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» Question posed in 1984: What is the complexity of learning
Boolean Functions?

» Turing Award 2010: Leslie Valiant
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PAC LEARNING: PROBLEM SETTING

» The learner observes a sequence of labeled examples
(training).

» The learner must output a hypothesis estimating the
target.

» the hypothesis is evaluated by its performance on
subsequent examples drawn according to a probability
distribution.
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PAC LEARNING: MOTIVATION

» Given some training data over the general data, can we
guarantee something about the error?

» How large should be the training data to bound the error?

» We want to compute a hypothesis where with high
probability it does not differ much from the target.
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PAC LEARNING: PROBLEM SETTING

» Let X be a set of examples.
» A concept c is a subset of X.
» A concept class C is a set of concepts.

» Let H be a set of hypothesis concept representations (the
hypothesis space) and py : H — Cy a surjective function;

» Let L be a set of target concept representations and
pr, : L — Cp, a surjective function;
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PAC LEARNING: PROBLEM SETTING

» Training examples are generated by a fixed, unknown
probability distribution D over X (i.i.d).

» D: X —[0,1]is a function with . D(x) = 1.

» LetD = {(@,0.2), (@,0.1), (©,0.3), (@,0.2), (O, 0.2)} be a
probability distribution over X.
» The oracle labels the examples as positive or negative
according to the target.
» e.g., if the target concept representation is { RGB(@) ,
RGB(@) } then:
» @ is a positive example;
» Q is a negative example.
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TRUE ERROR OF A HYPOTHESIS

» The true error (denoted errorp(h)) of a hypothesis h € H
w.r.t. a target concept representation / € L and a prob.
distr. D is the probability that i will misclassify an
example drawn at random according to D.

errorp(h) = Pryop(x € pug(h) @ pr(l))
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TRUE ERROR OF A HYPOTHESIS

errorp(h) = Pryp(x € ug(h) ® ur(l))
Example

» Let D = {(@,0.2), (@ 0.1), (©,0.3), (@, 0.2), (0,0.2)} be a
probability distribution over X.

» h = {RGB(@), RGB(O)}
» | = {RGB(@), RGB(®)}
» Then, errorp(h) = 0.3
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TWO NOTIONS OF ERROR

» Training error of a hypothesis I w.r.t. a target concept
representation /.

» How often x € puy(h) ® p(I) over training examples?

» True error of a hypothesis 1 w.r.t. a target concept
representation /.

» How often x € pupy(h) @ ui(l) over future random examples?

» Question: Can we bound the true error of & given the
training error of h?
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PAC LEARNING DEFINITION

A learning framework F = (X, L, H, up, pur.) is PAC learnable in
polynomial time if there is an algorithm A such that for any
fixed but arbitrary probability distribution D and any target
leL:

» A receives the parameters € and ¢ as input;
» A can make calls to the oracle;

» the time used by A is bounded by a polynomial
p(|1], |x|, %, %), where x € X is the largest example returned

by the oracle;

» A always halts and outputs a hypothesis h € H such that
with probability at least 1 — §, the probability of choosing
x € pup(h) ® pr(l) is at most e. That is,
Pr(Pr(x € pp(h) @ pr(l)) <e) >1-—0.
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PAC LEARNABILITY

» Question posed in 1984: What is the complexity of learning
Boolean Formulas?

» The set of conjunctions of literals is PAC learnable in
polynomial time from interpretations.

» 1987: Angluin proved that equivalence queries can be
modified to achieve pac-learnability.

» Exact Learning with membership and equivalence queries
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ANGLUIN’S EXACT LEARNING MODEL

» An algorithm exactly identifies a target set L, if it always
halts and outputs a hypothesis L, such that L, = L.
» Membership query: x € L, ? Yes/No
» Equivalence query: L, =L, ? Yes/Noand x € L, @ L.

Learner Teacher (Oracle)
[N Queries ,@
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\
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EXACT LEARNING

» Membership query: x € L, ? Yes/No
» Equivalence query: L, = L, ? Yes/Noand x € L, ® L,
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EXACT LEARNING
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EXACT LEARNING

» Membership query: x € L, ? Yes/No
» Equivalence query: L, = L, ? Yes/Noand x € L, ® L,
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EXACT LEARNING

» Membership query: x € L, ? Yes/No
» Equivalence query: L, = L, ? Yes/Noand x € L, ® L,
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EXACT LEARNING

» Membership query: x € L, ? Yes/No
» Equivalence query: L, = L, ? Yes/Noand x € L, ® L,
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EXACT LEARNING

» Membership query: x € L, ? Yes/No
» Equivalence query: L, = L, ? Yes/Noand x € L, ® L,
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EXACT LEARNING

» Membership query: x € L, ? Yes/No
» Equivalence query: L, = L, ? Yes/Noand x € L, ® L,
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EXACT LEARNING

» Membership query: x € L, ? Yes/No
» Equivalence query: L, = L, ? Yes/Noand x € L, ® L,
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EXACT LEARNING

» Learnability in polynomial time:
» Polynomial in the size of the target and the largest
counterexample seen so far.

» Unknown:
» CNFs (2-Quasi-Horn)
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HORN < MVDF < 2-QUASI-HORN

» An MVDF is a set of (MVD) clauses X — Y V Z.
» V=XUYUZand X, Y, Z are mutually disjoint.

Example:
» Propositional Variables: {a,b,c,d,e,f}

» Target MVDEF:

» {ab—cdVef, c—aefVbc, abcd— ef}
» {T —abcdVef, abcdef — F}

» Each mvd clause X — Y V Z must contain all variables.
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HORN < MVDF < 2-QUASI-HORN

LetV = {a,b,c,d,e,f}
Horn can be expressed as MVDEF:
» Prop. Horn: at most one positive literal
» {-aVv-bvc}={ab— c}
» Translation:

» {ab— c} ={ab— cVdef, abdef — c}
» Any interpretation of the form (a,b, —c, ?,?,?) falsifies at
least one of the two MVD clauses above.
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HORN < MVDF < 2-QUASI-HORN

LetV ={a,b,c,d,e f}
MVDF is a fragment of 2-Quasi-Horn:
» 2-Quasi-Horn: at most two positive literals
» {~avbvc}={a—>bVvc}
» Translation by distribution:

» {ab—>cdVvef} =
{ab—>cVve, ab—cVf, ab—dvVe, ab—dVf}
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OUR EXACT LEARNING PROBLEM

Horn — MVDF — 2-Quasi-Horn
polytime learnable ? as hard as CNF

» Horn-SAT: PTIME
» 2-Quasi-Horn-SAT: NP-Complete

» MVDF: PTIME - Exact Learning of Multivalued
Dependency Formulas [Hermo and Ozaki, 2017]
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OUR RESULTS

MVDFI

HORN7 MVDFg MVDFQMVDRCRMVFI ARMVEF;
% v
—7  T5
HORN¢g ’ CRMVD#z ARMVDz

» HORNZz (1992): Angluin, Frazier and Pitt
» HORN¢ (1993): Frazier and Pitt
» CRMVF7 and ARMVF7 (2011-2015): Lavin

26 / 2¢



PAC Learning Exact Learning Exact Learning MVDF
: :

CHALLENGES OF LEARNING MVDF

» The learning algorithm for propositional Horn refines
countermodels by intersecting interpretations.

» In contrast to Horn, MVDF is not closed under intersection.
» Example: 7 = {ab — cd V ef }
Ty = (a,b,~c,—~d,e,f) and I, = (a,b,c,d, —e, —f ) satisfy T
butZ; N7, = (a,b, —c, ~d, —e, —f ) does not satisfy 7.
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FUTURE WORK

» PAC-learning MVDEF: g-bounded distributions
» Exact Learning: Cy;, =5,
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[§ Hermo, M. and Ozaki, A. (2017).
Exact learning of multivalued dependency formulas.
Theoretical Computer Science.
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