Answer Set Programming: Basics

Sebastian Rudolph

Computational Logic Group Technische Universität Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub.

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0

Unported License.

Answer Set Programming – Basics: Overview

- 1 ASP Syntax
- 2 Semantics
- 3 Examples
- 4 Reasoning modes

Outline

- 1 ASP Syntax
- 2 Semantics
- 3 Examples
- 4 Reasoning modes

Normal logic programs

- lacksquare A logic program, P, over a set A of atoms is a finite set of rules
- \blacksquare A (normal) rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where $0 \le m \le n$ and each $a_i \in A$ is an atom for $0 \le i \le n$

- $head(r) = a_0$
 - $body(r) = \{a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n\}$
 - $body(r)^+ = \{a_1, \dots, a_m\}$
 - $body(r)^{-} = \{a_{m+1}, \ldots, a_n\}$
 - $atom(P) = \bigcup_{r \in P} \{\{head(r)\} \cup body(r)^{\top} \cup body(r)^{\top} \}$
- $body(i) = \{body(i) | i \in i\}$
- \blacksquare A program P is positive if $body(r)^- = \emptyset$ for all $r \in P$

Normal logic programs

- \blacksquare A logic program, P, over a set A of atoms is a finite set of rules
- \blacksquare A (normal) rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where $0 \le m \le n$ and each $a_i \in \mathcal{A}$ is an atom for $0 \le i \le n$

Notation

$$\begin{array}{lll} head(r) & = & a_0 \\ body(r) & = & \{a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n\} \\ body(r)^+ & = & \{a_1, \dots, a_m\} \\ body(r)^- & = & \{a_{m+1}, \dots, a_n\} \\ atom(P) & = & \bigcup_{r \in P} \left(\{head(r)\} \cup body(r)^+ \cup body(r)^- \right) \\ body(P) & = & \{body(r) \mid r \in P\} \end{array}$$

■ A program P is positive if $body(r)^- = \emptyset$ for all $r \in P$

Normal logic programs

- \blacksquare A logic program, P, over a set A of atoms is a finite set of rules
- \blacksquare A (normal) rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where $0 \le m \le n$ and each $a_i \in A$ is an atom for $0 \le i \le n$

Notation

$$\begin{array}{lll} head(r) & = & a_0 \\ body(r) & = & \{a_1,\ldots,a_m,\sim a_{m+1},\ldots,\sim a_n\} \\ body(r)^+ & = & \{a_1,\ldots,a_m\} \\ body(r)^- & = & \{a_{m+1},\ldots,a_n\} \\ atom(P) & = & \bigcup_{r\in P} \left(\{head(r)\}\cup body(r)^+\cup body(r)^-\right) \\ body(P) & = & \{body(r)\mid r\in P\} \end{array}$$

■ A program P is positive if $body(r)^- = \emptyset$ for all $r \in P$

Outline

- 1 ASP Syntax
- 2 Semantics
- 3 Examples
- 4 Reasoning modes

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$
 - X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
 - \blacksquare Cn(P) corresponds to the \subseteq -smallest model of P (ditto)
- The set Cn(P) of atoms is the stable model of a positive program P

Formal Definition Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$
 - X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
 - Cn(P) corresponds to the \subseteq -smallest model of P (ditto)
- The set Cn(P) of atoms is the stable model of a positive program P

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$
 - X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
 - Cn(P) corresponds to the \subseteq -smallest model of P (ditto)
- The set Cn(P) of atoms is the stable model of a positive program P

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$
 - X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by Cn(P)
 - Cn(P) corresponds to the \subseteq -smallest model of P (ditto)
- The set Cn(P) of atoms is the stable model of a positive program P

Stable model of normal programs

■ The reduct, P^X , of a program P relative to a set X of atoms is defined by

$$P^X = \{ head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset \}$$

- A set X of atoms is a stable model of a program P, if $Cn(P^X) = X$
- Note $Cn(P^X)$ is the \subseteq -smallest (classical) model of P^X
- \blacksquare Note Every atom in X is justified by an "applying rule from P"

Stable model of normal programs

■ The reduct, P^X , of a program P relative to a set X of atoms is defined by

$$P^X = \{ head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset \}$$

- A set X of atoms is a stable model of a program P, if $Cn(P^X) = X$
- Note $Cn(P^X)$ is the \subseteq -smallest (classical) model of P^X
- \blacksquare Note Every atom in X is justified by an "applying rule from P"

Stable model of normal programs

■ The reduct, P^X , of a program P relative to a set X of atoms is defined by

$$P^X = \{ head(r) \leftarrow body(r)^+ \mid r \in P \text{ and } body(r)^- \cap X = \emptyset \}$$

- A set X of atoms is a stable model of a program P, if $Cn(P^X) = X$
- Note $Cn(P^X)$ is the \subseteq -smallest (classical) model of P^X
- Note Every atom in X is justified by an "applying rule from P"

A closer look at P^X

- In other words, given a set X of atoms from P,
 - P^X is obtained from P by deleting
 - 1 each rule having $\sim a$ in its body with $a \in X$ and then
 - 2 all negative atoms of the form $\sim a$ in the bodies of the remaining rules
- Note Only negative body literals are evaluated wrt X

A closer look at P^X

- In other words, given a set X of atoms from P,
 - P^X is obtained from P by deleting
 - **1** each rule having $\sim a$ in its body with $a \in X$ and then
 - 2 all negative atoms of the form ∼a in the bodies of the remaining rules
- Note Only negative body literals are evaluated wrt X

Outline

- 1 ASP Syntax
- 2 Semantics
- 3 Examples
- 4 Reasoning modes

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

Χ	P^X	$Cn(P^X)$
{ }	p ← p q ←	{q} X
{p }	<i>p</i> ← <i>p</i>	Ø x
{ q}	p ← p q ←	{q} V
$\{p,q\}$	<i>p</i> ← <i>p</i>	Ø X

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	{q} ×
	$q \leftarrow$	
{p }	<i>p</i> ← <i>p</i>	Ø ×
 { q}	$p \leftarrow p$	{q}
	$q \leftarrow$	
$\{p,q\}$	<i>p</i> ← <i>p</i>	Ø

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	{q} ×
	$q \leftarrow$	
{p }	<i>p</i> ← <i>p</i>	Ø ×
{ q}	<i>p</i> ← <i>p q</i> ←	{q} \
$\{p,q\}$	<i>p</i> ← <i>p</i>	Ø

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	{q} ×
	$q \leftarrow$	
{p }	<i>p</i> ← <i>p</i>	Ø x
{ q}	<i>p</i> ← <i>p q</i> ←	{q}
{ <i>p</i> , <i>q</i> }	$p \leftarrow p$	Ø×

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	{q} ×
	$q \leftarrow$	
{p }	<i>p</i> ← <i>p</i>	Ø x
{ q}	$p \leftarrow p$ $q \leftarrow$	{q} ✓
$\{p,q\}$	<i>p</i> ← <i>p</i>	Ø ×

$$P = \{ p \leftarrow p, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	$p \leftarrow p$	{q} ×
	$q \leftarrow$	
{p }	<i>p</i> ← <i>p</i>	Ø x
{ q}	$egin{pmatrix} p & \leftarrow & p \ q & \leftarrow \end{matrix}$	{q} ✓
$\{p,q\}$	<i>p</i> ← <i>p</i>	Ø x

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{ <i>p</i> , <i>q</i> } ×
	$q \leftarrow$	
{p }	<i>p</i> ←	{p}
{ q}		{q}
	$q \leftarrow$	
$\{p,q\}$		Ø

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{p, q} ✗
	$q \leftarrow$	
{p }	<i>p</i> ←	{p}
{ q}		{q}
	$q \leftarrow$	
$\{p,q\}$		Ø

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{p, q} ✗
	$q \leftarrow$	
{p }	<i>p</i> ←	{p} ✓
{ q}		{q}
	<i>q</i> ←	
$\{p,q\}$		Ø

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{p, q} ✗
	$q \leftarrow$	
{p }	<i>p</i> ←	{p} ✓
$\{q\}$		{q} ✓
	$q \leftarrow$	
$\overline{\{p,q\}}$		Ø

$$P = \{ p \leftarrow \sim q, \ q \leftarrow \sim p \}$$

X	P^X	$Cn(P^X)$
{ }	<i>p</i> ←	{p, q} ✗
	$q \leftarrow$	
{p }	<i>p</i> ←	{p} ✓
{ q}	$q \leftarrow$	{q} ✓
{ <i>p</i> , <i>q</i> }	•	Ø x

$$P = \{p \leftarrow \sim p\}$$

$$P = \{p \leftarrow \sim p\}$$

X	P^X	$Cn(P^X)$	
{}	<i>p</i> ←	{ <i>p</i> }	X
$\overline{\{p\}}$		Ø	

$$P = \{p \leftarrow \sim p\}$$

Χ	P^X	$Cn(P^X)$	
{ }	<i>p</i> ←	{ <i>p</i> }	X
{ <i>p</i> }		Ø	

$$P = \{p \leftarrow \sim p\}$$

Χ	P^X	$Cn(P^X)$	
{ }	<i>p</i> ←	{ <i>p</i> }	X
{ <i>p</i> }		Ø	X

Some properties

- A logic program may have zero, one, or multiple stable models!
- If X is a stable model of a logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a *normal* program P, then $X \not\subset Y$

Some properties

- A logic program may have zero, one, or multiple stable models!
- If X is a stable model of a logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a *normal* program P, then $X \not\subset Y$

Outline

- 1 ASP Syntax
- 2 Semantics
- 3 Examples
- 4 Reasoning modes

Reasoning Modes

- Satisfiability
- Enumeration[†]
- Projection[†]
- Intersection[‡]
- Union[‡]
- Optimization
- and combinations of them

† without solution recording

[‡] without solution enumeration