = {p, q, r , t, s} = TPT 5

P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TPX 6= X for each X ⊂ {p, q, r , t, s}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 4 / 43

Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT 0

P∅ = TP∅
T 2
P∅ = {p, q, r} = TPT 1

P∅ = TP{p, q}
T 3
P∅ = {p, q, r , t} = TPT 2

P∅ = TP{p, q, r}
T 4
P∅ = {p, q, r , t, s} = TPT 3

P∅ = TP{p, q, r , t}
T 5
P∅ = {p, q, r , t, s} = TPT 4

P∅ = TP{p, q, r , t, s}
T 6
P∅ = {p, q, r , t, s} = TPT 5

P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TPX 6= X for each X ⊂ {p, q, r , t, s}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 4 / 43

Computation from first principles

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 5 / 43

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 / 43

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 / 43

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 / 43

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 / 43

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 / 43

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 / 43

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 / 43

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 / 43

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 6 / 43

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 7 / 43

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 7 / 43

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 7 / 43

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 7 / 43

Computation from first principles

The simplistic expand algorithm

expandP(L,U)
repeat

L′ ← L
U ′ ← U

L← L′ ∪ Cn(PU′)
U ← U ′ ∩ Cn(PL′)

if L 6⊆ U then return

until L = L′ and U = U ′

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 8 / 43

Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X) = ∅
for every stable model X of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 9 / 43

Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X) = ∅
for every stable model X of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 9 / 43

Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X) = ∅
for every stable model X of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 9 / 43

Computation from first principles

The simplistic expand algorithm

expandP
tightens the approximation on stable models
is stable model preserving

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 10 / 43

Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 11 / 43

Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 11 / 43

Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 11 / 43

Computation from first principles

Let’s expand with ∼d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 12 / 43

Computation from first principles

Let’s expand with ∼d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 12 / 43

Computation from first principles

Let’s expand with ∼d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 12 / 43

Computation from first principles

A simplistic solving algorithm

solveP(L,U)

(L,U)← expandP(L,U) // propagation

if L 6⊆ U then failure // failure

if L = U then output L // success

else choose a ∈ U \ L // choice

solveP(L ∪ {a},U)

solveP(L,U \ {a})

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 13 / 43

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 14 / 43

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 14 / 43

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 14 / 43

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 14 / 43

Complexity

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 15 / 43

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 16 / 43

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 16 / 43

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 16 / 43

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 16 / 43

Completion

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 17 / 43

Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 18 / 43

Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 18 / 43

Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 18 / 43

Completion

Program completion

Let P be a normal logic program

The completion CF (P) of P is defined as follows

CF (P) =
{

a↔
∨

r∈P,head(r)=aBF (body(r)) | a ∈ atom(P)
}

where

BF (body(r)) =
∧

a∈body(r)+a ∧
∧

a∈body(r)−¬a

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 19 / 43

Completion

An example

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e


CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥



Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 20 / 43

Completion

An example

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e


CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥



Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 20 / 43

Completion

A closer look

CF (P) is logically equivalent to
←−
CF (P) ∪

−→
CF (P), where

←−
CF (P) =

{
a←

∨
B∈bodyP(a)BF (B) | a ∈ atom(P)

}
−→
CF (P) =

{
a→

∨
B∈bodyP(a)BF (B) | a ∈ atom(P)

}
bodyP(a) = {body(r) | r ∈ P and head(r) = a}

←−
CF (P) characterizes the classical models of P
−→
CF (P) completes P by adding necessary conditions for all atoms

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 21 / 43

Completion

A closer look

CF (P) is logically equivalent to
←−
CF (P) ∪

−→
CF (P), where

←−
CF (P) =

{
a←

∨
B∈bodyP(a)BF (B) | a ∈ atom(P)

}
−→
CF (P) =

{
a→

∨
B∈bodyP(a)BF (B) | a ∈ atom(P)

}
bodyP(a) = {body(r) | r ∈ P and head(r) = a}

←−
CF (P) characterizes the classical models of P
−→
CF (P) completes P by adding necessary conditions for all atoms

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 21 / 43

Completion

A closer look

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e



Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 22 / 43

Completion

A closer look

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e


←−
CF (P) =



a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥



Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 22 / 43

Completion

A closer look

←−
CF (P) =



a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥



Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 22 / 43

Completion

A closer look

←−
CF (P) =



a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥





a→ >
b → ¬a
c → a ∧ ¬d
d → ¬c ∧ ¬e
e → (b ∧ ¬f) ∨ e
f → ⊥


=
−→
CF (P)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 22 / 43

Completion

A closer look

←−
CF (P) =



a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥





a→ >
b → ¬a
c → a ∧ ¬d
d → ¬c ∧ ¬e
e → (b ∧ ¬f) ∨ e
f → ⊥


=
−→
CF (P)

CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥


Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 22 / 43

Completion

A closer look

←−
CF (P) =



a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥





a→ >
b → ¬a
c → a ∧ ¬d
d → ¬c ∧ ¬e
e → (b ∧ ¬f) ∨ e
f → ⊥


=
−→
CF (P)

CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥


≡

←−
CF (P) ∪

−→
CF (P)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 22 / 43

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 23 / 43

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 23 / 43

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 23 / 43

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 23 / 43

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 24 / 43

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 24 / 43

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 24 / 43

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 24 / 43

Tightness

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 25 / 43

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 26 / 43

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom A ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 head(r1) = A
2 body(ri)

+ ⊆ {head(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 27 / 43

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom A ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 head(r1) = A
2 body(ri)

+ ⊆ {head(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 27 / 43

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom A ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 head(r1) = A
2 body(ri)

+ ⊆ {head(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 27 / 43

Tightness

Positive atom dependency graph

The origin of (potential) circular derivations can be read off the
positive atom dependency graph G (P) of a logic program P given by

(atom(P), {(a, b) | r ∈ P, a ∈ body(r)+, head(r) = b})

A logic program P is called tight, if G (P) is acyclic

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 28 / 43

Tightness

Positive atom dependency graph

The origin of (potential) circular derivations can be read off the
positive atom dependency graph G (P) of a logic program P given by

(atom(P), {(a, b) | r ∈ P, a ∈ body(r)+, head(r) = b})

A logic program P is called tight, if G (P) is acyclic

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 28 / 43

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 29 / 43

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 29 / 43

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 29 / 43

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e}, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 29 / 43

Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 30 / 43

Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 30 / 43

Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 30 / 43

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 31 / 43

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 31 / 43

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 31 / 43

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 31 / 43

Loops and Loop Formulas

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

4 Completion

5 Tightness

6 Loops and Loop Formulas

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 32 / 43

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 33 / 43

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 33 / 43

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 33 / 43

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 33 / 43

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 34 / 43

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 34 / 43

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 34 / 43

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 34 / 43

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 34 / 43

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 35 / 43

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 35 / 43

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 36 / 43

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 36 / 43

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 37 / 43

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 37 / 43

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 37 / 43

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF (B)
)

≡
(∧

B∈EBP(L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 38 / 43

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF (B)
)

≡
(∧

B∈EBP(L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 38 / 43

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF (B)
)

≡
(∧

B∈EBP(L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 38 / 43

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF (B)
)

≡
(∧

B∈EBP(L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 38 / 43

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}
LF (P) = {e → b ∧ ¬f }

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 39 / 43

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}
LF (P) = {e → b ∧ ¬f }

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 39 / 43

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}
LF (P) = {c ∨ d → (a ∧ b) ∨ a}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 40 / 43

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}
LF (P) = {c ∨ d → (a ∧ b) ∨ a}

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 40 / 43

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)


Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 41 / 43

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)


Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 41 / 43

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)


Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 41 / 43

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)


Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 41 / 43

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =


c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)


Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 41 / 43

Loops and Loop Formulas

Lin-Zhao Theorem

Theorem
Let P be a normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P) ∪ LF (P)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 42 / 43

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP(U) | U ⊆ atom(P)};
X |= {LFP(U) | U ⊆ X};
X |= {LFP(L) | L ∈ loop(P)}, that is, X |= LF (P);
X |= {LFP(L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX) such that X 6|= LFP(L)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 43 / 43

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP(U) | U ⊆ atom(P)};
X |= {LFP(U) | U ⊆ X};
X |= {LFP(L) | L ∈ loop(P)}, that is, X |= LF (P);
X |= {LFP(L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX) such that X 6|= LFP(L)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 43 / 43

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP(U) | U ⊆ atom(P)};
X |= {LFP(U) | U ⊆ X};
X |= {LFP(L) | L ∈ loop(P)}, that is, X |= LF (P);
X |= {LFP(L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX) such that X 6|= LFP(L)

Sebastian Rudolph (TUD) Answer Set Programming: Computation & Characterization 43 / 43

	Consequence operator
	Computation from first principles
	Complexity
	Completion
	Tightness
	Loops and Loop Formulas

