
COMPLEXITY THEORY

Lecture 9: Space Complexity

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 12th Nov 2018

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2018/19)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en

Review

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 2 of 21

Review: Space Complexity Classes

Recall our earlier definitions of space complexities:

Definition 9.1: Let f : N→ R+ be a function.

(1) DSpace(f (n)) is the class of all languages L for which there is an
O(f (n))-space bounded Turing machine deciding L.

(2) NSpace(f (n)) is the class of all languages L for which there is an
O(f (n))-space bounded nondeterministic Turing machine deciding L.

Being O(f (n))-space bounded requires a (nondeterministic) TM

• to halt on every input and

• to use ≤ f (|w|) tape cells on every computation path.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 3 of 21

Space Complexity Classes

Some important space complexity classes:

L = LogSpace = DSpace(log n) logarithmic space

PSpace =
⋃
d≥1

DSpace(nd) polynomial space

ExpSpace =
⋃
d≥1

DSpace(2nd
) exponential space

NL = NLogSpace = NSpace(log n) nondet. logarithmic space

NPSpace =
⋃
d≥1

NSpace(nd) nondet. polynomial space

NExpSpace =
⋃
d≥1

NSpace(2nd
) nondet. exponential space

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 4 of 21

The Power of Space

Space seems to be more powerful than time
because space can be reused.

Example 9.2: Sat can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
one satisfies the formula.

Example 9.3: Tautology can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
all satisfy the formula.

More generally: NP ⊆ PSpace and coNP ⊆ PSpace

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 5 of 21

The Power of Space

Space seems to be more powerful than time
because space can be reused.

Example 9.2: Sat can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
one satisfies the formula.

Example 9.3: Tautology can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
all satisfy the formula.

More generally: NP ⊆ PSpace and coNP ⊆ PSpace

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 5 of 21

The Power of Space

Space seems to be more powerful than time
because space can be reused.

Example 9.2: Sat can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
one satisfies the formula.

Example 9.3: Tautology can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
all satisfy the formula.

More generally: NP ⊆ PSpace and coNP ⊆ PSpace

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 5 of 21

The Power of Space

Space seems to be more powerful than time
because space can be reused.

Example 9.2: Sat can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
one satisfies the formula.

Example 9.3: Tautology can be solved in linear space:
Just iterate over all possible truth assignments (each linear in size) and check if
all satisfy the formula.

More generally: NP ⊆ PSpace and coNP ⊆ PSpace

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 5 of 21

Linear Compression

Theorem 9.4: For every function f : N → R+, for all c ∈ N, and for every f -space
bounded (deterministic/nondeterminsitic) Turing machine M:

there is a max{1, 1
c f (n)}-space bounded (deterministic/nondeterminsitic)

Turing machine M′ that accepts the same language as M.

Proof idea: Similar to (but much simpler than) linear speed-up. �

This justifies using O-notation for defining space classes.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 6 of 21

Linear Compression

Theorem 9.4: For every function f : N → R+, for all c ∈ N, and for every f -space
bounded (deterministic/nondeterminsitic) Turing machine M:

there is a max{1, 1
c f (n)}-space bounded (deterministic/nondeterminsitic)

Turing machine M′ that accepts the same language as M.

Proof idea: Similar to (but much simpler than) linear speed-up. �

This justifies using O-notation for defining space classes.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 6 of 21

Linear Compression

Theorem 9.4: For every function f : N → R+, for all c ∈ N, and for every f -space
bounded (deterministic/nondeterminsitic) Turing machine M:

there is a max{1, 1
c f (n)}-space bounded (deterministic/nondeterminsitic)

Turing machine M′ that accepts the same language as M.

Proof idea: Similar to (but much simpler than) linear speed-up. �

This justifies using O-notation for defining space classes.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 6 of 21

Tape Reduction

Theorem 9.5: For every function f : N→ R+ all k ≥ 1 and L ⊆ Σ∗:

If L can be decided by an f -space bounded k-tape Turing-machine,
then it can also be decided by an f -space bounded 1-tape Turing-machine.

Proof idea: Combine tapes with a similar reduction as for time. Compress space to
avoid linear increase. �

Note: We still use a separate read-only input tape to define some space complexities,
such as LogSpace.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 7 of 21

Tape Reduction

Theorem 9.5: For every function f : N→ R+ all k ≥ 1 and L ⊆ Σ∗:

If L can be decided by an f -space bounded k-tape Turing-machine,
then it can also be decided by an f -space bounded 1-tape Turing-machine.

Proof idea: Combine tapes with a similar reduction as for time. Compress space to
avoid linear increase. �

Note: We still use a separate read-only input tape to define some space complexities,
such as LogSpace.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 7 of 21

Time vs. Space

Theorem 9.6: For all functions f : N→ R+:

DTime(f) ⊆ DSpace(f) and NTime(f) ⊆ NSpace(f)

Proof: Visiting a cell takes at least one time step. �

Theorem 9.7: For all functions f : N→ R+ with f (n) ≥ log n:

DSpace(f) ⊆ DTime(2O(f)) and NSpace(f) ⊆ DTime(2O(f))

Proof: Based on configuration graphs and a bound on the number of possible
configurations.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 8 of 21

Time vs. Space

Theorem 9.6: For all functions f : N→ R+:

DTime(f) ⊆ DSpace(f) and NTime(f) ⊆ NSpace(f)

Proof: Visiting a cell takes at least one time step. �

Theorem 9.7: For all functions f : N→ R+ with f (n) ≥ log n:

DSpace(f) ⊆ DTime(2O(f)) and NSpace(f) ⊆ DTime(2O(f))

Proof: Based on configuration graphs and a bound on the number of possible
configurations.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 8 of 21

Time vs. Space

Theorem 9.6: For all functions f : N→ R+:

DTime(f) ⊆ DSpace(f) and NTime(f) ⊆ NSpace(f)

Proof: Visiting a cell takes at least one time step. �

Theorem 9.7: For all functions f : N→ R+ with f (n) ≥ log n:

DSpace(f) ⊆ DTime(2O(f)) and NSpace(f) ⊆ DTime(2O(f))

Proof: Based on configuration graphs and a bound on the number of possible
configurations.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 8 of 21

Number of Possible Configurations
LetM := (Q, Σ, Γ, q0, δ, qstart) be a 2-tape Turing machine

(1 read-only input tape + 1 work tape)

Recall: A configuration ofM is a quadruple (q, p1, p2, x) where

• q ∈ Q is the current state,

• pi ∈ N is the head position on tape i, and

• x ∈ Γ∗ is the tape content.

Let w ∈ Σ∗ be an input toM and n := |w|.
• Then also p1 ≤ n.

• IfM is f (n)-space bounded we can assume p2 ≤ f (n) and |x| ≤ f (n)

Hence, there are at most

|Q| · n · f (n) · |Γ|f (n) = n · 2O(f (n)) = 2O(f (n))

different configurations on inputs of length n (the last equality requires f (n) ≥ log n).

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 9 of 21

Number of Possible Configurations
LetM := (Q, Σ, Γ, q0, δ, qstart) be a 2-tape Turing machine

(1 read-only input tape + 1 work tape)

Recall: A configuration ofM is a quadruple (q, p1, p2, x) where

• q ∈ Q is the current state,

• pi ∈ N is the head position on tape i, and

• x ∈ Γ∗ is the tape content.

Let w ∈ Σ∗ be an input toM and n := |w|.
• Then also p1 ≤ n.

• IfM is f (n)-space bounded we can assume p2 ≤ f (n) and |x| ≤ f (n)

Hence, there are at most

|Q| · n · f (n) · |Γ|f (n) = n · 2O(f (n)) = 2O(f (n))

different configurations on inputs of length n (the last equality requires f (n) ≥ log n).
Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 9 of 21

Configuration Graphs

The possible computations of a TMM (on input w) form a directed graph:

• Vertices: configurations thatM can reach (on input w)

• Edges: there is an edge from C1 to C2 if C1 `M C2

(C2 reachable from C1 in a single step)

This yields the configuration graph:

• Could be infinite in general.

• For f (n)-space bounded 2-tape TMs,
there can be at most 2O(f (n)) vertices and (2O(f (n)))2 = 2O(f (n)) edges

A computation ofM on input w corresponds to a path in the configuration graph from
the start configuration to a stop configuration.

Hence, to test ifM accepts input w,

• construct the configuration graph and

• find a path from the start to an accepting stop configuration.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 10 of 21

Configuration Graphs

The possible computations of a TMM (on input w) form a directed graph:

• Vertices: configurations thatM can reach (on input w)

• Edges: there is an edge from C1 to C2 if C1 `M C2

(C2 reachable from C1 in a single step)

This yields the configuration graph:

• Could be infinite in general.

• For f (n)-space bounded 2-tape TMs,
there can be at most 2O(f (n)) vertices and (2O(f (n)))2 = 2O(f (n)) edges

A computation ofM on input w corresponds to a path in the configuration graph from
the start configuration to a stop configuration.

Hence, to test ifM accepts input w,

• construct the configuration graph and

• find a path from the start to an accepting stop configuration.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 10 of 21

Time vs. Space

Theorem 9.6: For all functions f : N→ R+:

DTime(f) ⊆ DSpace(f) and NTime(f) ⊆ NSpace(f)

Proof: Visiting a cell takes at least one time step. �

Theorem 9.7: For all functions f : N→ R+ with f (n) ≥ log n:

DSpace(f) ⊆ DTime(2O(f)) and NSpace(f) ⊆ DTime(2O(f))

Proof: Build the configuration graph (time 2O(f (n))) and find a path from the start to an
accepting stop configuration (time 2O(f (n))). �

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 11 of 21

Basic Space/Time Relationships

Applying the results of the previous slides, we get the following relations:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ NPSpace ⊆ ExpTime ⊆ NExpTime

We also noted P ⊆ coNP ⊆ PSpace.

Open questions:

• What is the relationship between space classes and their co-classes?

• What is the relationship between deterministic and non-deterministic space
classes?

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 12 of 21

Nondeterminism in Space

Most experts think that nondeterministic TMs can solve strictly more problems when
given the same amount of time than a deterministic TM:

Most believe that P (NP

How about nondeterminism in space-bounded TMs?

Theorem 9.8 (Savitch’s Theorem, 1970): For any
function f : N→ R+ with f (n) ≥ log n:

NSpace(f (n)) ⊆ DSpace(f 2(n)).

That is: nondeterminism adds almost no power to space-bounded TMs!

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 13 of 21

Nondeterminism in Space

Most experts think that nondeterministic TMs can solve strictly more problems when
given the same amount of time than a deterministic TM:

Most believe that P (NP

How about nondeterminism in space-bounded TMs?

Theorem 9.8 (Savitch’s Theorem, 1970): For any
function f : N→ R+ with f (n) ≥ log n:

NSpace(f (n)) ⊆ DSpace(f 2(n)).

That is: nondeterminism adds almost no power to space-bounded TMs!

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 13 of 21

Consequences of Savitch’s Theorem

Theorem 9.8 (Savitch’s Theorem, 1970): For any function f : N → R+ with
f (n) ≥ log n:

NSpace(f (n)) ⊆ DSpace(f 2(n)).

Corollary 9.9: PSpace = NPSpace.

Proof: PSpace ⊆ NPSpace is clear. The converse follows since the square of a
polynomial is still a polynomial. �

Similarly for “bigger” classes, e.g., ExpSpace = NExpSpace.

Corollary 9.10: NL ⊆ DSpace(O(log2 n)).

Note that log2(n) < O(log n), so we do not obtain NL = L from this.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 14 of 21

Consequences of Savitch’s Theorem

Theorem 9.8 (Savitch’s Theorem, 1970): For any function f : N → R+ with
f (n) ≥ log n:

NSpace(f (n)) ⊆ DSpace(f 2(n)).

Corollary 9.9: PSpace = NPSpace.

Proof: PSpace ⊆ NPSpace is clear. The converse follows since the square of a
polynomial is still a polynomial. �

Similarly for “bigger” classes, e.g., ExpSpace = NExpSpace.

Corollary 9.10: NL ⊆ DSpace(O(log2 n)).

Note that log2(n) < O(log n), so we do not obtain NL = L from this.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 14 of 21

Consequences of Savitch’s Theorem

Theorem 9.8 (Savitch’s Theorem, 1970): For any function f : N → R+ with
f (n) ≥ log n:

NSpace(f (n)) ⊆ DSpace(f 2(n)).

Corollary 9.9: PSpace = NPSpace.

Proof: PSpace ⊆ NPSpace is clear. The converse follows since the square of a
polynomial is still a polynomial. �

Similarly for “bigger” classes, e.g., ExpSpace = NExpSpace.

Corollary 9.10: NL ⊆ DSpace(O(log2 n)).

Note that log2(n) < O(log n), so we do not obtain NL = L from this.

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 14 of 21

Proving Savitch’s Theorem

Simulating nondeterminism with more space:

• Use configuration graph of nondeterministic space-bounded TM

• Check if an accepting configuration can be reached

• Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space!
What to do?

Things we can do:
• Store one configuration:

– one configuration requires log n + O(f (n)) space
– if f (n) ≥ log n, then this is O(f (n)) space

• Store log n configurations (remember we have log2 n space)

• Iterate over all configurations (one by one)

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 15 of 21

Proving Savitch’s Theorem

Simulating nondeterminism with more space:

• Use configuration graph of nondeterministic space-bounded TM

• Check if an accepting configuration can be reached

• Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space!
What to do?

Things we can do:
• Store one configuration:

– one configuration requires log n + O(f (n)) space
– if f (n) ≥ log n, then this is O(f (n)) space

• Store log n configurations (remember we have log2 n space)

• Iterate over all configurations (one by one)

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 15 of 21

Proving Savitch’s Theorem

Simulating nondeterminism with more space:

• Use configuration graph of nondeterministic space-bounded TM

• Check if an accepting configuration can be reached

• Store only one computation path at a time (depth-first search)

This still requires exponential space. We want quadratic space!
What to do?

Things we can do:
• Store one configuration:

– one configuration requires log n + O(f (n)) space
– if f (n) ≥ log n, then this is O(f (n)) space

• Store log n configurations (remember we have log2 n space)

• Iterate over all configurations (one by one)

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 15 of 21

Proving Savitch’s Theorem: Key Idea

To find out if we can reach an accepting configuration,
we solve a slighly more general question:

Yieldability

Input: TM configurations C1 and C2, integer k

Problem: Can TM get from C1 to C2 in at most k steps?

Approach: check if there is an intermediate configuration C′ such that

(1) C1 can reach C′ in k/2 steps and

(2) C′ can reach C2 in k/2 steps

{ Deterministic: we can try all C′ (iteration)
{ Space-efficient: we can reuse the same space for both steps

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 16 of 21

Proving Savitch’s Theorem: Key Idea

To find out if we can reach an accepting configuration,
we solve a slighly more general question:

Yieldability

Input: TM configurations C1 and C2, integer k

Problem: Can TM get from C1 to C2 in at most k steps?

Approach: check if there is an intermediate configuration C′ such that

(1) C1 can reach C′ in k/2 steps and

(2) C′ can reach C2 in k/2 steps

{ Deterministic: we can try all C′ (iteration)
{ Space-efficient: we can reuse the same space for both steps

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 16 of 21

An Algorithm for Yieldability

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 `M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• We only call CanYield only with k a power of 2, so k/2 ∈ N

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 17 of 21

Space Requirement for the Algorithm

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 `M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• During iteration (line 05), we store one C in O(f (n))
• Calls in lines 06 and 07 can reuse the same space

• Maximum depth of recursive call stack: log2 k

Overall space usage: O(f (n) · log k)

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 18 of 21

Space Requirement for the Algorithm

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 `M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• During iteration (line 05), we store one C in O(f (n))

• Calls in lines 06 and 07 can reuse the same space

• Maximum depth of recursive call stack: log2 k

Overall space usage: O(f (n) · log k)

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 18 of 21

Space Requirement for the Algorithm

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 `M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• During iteration (line 05), we store one C in O(f (n))
• Calls in lines 06 and 07 can reuse the same space

• Maximum depth of recursive call stack: log2 k

Overall space usage: O(f (n) · log k)

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 18 of 21

Space Requirement for the Algorithm

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 `M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• During iteration (line 05), we store one C in O(f (n))
• Calls in lines 06 and 07 can reuse the same space

• Maximum depth of recursive call stack: log2 k

Overall space usage: O(f (n) · log k)

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 18 of 21

Space Requirement for the Algorithm

01 CanYield(C1,C2,k) {
02 if k = 1 :
03 return (C1 = C2) or (C1 `M C2)

04 else if k > 1 :
05 for each configuration C of M for input size n :
06 if CanYield(C1,C,k/2) and
07 CanYield(C,C2,k/2) :
08 return true

09 // eventually, if no success:

10 return false

11 }

• During iteration (line 05), we store one C in O(f (n))
• Calls in lines 06 and 07 can reuse the same space

• Maximum depth of recursive call stack: log2 k

Overall space usage: O(f (n) · log k)

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 18 of 21

Simulating Nondeterministic Space-Bounded TMs

Input: TMM that runs in NSpace(f (n)); input word w of length n

Algorithm:

• ModifyM to have a unique accepting configuration Caccept:
when accepting, erase tape and move head to the very left

• Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)

• Return CanYield(Cstart,Caccept,k) with k = 2df (n)

Space requirements:
CanYield runs in space

O
(
f (n) · log k

)
= O

(
f (n) · log 2df (n)

)
= O(f (n) · df (n)) = O(f 2(n))

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 19 of 21

Simulating Nondeterministic Space-Bounded TMs

Input: TMM that runs in NSpace(f (n)); input word w of length n

Algorithm:

• ModifyM to have a unique accepting configuration Caccept:
when accepting, erase tape and move head to the very left

• Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)

• Return CanYield(Cstart,Caccept,k) with k = 2df (n)

Space requirements:
CanYield runs in space

O
(
f (n) · log k

)
= O

(
f (n) · log 2df (n)

)
= O(f (n) · df (n)) = O(f 2(n))

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 19 of 21

Did We Really Do It?

“Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)”

How does the algorithm actually do this?

• f (n) was not part of the input!

• Even if we knew f , it might not be easy to compute!

Solution: replace f (n) by a parameter ` and probe its value

(1) Start with ` = 1

(2) Check ifM can reach any configuration with more than ` tape cells
(iterate over all configurations of size ` + 1; use CanYield on each)

(3) If yes, increase ` by 1; goto (2)

(4) Run algorithm as before, with f (n) replaced by `

Therefore: we don’t need to know f at all. This finishes the proof. �

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 20 of 21

Did We Really Do It?

“Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)”

How does the algorithm actually do this?

• f (n) was not part of the input!

• Even if we knew f , it might not be easy to compute!

Solution: replace f (n) by a parameter ` and probe its value

(1) Start with ` = 1

(2) Check ifM can reach any configuration with more than ` tape cells
(iterate over all configurations of size ` + 1; use CanYield on each)

(3) If yes, increase ` by 1; goto (2)

(4) Run algorithm as before, with f (n) replaced by `

Therefore: we don’t need to know f at all. This finishes the proof. �

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 20 of 21

Did We Really Do It?

“Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)”

How does the algorithm actually do this?

• f (n) was not part of the input!

• Even if we knew f , it might not be easy to compute!

Solution: replace f (n) by a parameter ` and probe its value

(1) Start with ` = 1

(2) Check ifM can reach any configuration with more than ` tape cells
(iterate over all configurations of size ` + 1; use CanYield on each)

(3) If yes, increase ` by 1; goto (2)

(4) Run algorithm as before, with f (n) replaced by `

Therefore: we don’t need to know f at all. This finishes the proof. �

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 20 of 21

Did We Really Do It?

“Select d such that 2df (n) ≥ |Q| · n · f (n) · |Γ|f (n)”

How does the algorithm actually do this?

• f (n) was not part of the input!

• Even if we knew f , it might not be easy to compute!

Solution: replace f (n) by a parameter ` and probe its value

(1) Start with ` = 1

(2) Check ifM can reach any configuration with more than ` tape cells
(iterate over all configurations of size ` + 1; use CanYield on each)

(3) If yes, increase ` by 1; goto (2)

(4) Run algorithm as before, with f (n) replaced by `

Therefore: we don’t need to know f at all. This finishes the proof. �

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 20 of 21

Summary: Relationships of Space and Time

Summing up, we get the following relations:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime ⊆ NExpTime

We also noted P ⊆ coNP ⊆ PSpace.

Open questions:

• Is Savitch’s Theorem tight?

• Are there any interesting problems in these space classes?

• We have PSpace = NPSpace = coNPSpace.
But what about L, NL, and coNL?

{ the first: nobody knows (YCTBF); the others: see upcoming lectures

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 21 of 21

Summary: Relationships of Space and Time

Summing up, we get the following relations:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime ⊆ NExpTime

We also noted P ⊆ coNP ⊆ PSpace.

Open questions:

• Is Savitch’s Theorem tight?

• Are there any interesting problems in these space classes?

• We have PSpace = NPSpace = coNPSpace.
But what about L, NL, and coNL?

{ the first: nobody knows (YCTBF); the others: see upcoming lectures

Markus Krötzsch, 12th Nov 2018 Complexity Theory slide 21 of 21

	Space Complexity

