

Hannes Strass

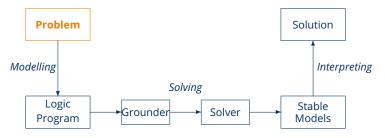
(based on slides by Martin Gebser & Torsten Schaub (CC-BY 3.0))

Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

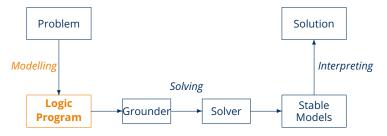
ASP: Computation and Characterisation

Lecture 12, 23rd Jan 2023 // Foundations of Logic Programming, WS 2022/23

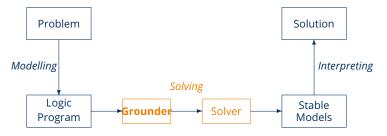
- The language of normal logic programs can be extended by constructs:
 - Integrity constraints for eliminating unwanted solution candidates
 - Choice rules for choosing subsets of atoms
 - Cardinality rules for counting certain present/absent atoms
- All of them can be translated back into normal logic program rules.
- The modelling methodology of ASP is generate and test:
 - Generate solution candidates, eliminate infeasible ones.



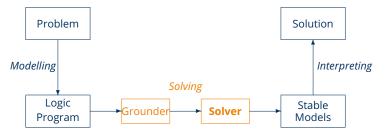
- The language of normal logic programs can be extended by constructs:
 - Integrity constraints for eliminating unwanted solution candidates
 - Choice rules for choosing subsets of atoms
 - Cardinality rules for counting certain present/absent atoms
- All of them can be translated back into normal logic program rules.
- The modelling methodology of ASP is generate and test:
 - Generate solution candidates, eliminate infeasible ones.



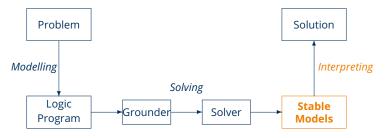
- The language of normal logic programs can be extended by constructs:
 - Integrity constraints for eliminating unwanted solution candidates
 - Choice rules for choosing subsets of atoms
 - Cardinality rules for counting certain present/absent atoms
- All of them can be translated back into normal logic program rules.
- The modelling methodology of ASP is generate and test:
 - Generate solution candidates, eliminate infeasible ones.



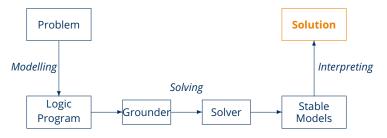
- The language of normal logic programs can be extended by constructs:
 - Integrity constraints for eliminating unwanted solution candidates
 - Choice rules for choosing subsets of atoms
 - Cardinality rules for counting certain present/absent atoms
- All of them can be translated back into normal logic program rules.
- The modelling methodology of ASP is generate and test:
 - Generate solution candidates, eliminate infeasible ones.



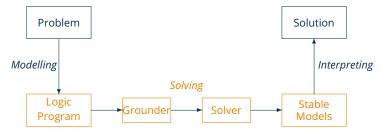
- The language of normal logic programs can be extended by constructs:
 - Integrity constraints for eliminating unwanted solution candidates
 - Choice rules for choosing subsets of atoms
 - Cardinality rules for counting certain present/absent atoms
- All of them can be translated back into normal logic program rules.
- The modelling methodology of ASP is generate and test:
 - Generate solution candidates, eliminate infeasible ones.



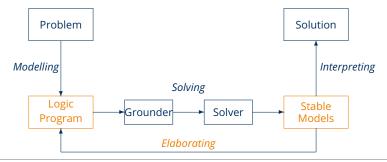
- The language of normal logic programs can be extended by constructs:
 - Integrity constraints for eliminating unwanted solution candidates
 - Choice rules for choosing subsets of atoms
 - Cardinality rules for counting certain present/absent atoms
- All of them can be translated back into normal logic program rules.
- The modelling methodology of ASP is generate and test:
 - Generate solution candidates, eliminate infeasible ones.



- The language of normal logic programs can be extended by constructs:
 - Integrity constraints for eliminating unwanted solution candidates
 - Choice rules for choosing subsets of atoms
 - Cardinality rules for counting certain present/absent atoms
- All of them can be translated back into normal logic program rules.
- The modelling methodology of ASP is generate and test:
 - Generate solution candidates, eliminate infeasible ones.



- The language of normal logic programs can be extended by constructs:
 - Integrity constraints for eliminating unwanted solution candidates
 - Choice rules for choosing subsets of atoms
 - Cardinality rules for counting certain present/absent atoms
- All of them can be translated back into normal logic program rules.
- The modelling methodology of ASP is generate and test:
 - Generate solution candidates, eliminate infeasible ones.



Overview

Computation
Consequence Operator
Computation from First Principles

Axiomatic Characterisation Completion Tightness Loops and Loop Formulas

Computation

Consequence Operator

Definition

Let *P* be a positive program and *X* a set of atoms.

The **consequence operator** T_P is defined as follows:

$$T_P(X) = \{head(r) \mid r \in P \text{ and } body(r) \subseteq X\}$$

Consequence Operator

Definition

Let *P* be a positive program and *X* a set of atoms.

The **consequence operator** T_P is defined as follows:

$$T_P(X) = \{head(r) \mid r \in P \text{ and } body(r) \subseteq X\}$$

Iterated applications of T_P are written as T_P^j for $j \ge 0$, where

- $T_P^0(X) = X$ and
- $T_P^i(X) = T_P(T_P^{i-1}(X))$ for $i \ge 1$

Consequence Operator

Definition

Let *P* be a positive program and *X* a set of atoms.

The **consequence operator** T_P is defined as follows:

$$T_P(X) = \{head(r) \mid r \in P \text{ and } body(r) \subseteq X\}$$

Iterated applications of T_P are written as T_P^j for $j \ge 0$, where

- $T_{P}^{0}(X) = X$ and
- $T_P^i(X) = T_P(T_P^{i-1}(X))$ for $i \ge 1$

For any positive program *P*, we have

- $Cn(P) = \bigcup_{i \geq 0} T_P^i(\emptyset)$
- $X \subseteq Y$ implies $T_P(X) \subseteq T_P(Y)$
- Cn(P) is the \subseteq -least fixpoint of T_P

Consider the program

$$P = \{p \leftarrow, q \leftarrow, r \leftarrow p, s \leftarrow q, t, t \leftarrow r, u \leftarrow v\}$$

Consider the program

$$P = \{ p \leftarrow, q \leftarrow, r \leftarrow p, s \leftarrow q, t, t \leftarrow r, u \leftarrow v \}$$

• We get

$$\begin{array}{llll} T_{P}^{0}(\emptyset) & = & \emptyset \\ T_{P}^{1}(\emptyset) & = & \{p,q\} & = & T_{P}(T_{P}^{0}(\emptyset)) & = & T_{P}(\emptyset) \\ T_{P}^{2}(\emptyset) & = & \{p,q,r\} & = & T_{P}(T_{P}^{1}(\emptyset)) & = & T_{P}(\{p,q\}) \\ T_{P}^{3}(\emptyset) & = & \{p,q,r,t\} & = & T_{P}(T_{P}^{2}(\emptyset)) & = & T_{P}(\{p,q,r\}) \\ T_{P}^{4}(\emptyset) & = & \{p,q,r,t,s\} & = & T_{P}(T_{P}^{3}(\emptyset)) & = & T_{P}(\{p,q,r,t\}) \\ T_{P}^{5}(\emptyset) & = & \{p,q,r,t,s\} & = & T_{P}(T_{P}^{4}(\emptyset)) & = & T_{P}(\{p,q,r,t,s\}) \\ T_{P}^{6}(\emptyset) & = & \{p,q,r,t,s\} & = & T_{P}(T_{P}^{5}(\emptyset)) & = & T_{P}(\{p,q,r,t,s\}) \end{array}$$

Consider the program

$$P = \{p \leftarrow, q \leftarrow, r \leftarrow p, s \leftarrow q, t, t \leftarrow r, u \leftarrow v\}$$

• We get

$$\begin{array}{llll} T_{P}^{0}(\emptyset) & = & \emptyset \\ T_{P}^{1}(\emptyset) & = & \{p,q\} & = & T_{P}(T_{P}^{0}(\emptyset)) & = & T_{P}(\emptyset) \\ T_{P}^{2}(\emptyset) & = & \{p,q,r\} & = & T_{P}(T_{P}^{1}(\emptyset)) & = & T_{P}(\{p,q\}) \\ T_{P}^{3}(\emptyset) & = & \{p,q,r,t\} & = & T_{P}(T_{P}^{2}(\emptyset)) & = & T_{P}(\{p,q,r\}) \\ T_{P}^{4}(\emptyset) & = & \{p,q,r,t,s\} & = & T_{P}(T_{P}^{3}(\emptyset)) & = & T_{P}(\{p,q,r,t\}) \\ T_{P}^{5}(\emptyset) & = & \{p,q,r,t,s\} & = & T_{P}(T_{P}^{4}(\emptyset)) & = & T_{P}(\{p,q,r,t,s\}) \\ T_{P}^{6}(\emptyset) & = & \{p,q,r,t,s\} & = & T_{P}(T_{P}^{5}(\emptyset)) & = & T_{P}(\{p,q,r,t,s\}) \end{array}$$

- $Cn(P) = \{p, q, r, t, s\}$ is the \subseteq -least fixpoint of T_P because
 - $T_P(\{p,q,r,t,s\}) = \{p,q,r,t,s\}$ and
 - $T_P(X)$ ≠ X for each $X \subset \{p, q, r, t, s\}$

First Idea

Approximate a stable model *X* by two atom sets *L* and *U* such that $L \subseteq X \subseteq U$

- L and U constitute lower and upper bounds on X
- *L* and (*A* \ *U*) describe a three-valued model of the program

First Idea

Approximate a stable model *X* by two atom sets *L* and *U* such that $L \subseteq X \subseteq U$

- L and U constitute lower and upper bounds on X
- *L* and (*A* \ *U*) describe a three-valued model of the program

Observation

 $L \subseteq U$ implies $P^U \subseteq P^L$ implies $Cn(P^U) \subseteq Cn(P^L)$

First Idea

Approximate a stable model X by two atom sets L and U such that $L \subseteq X \subseteq U$

- L and U constitute lower and upper bounds on X
- L and $(A \setminus U)$ describe a three-valued model of the program

Observation

$$L \subseteq U$$
 implies $P^U \subseteq P^L$ implies $Cn(P^U) \subseteq Cn(P^L)$

Properties

First Idea

Approximate a stable model X by two atom sets L and U such that $L \subseteq X \subseteq U$

- L and U constitute lower and upper bounds on X
- *L* and (*A* \ *U*) describe a three-valued model of the program

Observation

$$L \subseteq U$$
 implies $P^U \subseteq P^L$ implies $Cn(P^U) \subseteq Cn(P^L)$

Properties

Let *X* be a stable model of normal logic program *P*.

• If $L \subseteq X$,

First Idea

Approximate a stable model X by two atom sets L and U such that $L \subseteq X \subseteq U$

- L and U constitute lower and upper bounds on X
- *L* and (*A* \ *U*) describe a three-valued model of the program

Observation

$$L \subseteq U$$
 implies $P^U \subseteq P^L$ implies $Cn(P^U) \subseteq Cn(P^L)$

Properties

Let *X* be a stable model of normal logic program *P*.

• If $L \subseteq X$, then $X \subseteq Cn(P^L)$

First Idea

Approximate a stable model *X* by two atom sets *L* and *U* such that $L \subseteq X \subseteq U$

- L and U constitute lower and upper bounds on X
- L and (A\U) describe a three-valued model of the program

Observation

$$L \subseteq U$$
 implies $P^U \subseteq P^L$ implies $Cn(P^U) \subseteq Cn(P^L)$

Properties

- If $L \subseteq X$, then $X \subseteq Cn(P^L)$
- If $X \subseteq U$,

First Idea

Approximate a stable model X by two atom sets L and U such that $L \subseteq X \subseteq U$

- L and U constitute lower and upper bounds on X
- *L* and (*A* \ *U*) describe a three-valued model of the program

Observation

$$L \subseteq U$$
 implies $P^U \subseteq P^L$ implies $Cn(P^U) \subseteq Cn(P^L)$

Properties

- If $L \subseteq X$, then $X \subseteq Cn(P^L)$
- If $X \subseteq U$, then $Cn(P^U) \subseteq X$

First Idea

Approximate a stable model X by two atom sets L and U such that $L \subseteq X \subseteq U$

- L and U constitute lower and upper bounds on X
- *L* and (*A* \ *U*) describe a three-valued model of the program

Observation

$$L \subseteq U$$
 implies $P^U \subseteq P^L$ implies $Cn(P^U) \subseteq Cn(P^L)$

Properties

- If $L \subseteq X$, then $X \subseteq Cn(P^L)$
- If $X \subseteq U$, then $Cn(P^U) \subseteq X$
- If $L \subset X \subset U$,

First Idea

Approximate a stable model X by two atom sets L and U such that $L \subseteq X \subseteq U$

- L and U constitute lower and upper bounds on X
- L and (A\U) describe a three-valued model of the program

Observation

$$L \subseteq U$$
 implies $P^U \subseteq P^L$ implies $Cn(P^U) \subseteq Cn(P^L)$

Properties

- If $L \subseteq X$, then $X \subseteq Cn(P^L)$
- If $X \subseteq U$, then $Cn(P^U) \subseteq X$
- If $L \subseteq X \subseteq U$, then $L \cup Cn(P^U) \subseteq X \subseteq U \cap Cn(P^L)$

Second Idea

```
repeat

replace L by L \cup Cn(P^U)

replace U by U \cap Cn(P^L)

until L and U do not change anymore
```


Second Idea

```
repeat

replace L by L \cup Cn(P^U)

replace U by U \cap Cn(P^L)

until L and U do not change anymore
```

Observations

- At each iteration step
 - L becomes larger (or equal)
 - *U* becomes smaller (or equal)
- $L \subseteq X \subseteq U$ is invariant for every stable model X of P

Second Idea

```
repeat

replace L by L \cup Cn(P^U)

replace U by U \cap Cn(P^L)

until L and U do not change anymore
```

Observations

- At each iteration step
 - L becomes larger (or equal)
 - *U* becomes smaller (or equal)
- $L \subseteq X \subseteq U$ is invariant for every stable model X of P
- If $L \nsubseteq U$, then P has no stable model

Second Idea

```
repeat

replace L by L \cup Cn(P^U)

replace U by U \cap Cn(P^L)

until L and U do not change anymore
```

Observations

- At each iteration step
 - L becomes larger (or equal)
 - *U* becomes smaller (or equal)
- $L \subseteq X \subseteq U$ is invariant for every stable model X of P
- If $L \nsubseteq U$, then P has no stable model
- If L = U, then L is a stable model of P

The Simplistic expand Algorithm

```
 \begin{array}{l} \textbf{repeat} \\ L' \leftarrow L \\ U' \leftarrow U \\ L \leftarrow L' \cup Cn(P^{U'}) \\ U \leftarrow U' \cap Cn(P^{L'}) \\ \textbf{if } L \nsubseteq U \textbf{ then return} \\ \textbf{until } L = L' \textbf{ and } U = U' \\ \end{array}
```

The algorithm:

- tightens the approximation on stable models
- is stable model preserving

Consider
$$P = \left\{ \begin{array}{l} a \leftarrow \\ b \leftarrow a, \sim c \\ d \leftarrow b, \sim e \\ e \leftarrow \sim d \end{array} \right\}$$
 over atoms $A = \{a, b, c, d, e\}$.

Consider
$$P = \left\{ \begin{array}{l} a \leftarrow \\ b \leftarrow a, \sim c \\ d \leftarrow b, \sim e \\ e \leftarrow \sim d \end{array} \right\}$$
 over atoms $A = \{a, b, c, d, e\}$.

The **expand** algorithm – started on the trivial pair (\emptyset, A) – yields:

	L'	$Cn(P^{U'})$	L	U'	$Cn(P^{L'})$	U
1	Ø	{a}	{ <i>a</i> }	$\{a, b, c, d, e\}$	$\{a, b, d, e\}$	$\{a,b,d,e\}$
2	{ <i>a</i> }	{a,b}	{a,b}	$\{a, b, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$
3	{a, b}	{a,b}	{a, b}	$\{a, b, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$

Consider
$$P = \left\{ \begin{array}{l} a \leftarrow \\ b \leftarrow a, \sim c \\ d \leftarrow b, \sim e \\ e \leftarrow \sim d \end{array} \right\}$$
 over atoms $A = \{a, b, c, d, e\}$.

The **expand** algorithm – started on the trivial pair (\emptyset, A) – yields:

	L'	$Cn(P^{U'})$	L	U'	$Cn(P^{L'})$	U
1	Ø	{a}	{a}	$\{a, b, c, d, e\}$	$\{a,b,d,e\}$	{a, b, d, e}
2	{ <i>a</i> }	{ <i>a</i> , <i>b</i> }	{a,b}	$\{a, b, d, e\}$	$\{a, b, d, e\}$	$\{a, b, d, e\}$
3	{a, b}	$\{a,b\}$	{ <i>a</i> , <i>b</i> }	$\{a, b, d, e\}$	$\{a, b, d, e\}$	$\{a,b,d,e\}$

Note

We have $\{a,b\} \subseteq X$ and $(A \setminus \{a,b,d,e\}) \cap X = (\{c\} \cap X) = \emptyset$ for every stable model X of P.

Let us expand with $d \dots$

$$P = \left\{ \begin{array}{l} a \leftarrow \\ b \leftarrow a, \sim c \\ d \leftarrow b, \sim e \\ e \leftarrow \sim d \end{array} \right\}$$

Let us expand with $d \dots$

$$P = \left\{ \begin{array}{l} a \leftarrow \\ b \leftarrow a, \sim c \\ d \leftarrow b, \sim e \\ e \leftarrow \sim d \end{array} \right\}$$

	L'	$Cn(P^{U'})$	L	U'	$Cn(P^{L'})$	U
1	{ <i>d</i> }	{a}	{a, d}	$\{a, b, c, d, e\}$	{a,b,d}	{ <i>a</i> , <i>b</i> , <i>d</i> }
2	{a, d}	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$
3	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$

Let us expand with $d \dots$

$$P = \left\{ \begin{array}{l} a \leftarrow \\ b \leftarrow a, \sim c \\ d \leftarrow b, \sim e \\ e \leftarrow \sim d \end{array} \right\}$$

	L'	$Cn(P^{U'})$	L	U'	$Cn(P^{L'})$	U
1	{ <i>d</i> }	{a}	{a, d}	$\{a, b, c, d, e\}$	{a,b,d}	{a,b,d}
2	{a, d}	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$
3	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$	$\{a, b, d\}$

Note

 $\{a, b, d\}$ is a stable model of P.

Let us expand with $\sim d \dots$

$$P = \left\{ \begin{array}{l} a \leftarrow \\ b \leftarrow a, \sim c \\ d \leftarrow b, \sim e \\ e \leftarrow \sim d \end{array} \right\}$$

Let us expand with $\sim d \dots$

$$P = \left\{ \begin{array}{l} a \leftarrow \\ b \leftarrow a, \sim c \\ d \leftarrow b, \sim e \\ e \leftarrow \sim d \end{array} \right\}$$

	L'	$Cn(P^{U'})$	L	U'	$Cn(P^{L'})$	U
1	Ø	{a, e}	{a, e}	{a, b, c, e}	$\{a, b, d, e\}$	{a, b, e}
2	{a, e}	{a,b,e}	$\{a,b,e\}$	$\{a, b, e\}$	$\{a, b, e\}$	$\{a,b,e\}$
3	{a,b,e}	$\{a,b,e\}$	$\{a,b,e\}$	$\{a,b,e\}$	$\{a,b,e\}$	$\{a,b,e\}$

Let us expand with $\sim d \dots$

$$P = \left\{ \begin{array}{l} a \leftarrow \\ b \leftarrow a, \sim c \\ d \leftarrow b, \sim e \\ e \leftarrow \sim d \end{array} \right\}$$

	L'	$Cn(P^{U'})$	L	U'	$Cn(P^{L'})$	U
1	Ø	{a, e}	{a, e}	{a,b,c,e}	$\{a, b, d, e\}$	{a, b, e}
2	{a, e}	$\{a,b,e\}$	$\{a,b,e\}$	$\{a, b, e\}$	$\{a, b, e\}$	$\{a,b,e\}$
3	{a,b,e}	{a, b, e}	{a,b,e}	$\{a, b, e\}$	$\{a, b, e\}$	$\{a,b,e\}$

Note

 $\{a, b, e\}$ is a stable model of P.


```
solve_P(L, U)
(L, U) \leftarrow expand_P(L, U) \qquad // propagation
if L \nsubseteq U then failure \qquad // failure
if L = U then output L \qquad // success
else choose a \in U \setminus L \qquad // choice
solve_P(L \cup \{a\}, U)
solve_P(L, U \setminus \{a\})
```


- · Backtracking search building a binary search tree
- A node in the search tree corresponds to a three-valued interpretation

- Backtracking search building a binary search tree
- A node in the search tree corresponds to a three-valued interpretation
- The search space is pruned by
 - deriving deterministic consequences and detecting conflicts (expand)
 - making one choice at a time by appeal to a heuristic (choose)

- Backtracking search building a binary search tree
- A node in the search tree corresponds to a three-valued interpretation
- The search space is pruned by
 - deriving deterministic consequences and detecting conflicts (expand)
 - making one choice at a time by appeal to a heuristic (choose)
- Heuristic choices are made on atoms

Quiz: Solving

Quiz

. . .

Axiomatic Characterisation

- There exist sophisticated algorithms and efficient implementations for SATisfiability testing in propositional logic
- Can we harness these systems for answer set programming?

Question

Is there a propositional formula/theory F(P) such that the models of F(P) correspond one-to-one to the stable models of P?

- There exist sophisticated algorithms and efficient implementations for SATisfiability testing in propositional logic
- Can we harness these systems for answer set programming?

Question

Is there a propositional formula/theory F(P) such that the models of F(P) correspond one-to-one to the stable models of P?

Recall

• For every normal program *P*, there is a propositional theory *comp*(*P*) such that its models correspond one-to-one to the supported models of *P*.

- There exist sophisticated algorithms and efficient implementations for SATisfiability testing in propositional logic
- Can we harness these systems for answer set programming?

Question

Is there a propositional formula/theory F(P) such that the models of F(P) correspond one-to-one to the stable models of P?

Recall

- For every normal program *P*, there is a propositional theory *comp(P)* such that its models correspond one-to-one to the supported models of *P*.
- Every stable model is a supported model, but not vice versa.

- There exist sophisticated algorithms and efficient implementations for SATisfiability testing in propositional logic
- Can we harness these systems for answer set programming?

Question

Is there a propositional formula/theory F(P) such that the models of F(P) correspond one-to-one to the stable models of P?

Recall

- For every normal program *P*, there is a propositional theory *comp*(*P*) such that its models correspond one-to-one to the supported models of *P*.
- Every stable model is a supported model, but not vice versa.

 \sim Can we add a second theory T(P) such that the models of $comp(P) \cup T(P)$ correspond one-to-one to the stable models of P?

Program Completion: A Closer Look

The theory comp(P) is logically equivalent to $\overrightarrow{comp}(P) \cup \overrightarrow{comp}(P)$, where

$$\overleftarrow{comp}(P) = \left\{ a \leftarrow \bigvee_{B \in body_P(a)} BF(B) \mid a \in atom(P) \right\}$$

$$\overrightarrow{comp}(P) = \left\{ a \rightarrow \bigvee_{B \in body_P(a)} BF(B) \mid a \in atom(P) \right\}$$

$$body_P(a) = \left\{ body(r) \mid r \in P \text{ and } head(r) = a \right\}$$

$$BF(body(r)) = \bigwedge_{a \in body(r)^+} a \land \bigwedge_{a \in body(r)^-} \neg a$$

- comp(P) characterises the classical models of P.
- $\overrightarrow{comp}(P)$ characterises that all true atoms must be supported.
- — How to axiomatise that all true atoms must be well-supported?

$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

Example

$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

• *P* has 21 models, including $\{a, c\}$, $\{a, d\}$, but also $\{a, b, c, d, e, f\}$.

$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

- P has 21 models, including $\{a, c\}$, $\{a, d\}$, but also $\{a, b, c, d, e, f\}$.
- P has 3 supported models, namely $\{a, c\}$, $\{a, d\}$, and $\{a, c, e\}$.

$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

- P has 21 models, including $\{a, c\}$, $\{a, d\}$, but also $\{a, b, c, d, e, f\}$.
- *P* has 3 supported models, namely $\{a, c\}$, $\{a, d\}$, and $\{a, c, e\}$.
- P has 2 stable models, namely $\{a, c\}$ and $\{a, d\}$.

$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

- P has 21 models, including $\{a, c\}$, $\{a, d\}$, but also $\{a, b, c, d, e, f\}$.
- P has 3 supported models, namely $\{a, c\}$, $\{a, d\}$, and $\{a, c, e\}$.
- *P* has 2 stable models, namely $\{a, c\}$ and $\{a, d\}$.
- The model $\{a, c, e\}$ is not well-supported (stable) because e supports itself.

Example

$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

- *P* has 21 models, including $\{a, c\}$, $\{a, d\}$, but also $\{a, b, c, d, e, f\}$.
- *P* has 3 supported models, namely $\{a, c\}$, $\{a, d\}$, and $\{a, c, e\}$.
- *P* has 2 stable models, namely $\{a, c\}$ and $\{a, d\}$.
- The model $\{a, c, e\}$ is not well-supported (stable) because e supports itself.

Observation

Atoms in a strictly positive cycle (not being "supported from outside the cycle") cannot be "derived" from a program in a finite number of steps.

Definition

The **positive atom dependency graph** G(P) of a logic program P is given by $(atom(P), \{(a,b) \mid r \in P, a \in body(r)^+, head(r) = b\})$

A logic program *P* is called **tight** : \iff G(P) is acyclic.

Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

Theorem (Fages)

Definition

The **positive atom dependency graph** G(P) of a logic program P is given by $(atom(P), \{(a,b) \mid r \in P, a \in body(r)^+, head(r) = b\})$

A logic program P is called **tight** : \iff G(P) is acyclic.

Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

• $G(P) = (\{a, b, c, d, e\}, \{(a, c), (b, e), (e, e)\})$

Theorem (Fages)

Definition

The **positive atom dependency graph** G(P) of a logic program P is given by $(atom(P), \{(a,b) \mid r \in P, a \in body(r)^+, head(r) = b\})$

A logic program *P* is called **tight** : \iff *G*(*P*) is acyclic.

Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

$$a \rightarrow c$$
 d

•
$$G(P) = (\{a, b, c, d, e\}, \{(a, c), (b, e), (e, e)\})$$

$$b \rightarrow e \qquad f$$

Theorem (Fages)

Definition

The **positive atom dependency graph** G(P) of a logic program P is given by $(atom(P), \{(a,b) \mid r \in P, a \in body(r)^+, head(r) = b\})$

A logic program P is called **tight** : \iff G(P) is acyclic.

Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

- $G(P) = (\{a, b, c, d, e\}, \{(a, c), (b, e), (e, e)\})$
- P has supported models: {a, c}, {a, d}, and {a, c, e}
- *P* has stable models: $\{a, c\}$ and $\{a, d\}$

$b \rightarrow e \qquad f$

Theorem (Fages)

Question

Is there a propositional formula F(P) such that the models of F(P) correspond to the stable models of P?

Observation

Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models.

Idea

Add formulas prohibiting circular support of sets of atoms.

Circular support between atoms a and b is possible if a has a path to b and b has a path to a in the program's positive atom dependency graph.

Loops

Definition

Let *P* be a normal logic program with positive atom dependency graph G(P) = (atom(P), E).

That is, each pair of atoms in a loop L is connected by a path of non-zero length in $(L, E \cap (L \times L))$.

Observation

A program *P* is tight iff $loops(P) = \emptyset$.

Loops

Definition

Let *P* be a normal logic program with positive atom dependency graph G(P) = (atom(P), E).

A non-empty set L ⊆ atom(P) is a loop of P
 it induces a non-trivial strongly connected subgraph of G(P).

That is, each pair of atoms in a loop L is connected by a path of non-zero length in $(L, E \cap (L \times L))$.

Observation

A program *P* is tight iff $loops(P) = \emptyset$.

Loops

Definition

Let *P* be a normal logic program with positive atom dependency graph G(P) = (atom(P), E).

- A non-empty set L ⊆ atom(P) is a loop of P
 it induces a non-trivial strongly connected subgraph of G(P).
- We denote the set of all loops of *P* by *loops(P)*.

That is, each pair of atoms in a loop L is connected by a path of non-zero length in $(L, E \cap (L \times L))$.

Observation

A program *P* is tight iff $loops(P) = \emptyset$.

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

$$b \rightarrow e f$$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

$$a \rightarrow c$$
 d

•
$$loops(P) = \{\{e\}\}$$

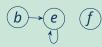
$$b \rightarrow e f$$

Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

$$a \rightarrow c$$
 d

• $loops(P) = \{\{e\}\}$



•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c \end{array} \right\}$$

Example

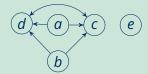
•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

$$a \rightarrow c$$
 d

• $loops(P) = \{\{e\}\}$

$$b \rightarrow e f$$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c \end{array} \right\}$$

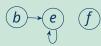


Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

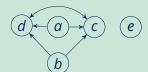
$$a \rightarrow c$$
 d

• $loops(P) = \{\{e\}\}\$



Example

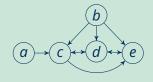
•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c \end{array} \right\}$$



• $loops(P) = \{\{c, d\}\}$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

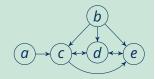
•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$



Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

• $loops(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$



Definition

Let *P* be a normal logic program.

• For $L \subseteq atom(P)$, define the **external supports** of L for P as

$$ES_P(L) := \{r \in P \mid head(r) \in L \text{ and } body(r)^+ \cap L = \emptyset\}$$

Definition

Let *P* be a normal logic program.

• For $L \subseteq atom(P)$, define the **external supports** of L for P as

$$ES_P(L) := \{r \in P \mid head(r) \in L \text{ and } body(r)^{\dagger} \cap L = \emptyset\}$$

• Define the **external bodies** of *L* in *P* as $EB_P(L) := body(ES_P(L))$.

Definition

Let *P* be a normal logic program.

• For $L \subseteq atom(P)$, define the **external supports** of L for P as

$$ES_P(L) := \{r \in P \mid head(r) \in L \text{ and } body(r)^{\dagger} \cap L = \emptyset\}$$

- Define the **external bodies** of *L* in *P* as $EB_P(L) := body(ES_P(L))$.
- The (disjunctive) loop formula of L for P is

$$LF_{P}(L) := \left(\bigvee_{\alpha \in L} \alpha\right) \to \left(\bigvee_{B \in EB_{P}(L)} BF(B)\right) \equiv \left(\bigwedge_{B \in EB_{P}(L)} \neg BF(B)\right) \to \left(\bigwedge_{\alpha \in L} \neg \alpha\right)$$

Definition

Let *P* be a normal logic program.

• For $L \subseteq atom(P)$, define the **external supports** of L for P as

$$ES_P(L) := \{r \in P \mid head(r) \in L \text{ and } body(r)^{\dagger} \cap L = \emptyset\}$$

- Define the **external bodies** of *L* in *P* as $EB_P(L) := body(ES_P(L))$.
- The (disjunctive) loop formula of L for P is

$$\mathit{LF_P(L)} := \left(\bigvee_{\alpha \in \mathit{L}} \alpha \right) \to \left(\bigvee_{B \in \mathit{EB}_P(\mathit{L})} \mathit{BF(B)} \right) \equiv \left(\bigwedge_{B \in \mathit{EB}_P(\mathit{L})} \neg \mathit{BF(B)} \right) \to \left(\bigwedge_{\alpha \in \mathit{L}} \neg \alpha \right)$$

• Define $LF(P) := \{LF_P(L) \mid L \in loops(P)\}.$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

$$b \rightarrow e f$$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

- $loops(P) = \{\{e\}\}$
- $LF(P) = \{e \rightarrow b \land \neg f\}$

$$b \rightarrow e f$$

Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

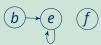
- $loops(P) = \{\{e\}\}\$
- $LF(P) = \{e \rightarrow b \land \neg f\}$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c \end{array} \right\}$$

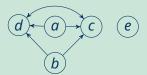
Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

- $loops(P) = \{\{e\}\}$
- $LF(P) = \{e \rightarrow b \land \neg f\}$



•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c \end{array} \right\}$$



Example

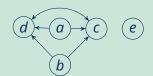
•
$$P = \left\{ \begin{array}{ll} a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e \end{array} \right\}$$

 $a \rightarrow c$ d

- $loops(P) = \{\{e\}\}$
- $LF(P) = \{e \rightarrow b \land \neg f\}$

$$b \rightarrow e f$$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c \end{array} \right\}$$



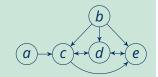
- $loops(P) = \{\{c, d\}\}$
- $LF(P) = \{c \lor d \rightarrow (a \land b) \lor a\}$

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

Example

•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

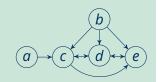
• $loops(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$



•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

•
$$loops(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$$

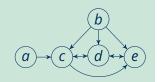
•
$$LF(P) = \left\{ \begin{array}{l} c \lor d \to a \lor e \\ d \lor e \to (b \land c) \lor (b \land \neg a) \\ c \lor d \lor e \to a \lor (b \land \neg a) \end{array} \right\}$$



•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

•
$$loops(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$$

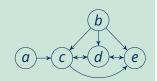
•
$$LF(P) = \left\{ \begin{array}{l} c \lor d \to a \lor e \\ d \lor e \to (b \land c) \lor (b \land \neg a) \\ c \lor d \lor e \to a \lor (b \land \neg a) \end{array} \right\}$$



•
$$P = \left\{ \begin{array}{ll} a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d \end{array} \right\}$$

•
$$loops(P) = \{\{c, d\}, \{d, e\}, \{c, d, e\}\}$$

•
$$LF(P) = \left\{ \begin{array}{l} c \lor d \to a \lor e \\ d \lor e \to (b \land c) \lor (b \land \neg a) \\ c \lor d \lor e \to a \lor (b \land \neg a) \end{array} \right\}$$



Lin-Zhao Theorem and Properties

Theorem (Lin and Zhao, 2004)

Let *P* be a normal logic program and $X \subseteq atom(P)$. Then:

X is a stable model of *P* iff $X \models comp(P) \cup LF(P)$.

Lin-Zhao Theorem and Properties

Theorem (Lin and Zhao, 2004)

Let *P* be a normal logic program and $X \subseteq atom(P)$. Then:

X is a stable model of *P* iff $X \models comp(P) \cup LF(P)$.

Properties of Loop Formulas

Let X be a supported model of normal LP P. Then, X is a stable model of P iff

- $X \models \{LF_P(U) \mid U \subseteq atom(P)\};$
- $X \models \{LF_P(U) \mid U \subseteq X\};$
- $X \models \{LF_P(L) \mid L \in loops(P)\}$, that is, $X \models LF(P)$;
- $X \models \{LF_P(L) \mid L \in loops(P) \text{ and } L \subseteq X\}.$
- If supported X is not stable for P, there is a loop $L \subseteq X \setminus Cn(P^X)$ with $X \not\models LF_P(L)$.
- There might be exponentially many loop formulas.
- Blowup seems to be unavoidable in general [Lifschitz and Razborov, 2006].

Conclusion

Summary

• The stable models of P can be approximated using the operator T_P :

$$(L, U) \leadsto (L \cup \bigcup_{i \geq 0} T^i_{P^U}(\emptyset), U \cap \bigcup_{i \geq 0} T^i_{P^L}(\emptyset))$$

- Solving may use non-deterministic choice, propagation, and backtracking.
- Supported non-stable models are caused by loops in the program.
- A **loop** is a non-empty set of atoms that mutually depend on each other.
- The **loop formulas** *LF(P)* of *P* enforce that every support is well-founded.
- The stable models of *P* can be characterised by $comp(P) \cup LF(P)$.

Suggested action points:

- Prove the properties on Slide 7.
- Try the algorithm on Slide 13 for some example programs.

Course Summary

- LPs are a declarative language for knowledge representation and reasoning.
- PROLOG-based logic programming focuses on theorem proving.
- PROLOG is also a programming language (via non-logical side effects).
- For definite LPs, SLD resolution is a sound and complete proof theory.
- For normal LPs, SLDNF resolution is sound and (sometimes) complete.
- Stable models are recognised as the "standard" semantics for normal LPs.
- ASP-based logic programming focuses on model generation.
- ASP is a modelling language for problem solving.
- Its modelling methodology is based on the generate-and-test paradigm.
- ASP solvers can make use of technology from propositional satisfiability.

