COMPLEXITY THEORY

Lecture 13: Space Hierarchy and Gaps

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 5th Dec 2017

Review: Time Hierarchy Theorems

$$
\begin{aligned}
& \text { Time Hierarchy Theorem } 12.12 \text { If } f, g: \mathbb{N} \rightarrow \mathbb{N} \text { are such that } f \text { is time- } \\
& \text { constructible, and } g \cdot \log g \in o(f) \text {, then }
\end{aligned}
$$

$$
\text { DTime }_{*}(g) \subsetneq \text { DTime }_{*}(f)
$$

Nondeterministic Time Hierarchy Theorem 12.14 If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are such that f is time-constructible, and $g(n+1) \in o(f(n))$, then

$$
\text { NTime }_{*}(g) \subsetneq \text { NTime }_{*}(f)
$$

In particular, we find that $P \neq$ ExpTime and $N P \neq$ NExpTime:
$L \subseteq N L \subseteq P \subseteq N P \subseteq P S$ pace \subseteq ExpTime \subseteq NExpTime \subseteq ExpSpace

Space Hierarchy

For space, we can always assume a single working tape:

- Tape reduction leads to a constant-factor increase in space
- Constant factors can be eliminated by space compression

Therefore, $\mathrm{DSpace}_{k}(f)=$ DSpace $_{1}(f)$.

Space turns out to be easier to separate - we get:
Space Hierarchy Theorem 13.1: If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are such that f is spaceconstructible, and $g \in o(f)$, then

$$
\text { DSpace }(g) \subsetneq \text { DSpace }(f)
$$

Challenge: TMs can run forever even within bounded space.

Proving the Space Hierarchy Theorem (1)

Proof (continued): It remains to show that \mathcal{D} implements diagonalisation:
$\mathbf{L}(\mathcal{D}) \in \operatorname{DSpace}(f)$:

- f is space-constructible, so both the marking of tape symbols and the initialisation of the counter are possible in DSpace (f)
- The simulation is performed so that the marked $O(f)$-space is not left

There is w such that $\langle\mathcal{M}, w\rangle \in \mathbf{L}(\mathcal{D})$ iff $\langle\mathcal{M}, w\rangle \notin \mathbf{L}(\mathcal{M})$:

- As for time, we argue that some w is long enough to ensure that f is sufficiently larger than g, so \mathcal{D} 's simulation can finish.
- The countdown measures $2^{f(n)}$ steps. The number of possible distinct configurations of \mathcal{M} on w is $|Q| \cdot n \cdot g(n) \cdot|\Gamma|^{g(n)} \in 2^{O(g(n)+\log n)}$, and due to $f(n) \geq \log n$ and $g \in o(f)$, this number is smaller than $2^{f(n)}$ for large enough n.
- If \mathcal{M} has d tape symbols, then \mathcal{D} can encode each in $\log d$ space, and due to \mathcal{M} 's space bound \mathcal{D} 's simulation needs at most $\log d \cdot g(n) \in o(f(n))$ cells.
Therefore, there is w for which \mathcal{D} simulates \mathcal{M} long enough to obtain (and flip) its output, or to detect that it is not terminating (and to accept, flipping again). \square Markus Krötzsch, 5th Dec 2017 Complexity Theory slide 7 of 19

Proving the Space Hierarchy Theorem (1)

Space Hierarchy Theorem 13.1: If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are such that f is spaceconstructible, and $g \in o(f)$, then

DSpace $(g) \subsetneq \operatorname{DSpace}(f)$

Proof: Again, we construct a diagonalisation machine \mathcal{D}. We define a multi-tape TM \mathcal{D} for inputs of the form $\langle\mathcal{M}, w\rangle$ (other cases do not matter), assuming that $|\langle\mathcal{M}, w\rangle|=n$

- Compute $f(n)$ in unary to mark the available space on the working tape
- Initialise a separate countdown tape with the largest binary number that can be written in $f(n)$ space
- Simulate \mathcal{M} on $\langle\mathcal{M}, w\rangle$, making sure that only previously marked tape cells are used
- Time-bound the simulation using the content of the countdown tape by decrementing the counter in each simulated step
- If \mathcal{M} rejects (in this space bound) or if the time bound is reached without \mathcal{M} halting, then accept; otherwise, if \mathcal{M} accepts or uses unmarked space, reject
Markus Krötzsch, 5th Dec 2017
Complexity Theory
slide 6 of 19

Space Hierarchies

Like for time, we get some useful corollaries:
Corollary 13.2: PSpace \subsetneq ExpSpace
Proof: As for time, but easier.

Corollary 13.3: NL ¢PSpace

Proof: Savitch tells us that $\mathrm{NL} \subseteq$ DSpace $\left(\log ^{2} n\right)$. We can apply the Space Hierachy
Theorem since $\log ^{2} n \in o(n)$.

```
Corollary 13.4: For all real numbers 0 < a < b, we have DSpace( }\mp@subsup{n}{}{a})
DSpace( }\mp@subsup{n}{}{b}\mathrm{ ).
```

In other words: The hierarchy of distinct space classes is very fine-grained.

The Gap Theorem

Proving the Gap Theorem

Special Gap Theorem 13.8: There is a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\operatorname{DTime}(f(n))=\operatorname{DTime}\left(2^{f(n)}\right)$.

Proof idea: We divide time into exponentially long intervals of the form:

$$
[0, n], \quad\left[n+1,2^{n}\right], \quad\left[2^{n}+1,2^{2^{n}}\right], \quad\left[2^{2^{n}}+1,2^{2^{2^{n}}}\right], \quad \cdots
$$

(for some appropriate starting value n)

We are looking for gaps of time where no TM halts, since:

- for every finte set of TMs,
- and every finite set of inputs to these TMs
- there is some interval of the above form $\left[m+1,2^{m}\right]$
such none of the TMs halts in between $m+1$ and 2^{m} steps on any of the inputs.
The task of f is to find the start m of such a gap for a suitable set of TMs and words

Why Constructibility?

The hierarchy theorems require that resource limits are given by constructible functions Do we really need this?

Yes. The following theorem shows why (for time):
Special Gap Theorem 13.5: There is a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that DTime $(f(n))=\operatorname{DTime}\left(2^{f(n)}\right)$.

This has been shown independently by Boris Trakhtenbrot (1964) and Allan Borodin (1972).

Reminder: For this we continue to use the strict definition of DTime (f) where no constant factors are included (no hiddden $O(f)$). This simplifes proofs; the factors are easy to add back.

Markus Krötzsch, 5th Dec 2017
Complexity Theory
slide 10 of 19

Gaps in Time

We consider an (effectively computable) enumeration of all Turing machines:

$$
\mathcal{M}_{0}, \mathcal{M}_{1}, \mathcal{M}_{2}, \ldots
$$

Definition 13.6: For arbitrary numbers $i, a, b \geq 0$ with $a \leq b$, we say tha

 $\operatorname{Gap}_{i}(a, b)$ is true if:- Given any TM \mathcal{M}_{j} with $0 \leq j \leq i$,
- and any input string w for \mathcal{M}_{j} of length $|w|=i$,
\mathcal{M}_{j} on input w will halt in less than a steps, in more than b steps, or not at all

Lemma 13.7: Given $i, a, b \geq 0$ with $a \leq b$, it is decidable if $\operatorname{Gap}_{i}(a, b)$ holds.

Proof: We just need to ensure that none of the finitely many TMs $\mathcal{M}_{0}, \ldots, \mathcal{M}_{i}$ will halt after a to b steps on any of the finitely many inputs of length i. This can be checked by simulating TM runs for at most b steps.

Find the Gap

We can now define the value $f(n)$ of f for some $n \geq 0$:
Let in (n) denote the number of runs of $\mathrm{TMs} \mathcal{M}_{0}, \ldots, \mathcal{M}_{n}$ on words of length n, i.e.,

$$
\operatorname{in}(n)=\left|\Sigma_{0}\right|^{n}+\cdots+\left|\Sigma_{n}\right|^{n} \quad \text { where } \Sigma_{i} \text { is the input alphabet of } \mathcal{M}_{i}
$$

We recursively define a series of numbers $k_{0}, k_{1}, k_{2}, \ldots$ by setting $k_{0}=2 n$ and $k_{i+1}=2^{k_{i}}$ for $i \geq 0$, and we consider the following list of intervals:

$$
\begin{array}{cccc}
{\left[k_{0}+1, k_{1}\right],} & {\left[k_{1}+1, k_{2}\right],} & \cdots, & {\left[k_{\operatorname{in}(n)}+1, k_{\mathrm{in}(n)+1}\right]} \\
\|^{\prime} & \| & & \| \\
{\left[2 n+1,2^{2 n}\right],} & {\left[2^{2 n}+1,2^{2^{2 n}}\right],} & \cdots, & {\left[2^{2^{2 n}}+1,2^{2^{2 n}}\right]}
\end{array}
$$

Let $f(n)$ be the least number k_{i} with $0 \leq i \leq \operatorname{in}(n)$ such that $\operatorname{Gap}_{n}\left(k_{i}+1, k_{i+1}\right)$ is true.

Finishing the Proof

We can now complete the proof of the theorem:

```
Claim: DTime(f(n))=\operatorname{DTime}(\mp@subsup{2}{}{f(n)}).
```


Consider any $\mathbf{L} \in \operatorname{DTime}\left(2^{f(n)}\right)$.

Then there is an $2^{f(n)}$-time bounded TM \mathcal{M}_{j} with $\mathbf{L}=\mathbf{L}\left(\mathcal{M}_{j}\right)$.
For any input w with $|w| \geq j$:

- The defintion of $f(|w|)$ took the run of \mathcal{M}_{j} on w into account
- \mathcal{M}_{j} on w halts after less than $f(|w|)$ steps, or not until after $2^{f(|w|)}$ steps (maybe never)
- Since \mathcal{M}_{j} runs in time $\operatorname{DTime}\left(2^{f(n)}\right)$, it must halt in $\operatorname{DTime}(f(n))$ on w

For the finitely many inputs w with $|w|<j$:

- We can augment the state space of \mathcal{M}_{j} to run a finite automaton to decide these cases
- This will work in $\operatorname{DTime}(f(n))$

Therefore we have $\mathbf{L} \in \operatorname{DTime}(f(n))$.

Properties of f

We first establish some basic properties of our definition of f :

Claim: The function f is well-defined.
Proof: For finding $f(n)$, we consider in $(n)+1$ intervals. Since there are only in (n) runs of TMs $\mathcal{M}_{0}, \ldots \mathcal{M}_{n}$, at least one interval remains a "gap" where no TM run halts.

Claim: The function f is computable.
Proof: We can compute in (n) and k_{i} for any i, and we can decide $\mathrm{Gap}_{n}\left(k_{i}+1, k_{i+1}\right)$.
Papadimitriou: "notice the fantastically fast growth, as well as the decidedly unnatural definition of this function."

Markus Krötzsch, 5th Dec 2017
Complexity Theory
slide 14 of 19

Discussion: The case $|w|<j$

Borodin says: It is meaningful to state complexity results if they hold for "almost every" input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and then recognise the word in less than $2 j$ steps
Really?

- If we do these $<2 j$ steps before running \mathcal{M}_{j}, the modified TM runs in DTime $(f(n)+2 j)$
- This does not show $\mathbf{L} \in \operatorname{DTime}(f(n))$

Could we still do a state-space extension as Papadimitriou suggested?

- It seems possible to do a multiplication of states to do the finite automaton detection of words $|w|<j$ alongside the normal operation of the TM
- However, we'll have to leave the movement of the heads to the original TM
- Due to the other requirements, it seems compulsory that the TM will always read the whole input in $f(n)$, so our superimposed finite automaton would get enough information to decide acceptance
(However, this argument has no connection to Papadimitriou's $2 j$ bound) Markus Krötzsch, 5th Dec 2017

Discussion: Generalising the Gap Theorem

- Our proof uses the function $n \mapsto 2^{n}$ to define intervals
- Any other computable function could be used without affecting the argument

This leads to a generalised Gap Theorem:
Gap Theorem 13.8: For every computable function $g: \mathbb{N} \rightarrow \mathbb{N}$ with $g(n) \geq n$, there is a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\operatorname{DTime}(f(n))=\operatorname{DTime}(g(f(n)))$.

Example 13.9: There is a function f such that

$$
\operatorname{DTime}(f(n))=\operatorname{DTime}(\underbrace{2^{2^{2}}}_{f(n) \text { times }})
$$

Moreover, the Gap Theorem can also be shown for space (and for other resources) in a similar fashion (space is abit easier since the case of short words $|w|<j$ i seasy to hande in very litte space)

Markus Krötzsch, 5th Dec $2017 \quad$ Complexity Theory slide 17 of 19

Discussion: Significance of the Gap Theorem

What have we learned?

- More time (or space) does not always increase computational power
- However, this only works for extremely fast-growing, very unnatural functions
"Fortunately, the gap phenomenon cannot happen for time bounds t that anyone would ever be interested in"1

Main insight: better stick to constructible functions

[^0]
Summary and Outlook

Hierarchy theorems tell us that more time/space leads to more power:

However, they don't help us in comparing different resources and machine types (P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not) boosts in resources do not lead to more power

What's next?

- Computing with oracles (reprise)
- The limits of diagonalisation, proved by diagonalisation
- P vs. NP again
\qquad Complexity Theory

[^0]: Allender, Loui, Reagan: Complexity Theory. In Computing Handbook, 3rd ed., CRC Press, 2014)

 Markus Krötzsch, 5th Dec 2017 Complexity Theory slide 18 of 19

