
Technische Universität Dresden

Fakultät Informatik

Master Thesis

Software Implementation for Taxonomy
Browsing and Ontology Evaluation for the case

of Wikidata

Author:

Serghei Stratan

Supervisor:

Dr. Markus Krötzsch

InternationalMaster in Computational Logic

March 2016

https://ddll.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch
http://www.computational-logic.org/

Declaration

I hereby declare, that except where specific reference is made to the work of others, the contents

of this thesis are original and have not been submitted in whole, or in part to obtain a degree or

any other qualification neither in this nor in any other university. This thesis is my own work

and contains nothing which is the outcome of work done in collaboration with others, except as

specified in the text. No other resources apart from the references and auxiliary means indicated

in the bibliography were used in the development of the presented work.

(Place, Date) Serghei Stratan
Matriculation number : 4024771

iii

Abstract

Ontologies represent one of the basic elements in the Semantic Web. They contain background

knowledge represented by relevant terms and formal relations between them, so that machines

can read it automatically. Ontologies on the Semantic Web come from a vast variety of different

sources, spanning institutions, and persons aiming for different goals and quality criteria.

Measuring some of the aspects of ontologies, enables us to answer the question: “How to assess

the quality of an ontology on the Web?”. The ontology evaluation task is essential for a wide

adoption of ontologies, in the Semantic Web and in other semantically enabled technologies.

The Wikidata project, being a part of a big Wikimedia family, is widely known for its data that is

provided freely to the public. The data is structured and stored in a web ontology. This ontology

has turned immediately into a resource of big value, with a large range of potential applications

across all areas of science, technology, and culture. Unfortunately, at the moment there is no

possibility to assess the quality of the Wikidata ontology.

We have chosen Wikidata as a basic scenario for implementation of an automated system which

would allow to browse the class hierarchy contained in the Wikidata ontology. The class hier-

archy is created by the class entities and two properties (‘subclass of’ and ‘instance of’) which

denote relations between classes. Besides the Wikidata taxonomy browser, additionally we im-

plemented a component for ontology evaluation, which shows how the quality of the Wikidata

ontology is assessed for several evaluation criteria.

Contents

Contents vii

1 Introduction 1
1.1 Motivation . 2
1.2 Outline . 2

2 Preliminaries 5
2.1 The Semantic Web . 5

2.1.1 Taxonomy . 6
2.1.2 Ontologies . 7
2.1.3 OWL . 8

2.1.3.1 Semantics . 10
2.1.3.2 Entities . 10
2.1.3.3 Axioms . 12

2.2 Wikidata . 13
2.2.1 The Wikidata Repository . 14
2.2.2 The Wikidata Statements . 16

2.3 Ontology Evaluation . 18
2.3.1 Criteria . 19
2.3.2 Methods . 21

3 Application Design 23
3.1 Components and Functionality . 23
3.2 User Stories . 25
3.3 Relation Properties Patterns and Examples . 25

4 Implementation 31
4.1 Architecture and Technical Details . 31
4.2 Components . 34
4.3 Algorithms . 36

4.3.1 Cycles Detection . 36
4.3.2 Self-loops Detection . 37
4.3.3 Errors Detection for Relation Properties 37
4.3.4 Redundancies Detection for Relation Properties 39
4.3.5 Identifing classes which have more than 100 direct subclasses 39
4.3.6 Root Classes . 40

5 Evaluation 41

vii

Contents viii

5.1 Performance . 41
5.1.1 The Frontend Component Performance Testing 41
5.1.2 The Backend Component Performance Testing 44

5.2 Technical Problems . 45
5.3 What we’ve learned about the Wikidata Ontology 45
5.4 Feedback . 46

6 Conclusions 49
6.1 Related Work . 50
6.2 Future Work . 50

6.2.1 Open Issues and Optimization . 51
6.2.2 Extensions . 51

Bibliography 51

Chapter 1

Introduction

In the last years, Semantic Web Technologies gave possibility to develop tools which are eas-

ily accessible and usable by users, providing access to different web resources and their shared

knowledge. This infrastructure is based mainly on formal domain models (ontologies) that are

linked to each other on the Web. These ontologies provide the applications with shared termi-

nologies and understandings. The World Wide Web Consortium (W3C) standardized the Web

Ontology Language (OWL) as the standard format in which ontologies are represented online

[McGuinness and van Harmelen, 2004]. It is designed to enable domain experts to express their

domain knowledge in a precise and sharable manner via the Web in order to provide machine

accessible knowledge content.

Ontologies are the main component in the emerging Semantic Web [Cruz et al., 2002]. They

are used to share the knowledge by expressing relevant concepts and the relation between them.

Providing formal semantics to contained terms enables machines to process the knowledge auto-

matically and to understand it. Ontologies allow not only to understand the meaning of the data

that is being exchanged by the machines, but also allow sharing and formalization of different

conceptualizations by humans.

The importance of ontologies in the Semantic Web makes the ontology evaluation task very

important [Vrandečić, 2010]. Ontologies can contain a lot of mistakes and omissions that can

lead to difficulties in processing the data. Good ontologies make possible to reuse the knowledge

in a simpler way for a large number of applications.

This thesis mainly discusses the designing techniques applicable for a taxonomy browser appli-

cation and evaluation of Web ontologies, i.e. ontologies specified in the standard Web Ontology

Language (OWL) and published on the Web, so that they can be used and extended in ways not

expected by the creators of the ontology.

1

Chapter 1. Introduction 2

1.1 Motivation

An example of a large Web ontology is the Wikidata ontology. Today, the Wikidata project

represents a central storage for the structured data of its Wikimedia1 sister projects [wik, Dec,

2015]. The knowledge from a very large range of areas is contained in one of the biggest

ontologies available on the web which is accesible freely by the public. The data is entered and

maintained by thousands of the Wikidata editors, and of course, nobody can guarantee the good

quality of this ontology.

To help editors from the Wikidata community to understand the Wikidata ontology and to repre-

sent graphically the contained class hierarchy, we decided to build a system which would allow

them to visualize the class hierarchy as a graph and to browse the taxonomy.

On the other side, we have noticed the absence of some methods and automated tools which

would allow users and editors to verify the quality of the Wikidata ontology. Therefore, this

motivated us to design and develop an additional component to the main application which

would give possibility to evaluate the ontology for several criteria.

1.2 Outline

In short, readers who know Semantic Web and web ontologies in particular, and who are also

familiar with the Wikidata project, can safely skip Chapter 2. We start with our application

design and implementation in Chapter 3, together with the subsequent chapters represent the

core work of this thesis.

Chapter 2 gives necessary preliminaries and terminology for understanding the rest of the the-

sis. We start with describing what are taxonomies (Section 2.1.1) and ontologies (Section 2.1.2).

We continue with Section 2.1.3 where we define the Web Ontology Language (OWL) and its se-

mantics. In the following section, we introduce the Wikidata project and its ontology (Section

2.2). In the last Section 2.3, we talk about ontology evaluation, criteria, and methods that we

use in our application.

Chapter 3 introduces the developed application for taxonomy browsing and ontology evaluation

for the case of Wikidata which constitute the main practical contribution of this thesis. We briefly

outline the basic structure and components of the application in Section 3.1. Then we specify the

general user stories in Section 3.2, that we have used in the software development process. In the

same section, we describe all functionalities and features that have been implemented in the final

application. In Section 3.3 we describe the errors and redundancies from the Wikidata ontology,

1 https://wikimediafoundation.org/wiki/Home

Chapter 1. Introduction 3

which are created by the incorrect use of the entity relation properties, and generalize them

into distinctive patterns. These patterns will be used in the automation of ontology evaluation

process.

Chapter 4 presents the architecture of the developed system (Section 4.1), together with a short

description of its components (Section 4.2). The main algorithms for the ontology evaluation

are shown in Section 4.3, together with a short explanation of their implementation.

Chapter 5 shows an initial evaluation of the system for runtime performance (Section 5.1).

Then we talk about the problems that we encountered during the developing process (Section

5.2), and what we have learned from the Wikidata ontology evaluation (Section 5.3). Finally we

present some of the users’ feedback that we received after the official launch of the application

to the Wikidata community and its usability (Section 5.4).

Chapter 6 provides a retrospective summary, leading to some general conclusions and assess-

ment of our work. We conclude with an overview on the related work, in Section 6.1, and lastly

present an outlook in Section 6.2 on potential future work and application improvements.

Chapter 2

Preliminaries

In this chapter is introduced the preliminary materials necessary for the reader to understand the

theoretical background of the whole thesis. We start with defining what is a taxonomy (Sec-

tion 2.1.1), then continue with defining ontologies and explaining their basic elements (Section

2.1.2). We continue with Section 2.1.3 where we describe the Web Ontology Language (OWL)

and its semantics. In the following section, we introduce the Wikidata project, explain how the

data is structured in its web ontology, and which entity’s statements will be used in the following

(Section 2.2). In the last Section 2.3, we talk about the ontology evaluation, and what evaluation

criteria and methods are applicable in our case.

2.1 The Semantic Web

The goal of the Semantic Web initiative is to provide a description of the content and the ability

to create and to access different web resources that can be read by machines.

The Semantic Web, which is also known as Web of Data, is actually an extension of the World

Wide Web. It has similar goals with the Web in general: to make the knowledge widely accessi-

ble and to increase the utility of this knowledge by enabling advanced applications for searching,

browsing, and evaluation [Berners-Lee et al., 2001].

Ontologies plays a central role in the process of sharing the knowledge between different sys-

tems and within the systems by the various components. Ontologies are defined as “explicit

specification of a conceptualization1” by [Gruber, 1993]. Since they define the formal seman-

tics of the terms and the relations between them, ontologies ensure the meaning of the shared

data to be consistent.
1 A conceptualization is way of thinking about part of the world.

5

Chapter 2. Preliminaries 6

2.1.1 Taxonomy

To make the knowledge readable automatically by machines, first it needs to be structured.

Taxonomies provide a specific representation relationship between different semantic entities.

These information entities are presented in the taxonomies in the form of hierarchies, which are

generated based on the presumed connections of the real-world entities.

According to [Daconta et al., 2003], a taxonomy is defined as a classification2. A taxonomy

organizes the information entities hierarchically based on a special relation between them. The

special relation is represented by ‘subclass of’ relationship which denotes the subsumption re-

lation and is similar to OWL’s SubClassOf construct that is explained later in Section 2.1.3.

The information entities are defined as classes of objects, where a class is a collection of objects

which have the same characteristics.

In the most cases, a taxonomy is represented graphically as a graph. In Figure 2.1 we can see an

excerpt of hierarchical taxonomy contained in the Wikidata ontology, represented as a directed

graph. The example includes the class Star and its subclasses of Giant star and Supernova, and

its superclass of Astronomical Object. We can see that the root class for this example is the

Entity class.

Figure 2.1: Taxonomy example from Wikidata (November, 2015).

The edges in the graph represent the ‘subclass of’ relations between classes. Following the

direction of the edges in the graph, we can infer the relevance of the information entities in the

2 the act of establishing groupings based on ways that they are alike

Chapter 2. Preliminaries 7

semantical representation. The class entities at the top of the taxonomy are more general than

the class entities situated on a lower level in the hierarchy. This representation helps to classify

the information entities semantically according to their real-world representation.

The most usual use of a taxonomy is the possibility to browse and navigate the information enti-

ties contained in it. Taxonomies do not allow to add some additional attributes to the information

entities [Breitman et al., 2007]. Hence, it is necessary to use the ontologies if this is required.

2.1.2 Ontologies

An ontology, as it is defined by [Gruber, 1993], is a formal specification of a shared conceptu-

alisation of a domain of interest. It means that this formal specification should be interpretable

by machines and shared between them based on some consensus.

An ontology is a representation of the knowledge from a particular area of interest that is corre-

sponding to a human representation of that domain. The knowledge is represented by concepts

and relationships between these concepts. The concepts describe the meaning of the knowledge

from any area of interest.

The modern ontologies have similar structure based on the language that is used to express them.

The most of ontologies describe individuals, classes, and properties:

• Individuals: instances or objects (basic or “ground level” objects);

• Classes: sets, collections, concepts, types of objects, or kinds of things;

• Properties: mainly represent the relationships between objects (and classes).

Within this thesis we regard only Web ontologies that are encoded in a standardized Semantic

Web ontology language.

Different expressive representation languages are used to model complex ontologies which cap-

ture the knowledge from a specific domain. Based on this, we can do logical reasoning on them

to get the knowledge contained within modeled ontologies.

OWL (Web Ontology Language) is a W3C recommended standard for the modeling of ontolo-

gies. For a detailed description of OWL, see Section 2.1.3.

An ontology is represented as a set of axioms that are stated in the web ontology language OWL.

In Sections 2.1.3.2 and 2.1.3.3, we describe the available types of entities, followed by the types

of axioms which consist the basic elements of an ontology.

Chapter 2. Preliminaries 8

2.1.3 OWL

The Web Ontology Language OWL extends RDF3 and RDFS4. The most important task of it is

to bring the expressive and reasoning power of Description Logic5 to the Semantic Web. Since

2004, OWL is a W3C recommended standard for the modelling of ontologies [McGuinness and

van Harmelen, 2004]. OWL was designed to simplify ontology development and to share the

ontology via the Web.

Since 2009, the working group of World Wide Web Consortium proposed a major extension of

the original version of the Web Ontology Language OWL. The next revision of OWL was called

OWL 2 [Group, 2012].

OWL 2 comes with three different profiles. The OWL 2 Profiles represent sublanguages (or

syntactic subsets) of OWL 2 that offer some expressive power for the efficiency of reasoning.

The following description of OWL 2 Profiles is taken from [Motik et al., 2012a]:

• OWL 2 EL
– used for ontologies with very large number of properties and/or classes,

– computational complexity: Polynomial to the size of ontology,

– is a part of EL family of Description Logics, that supports only Existential quanti-

fiers.

• OWL 2 QL
– used for large volumes of instance data,

– orientated for query answering,

– implemented using conventional relational database systems,

– the expression power is limited,

– implemented by rewriting queries into a standard relational Query Language.

• OWL 2 RL
– less expressible,

– orientated for rule-based reasoning,

– computational complexity: Polynomial to the size of ontology,

– implemented using a standard Rule Language.

Besides the OWL 2 Profiles, the web ontology language has two semantic specifications that

define the meaning of OWL 2 ontologies: OWL 2 Direct Semantics and OWL 2 RDF-Based
Semantics. To help reasoners and other automated tools to answer class consistency, subsump-

tion, and instance retrieval queries, these two semantics are used. The OWL 2 Direct Semantics

3 http://www.w3.org/RDF
4 http://www.w3.org/TR/rdf-schema
5 a family of formal knowledge representation languages

Chapter 2. Preliminaries 9

is shortly explained later in Section 2.1.3.1. For a detailed description of both semantics, please

refer to the [Group, 2012].

In comparison to the first version of OWL language, OWL 2 adds the following new function-

alities [Group, 2012]:

• keys;

• property chains;

• richer datatypes, data ranges;

• qualified cardinality restrictions;

• asymmetric, reflexive, and disjoint properties;

• enhanced annotation capabilities.

OWL collects the information into ontologies and then store them as documents. Each of these

OWL documents contain ontology headers (generally not more than one), class axioms, property

axioms, and facts about individuals [Smith et al., 2004].

Throughout this thesis we are using the OWL 2 Functional Syntax [Group, 2012] for defining

axioms and thus ontology itself. We chose this syntax because it is easy to read and very concise.

The basic elements of OWL are classes, properties, and individuals (declared as instances of

classes). Classes are defined in OWL 2 Functional Syntax as following:

Declaration(Class(Pizza))

From the example above, we can see that a new class is declared with the name Pizza which

can be used later to reference to that class.

In OWL exist two classes which are predefined, called owl:Thing and owl:Nothing. The

class owl:Thing is considered the most general class in the ontology, and every individual is

an instance of that class. The class owl:Nothing does not have instances at all.

Individuals can be defined as instances of classes. This is called class assertion.

ClassAssertion(Pizza pizzaMargherita)

OWL contains two different types of properties: object properties and data properties. The

object properties connect pairs of individuals. The data properties connect individuals with data

values (literals), i.e. with elements of datatypes. Properties are declared similarly as classes.

Declaration(ObjectProperty(hasIngredients))

Declaration(DataProperty(size))

The first declaration is an object property declaration and expresses which ingredients a given

pizza has. The second one is a data property declaration which assignes a size to a pizza.

Chapter 2. Preliminaries 10

From the representation below we can see, an individual called pizzaMargherita is declared

as instance to the previously declared class Pizza. Also, it assignes two types of ingredients to

it: cheese and tomato, and a value "large"ˆˆxsd:string to the size property.

ClassAssertion(Pizza pizzaMargherita)

ObjectPropertyAssertion(hasIngredients pizzaMargherita cheese)

ObjectPropertyAssertion(hasIngredients pizzaMargherita tomato)

DataPropertyAssertion(size pizzaMargherita "large"ˆˆxsd:string)

If there are multiple declared classes in the ontology, then they can be put in a relation to each

other. For more details about the class inclusion and other types of relationships, please see

Section 2.1.3.3.

Every individual in OWL is a member of the class owl:Thing. Thus each defined class is

implicitly a subclass of owl:Thing, and the predefined class owl:Nothing is a subclass of

every other class [Smith et al., 2004].

2.1.3.1 Semantics

This section specifies the direct model-theoretic semantics of OWL 2 ontologies as it is presented

in [Group, 2012]. The given semantics is close related to the semantics of Description Logics

and especially it “extends the semantics of the description logic SROIQ” [Motik et al., 2012b].

In order to define a formal semantics, we consider interpretation6 I that consists of a non-empty

set ∆I (the domain of the interpretation) and a mapping function ·I [Baader et al., 2003]. An

axiom or an ontology is satisfied in this given interpretation I = (∆I, ·I), if the appropriate

conditions hold to each axiom type [Motik et al., 2012b].

Table 2.1 describes a very small part of OWL 2 axiom types and their direct set semantics which

are relevant for the case of the Wikidata ontology. Table 2.1 is compiled from [Motik et al.,

2012b]. To see the complete list of axiom types for OWL 2, please see the original source.

2.1.3.2 Entities

As it is defined in [Group, 2012], entities are the essential element of structural representation

of OWL 2 ontologies. They use to define the named terms of an ontology which then form the

vocabulary7 of it.

6 “an assignment of meaning to the symbols of a formal language”
7 a set of URI references

Chapter 2. Preliminaries 11

Table 2.1: Semantics of OWL 2 axioms, relevant to Wikidata

Functional syntax Set semantics

ClassAssertion(C a) aI ∈ CI

PropertyAssertion(R a b) (aI, bI) ∈ RI

SubClassOf(C D) CI ⊆ DI

EquivalentClasses(C D)∗ CI = DI

TransitiveProperty(R) (aI, bI) ∈ RI ∧ (bI, cI) ∈ R→ (aI, cI) ∈ RI

where a, b, c ∈ NI are individual names, C, D ∈ C are concepts, R ∈ R is a role. The axiom
type noted with ∗ may hold more than the given parameters.

In OWL 2, ontology entities are defined as individuals, classes, properties (data properties and

object properties), or ontologies etc. For a complete list of entity types, please refer to the

original source [Group, 2012].

Individuals represent the actual objects from the domain. There are two types of individuals

which can be given by their name or defined as anonymous individuals. An individual can

be any entity with an identity (otherwise it would not be possible to identify that entity with

an identifier). An anonymous individual does not have a global name and is thus local to the

ontology where it is contained. This means that the individual can not be identified directly from

outside of the given ontology.

A class can be understood as sets of individuals. A class is defined by a class expression. It can

be a class name or a complex class description. A class name is just the name, i.e. an IRI of a

class. Class names do not have any formal information about the defined class.

The property expressions define the properties. Usually, the most simple property expressions

are just property names. Properties can be of two types: object properties or data properties.

Object properties connect two individuals with each other. Data properties connect an indi-

vidual with a data value. Section 2.1.3 provides an example how the property expressions are

declared and used in the ontology.

Besides entities, OWL 2 ontologies can also contain literals of string or integer types. A data

value is represented by a literal which is the syntactic representation of a concrete value. A

datatype map gives a mapping between the literal and the data value. For example, the typed

literal "7"ˆˆxsd:int is mapped to the number 7 and the literal "7"ˆˆxsd:string is mapped

to the string ‘7’.

Chapter 2. Preliminaries 12

2.1.3.3 Axioms

In the following, we will describe one of the important components of any ontology. The main

definitions and explanations are based on the official recommendations of W3C group which can

be found in more details on [McGuinness and van Harmelen, 2004, Smith et al., 2004, Group,

2012].

The basic element of the knowledge within an ontology is an axiom. OWL contains different

type of axioms, such as facts (or assertions), terminological axioms, and annotations. There are

more types of axioms defined in OWL 2, but we will not refer to them in this thesis since they

are not relevant for the Wikidata project. The complete list is available on [Group, 2012].

A fact is defined as a class assertion, an object property assertion, or a data property assertion.

An instantiation or class assertion is declared in the following way:

ClassAssertion(C a)

where C is a class expression and a being an individual name. This declaration can also say

that a has the type C. If to explain it semantically, then the individual named with a is in the

extension of the defined set C.

An object property assertion has the form:

PropertyAssertion(R a b)

where a and b are individual names and R is an object property assertion. This axiom allows to

state that individual a is connected by an object property expression R to an individual b, e.g.

saying that “Paris is the capital of France”. In this example, Paris and France are individual

names, and capital is the name of the property that holds between them. The relation is defined

as the instantiation of this property. Semantical definition of this declaration means that the tuple

(a, b) is in the extension of the set R.

A data property assertion is declared almost the same as an object property assertion:

PropertyAssertion(R a v)

Data property assertion axiom allows to state that an individual a is connected by a data property

expression R to a literal v.

A terminological axiom is defined as a class axiom or a property axiom. OWL 2 has axioms

that allow relationships to be established between different class expressions. Class axiom can

either be a subsumption, class equivalence, disjoint, or disjoint union.

In OWL 2 a subsumption relation is declared in the following way:

SubClassOf(C D)

Chapter 2. Preliminaries 13

where C (the subclass) and D (the superclass) are class expressions. This subsumption means

that every individual of the class C is also an individual of the class D. The SubClassOf axiom

allows to construct a hierarchy of classes. For example,

SubClassOf(Bread Food)

SubClassOf(FlatBread Bread)

SubClassOf(Pizza FlatBread)

From this example we can infer that the class Pizza is a subclass of Food .

In the same way in OWL 2 are defined EquivalentClasses and DisjointClasses axioms.

For a complete description, please refer to [Hitzler et al., 2012].

In OWL applications is often necessary some possibilities to associate additional details with

ontologies, entities, and axioms. In this way are defined annotations which connect an element

by an annotation property with an annotation value. These elements can be defined as entities,

ontologies, or axioms. An annotation adds further information about the elements. The most

broadly used annotation is rdf:label. In this way a human-readable label is connected with

an element.

2.2 Wikidata

In this section we will describe the most relevant things about the Wikidata project, some details

about how the contained data is structured in the Wikidata ontology, and which are the main

components of this ontology. The following information is reproduced from different official

project documentation sources [Introduction, Dec, 2015], [Items, Dec, 2015], [Data, Dec, 2015]

and is presented here in a short form.

“Wikidata is a free linked database that can be read and edited by both humans and machines”

[wik, Dec, 2015]. Wikidata is storing the structured data of its Wikimedia sister projects, such

as Wikipedia, Wikivoyage, Wikisource etc., and plays an important role. It has become a good

source of verified knowledge for many other sites and services besides the Wikimedia projects.

Its content is available under a free license, which gives possibility to download it freely in

different data formats.

Until today, almost every Wikipedia page in any available language is linked with a similar page

from Wikidata. The same as Wikipedia, Wikidata incorporates a very large range of knowledge

that is applicable in different areas. All the data is permanently edited and supplied by users

from Wikimedia community, making it new and original.

According to [Krötzsch and Vrandečić, 2014] the Wikidata project can be characterized:

Chapter 2. Preliminaries 14

• It’s free. All the data in Wikidata is published under the Creative Commons Public Do-

main Dedication 1.08. This means that everyone can use the provided data for own pur-

pose. The data can be copied, modified, distributed, and used without special permission.

• It’s collaborative. All the data in Wikidata is added and maintained by thousands of

Wikidata editors. They make decisions how to structure the data and manage it.

• It’s multilingual. All the data in Wikidata is translatable. All the new entered data to the

system is available for translation into other languages.

• A secondary database. All the data from Wikidata is linked to its source. This reflects

the diversity of the knowledge and verifies the source.

• Collects structured data. If to compare the Wikidata project with other its syster projects

such as Wikipedia, which store information in format of encyclopedic articles, it collects

the data in a structured form. This gives possibility to reuse the stored data by other

projects, and to easily process and “understand” it.

• Large Support. Wikidata is supporting a big range of different services where its data is

used.

2.2.1 The Wikidata Repository

All the Wikidata information is stored on a repository. Data on the Wikidata repository is struc-

tured in items. Each item is defined with a label, a description and possibly with one or more

aliases. Each item is possible to link with a corresponding page from other Wikimedia project

through sitelinks. Items have statements which are used to describe in details all of their charac-

teristics. Each statement consists of a property and a value [Introduction, Dec, 2015].

In Wikidata can be found any kind of information. For example, Wikidata allows to add a new

food dish and to link it with the ingredients that might contain; to add a person and to link it

to his or her country of birth or death; to add a new astronomical star with its location in a star

constellation; to add a vulcano and its geographical coordinates etc.

Wikidata is a knowledge base that is editable by anyone and also it is useable for free. As any of

its Wikimedia sister projects, Wikidata is built on a wiki package, called MediaWiki9 [Krötzsch

and Vrandečić, 2014]. It allows any user to manage every page from Wikidata without a deep

knowledge in computer science, such that editing, deleting, and adding information is easy

and is made in collaboration with others. Wikidata uses Wikibase10 software which allows

collaborative editing of structured data.

8 https://creativecommons.org/publicdomain/zero/1.0/
9 https://www.mediawiki.org

10 http://wikiba.se

https://creativecommons.org/publicdomain/zero/1.0/

Chapter 2. Preliminaries 15

Concepts, objects, topics, or any other type of information, are represented as items in the

Wikidata repository [Erxleben et al., 2014]. For example, the 2012 Summer Olympics, love,

Oxigen, and ship are all items in Wikidata.

Since Wikidata’s items are quite important, there are few important characteristics about them

[Items, Dec, 2015]:

• All items are unique: Each item is a unique identifiable concept or object, or an instance

of them. For example, in Wikidata is possible to have items for general concepts as star

(Q523), and an instance of those general concepts, such as Sun (Q525).

• All items are notable: This mean that any item from Wikidata have a corresponding page

to any of the Wikimedia sites such as Wikipedia, Wikivoyage, Wikisource, Wikiquote, or

Wikimedia Commons. Nevertheless, could exists some exceptions to this rule.

• Linked items: In Wikidata, items can be linked to each other. Every item is identified by a

unique ID (starting with a Q prefix) and has its own page in the Wikidata main namespace.

For example, for the items listed above, 2012 Summer Olympics (Q8577)11, love (Q316),

Oxigen (Q629) and ship (Q11446) are the corresponding item pages. On these pages all

the data for these items can be added, edited, and maintained.

All the structured data is organized according to a data model [Data, Dec, 2015]. This data

model allows machines to read and to understand the data. Also, it allows to translate a human

natural language representation of things into a machine-readable structure. For example, in

English we can say:

“Challenger Deep is the deepest point in the world.”

In Wikidata, this sentence can be translated using statements, which give possibility to link

different properties of items with their values. In this example we have item Earth (Q2):

Earth (Q2) (item)→ deepest point (P1589) (property)→ Challenger Deep (Q459173) (value)

Additionally, Wikidata would also hold a statement about the item for Challenger Deep (indi-

cating it is a landform12):

Challenger Deep (Q459173) (item)→ instance of (P31) (property)→ landform (Q271669)

(value)

As we can see, other items from Wikidata can be used as the values for some statements. This

means that all items can be linked to each other through different statements. Since the data

models are machine-readable, these connections of data allow to discover and process new rela-

tionships and connections between items automatically by machines.

11https://www.wikidata.org/wiki/Q8577
12 a geomorphological unit in the earth sciences

https://www.wikidata.org/wiki/Q8577
https://www.wikidata.org/wiki/Q316
https://www.wikidata.org/wiki/Q629
https://www.wikidata.org/wiki/Q11446

Chapter 2. Preliminaries 16

2.2.2 The Wikidata Statements

As is it described by [Erxleben et al., 2014], to every item from Wikidata corresponds a page.

In this way the data is structured on the Wikidata repository. Every piece of information from a

knowledge, such as a topic, a concept, or an object, has a separate page and is called an entity.

Wikidata has two different types of entities: items and properties. Items are represented by

individuals and classes. The Wikidata properties are similar to some of RDF properties, such as

SubClassOf relation from OWL (Section 2.1.3).

Figure 2.2: Excerpt of a typical Wikidata item page with terms, statements, and site links
(November, 2015).

Any piece of information from Wikidata has a corresponding page where the data can be viewed

or edited by users. For example, an excerpt for the item page for food (Q2095)13 in English from

Wikidata, is shown in Figure 2.2. The unique identifier of the Wikidata items is used as a title

for the item page, e.g. the title of the page food (Q2095) is “Q2095” rather than its label “food”.

It is useful for the case of internationalization, where labels can be translated into any language.

The following sections are contained in every item page from Wikidata [Erxleben et al., 2014]:

• the label (e.g. “food”);

• a short description (e.g. “any substance consumed to provide nutritional support for the

body”);
13 https://www.wikidata.org/wiki/Q2095

https://www.wikidata.org/wiki/Q2095
https://www.wikidata.org/wiki/Q2095

Chapter 2. Preliminaries 17

• aliases;

• a list of statements (the item properties);

• the list of site links (the links that connect the Wikidata item to other Wikimedia projects).

Figure 2.3: Elements of a statement in Wikidata.

The label, description, and aliases are generally known as terms and can be translated into any

available language on Wikidata. These terms are used to distinguish the items and to search

them.

To every property from Wikidata, belongs a separate page, similar to items. Each page is iden-

tifiable by a unique ID which starts with “P” and continues with a numerical value. Similar

to RDF properties, the Wikidata properties have data types that determine the accepted value.

Table 2.2 shows the list of all available datatypes in Wikidata. The original source can be found

in [Erxleben et al., 2014].

As we said, every item in Wikidata has a corresponding page. Every page might have several

statements which represent the way how the information, that we know about, is recorded in

Wikidata. Statements link an item property with its value. Each of the statements can have a

reference or some optional qualifiers. Also, they are used to link different items from Wikidata

to each other, making a linked data structure. The basic elements of statements from Wikidata

are shown in Figure 2.3 [Introduction, Dec, 2015].

The principal properties of an item from Wikidata, which are relevant to our work, are:

• ID;

• the label;

• the value for subclass of (P279) relation property;

• the value for instance of (P31) relation property;

• description.

Chapter 2. Preliminaries 18

Table 2.2: The Wikidata datatypes and their current member fields and field types.

Datatype Member fields
Item item id (IRI)
String string
URL URL (IRI)
Commons Media file article title (string)
Time point in time (dateTime), timezone offset (int), preferred calendar

(IRI), precision (byte), before tolerance (int), after tolerance (int)
Geographic coordinates latitude (decimal), longitude (decimal), globe (IRI), precision

(decimal)
Quantity value (decimal), lower bound (decimal), upper bound (decimal)

Subclass of (P279) relation property represents subsumption relation between two involved

classes. The equivalent RDFS representation for it is: rdfs:subClassOf. This relation prop-

erty is similar to subsumption relation from OWL 2 which is described in more details in Section

2.1.3. The same as SubClassOf relation, it is a transitive property.

Instance of (P31) relation property represents the item as a specific example and a member of

some class. The equivalent RDF representation is: rdf:type.

2.3 Ontology Evaluation

After presenting ontologies and how they are structured, is arising a question about how to

assess the quality of a web ontology. In this section we will discuss several evaluation criteria

and methods that have been proposed by [Vrandečić, 2010] in his work, to guarantee the good

quality of an ontology on the web.

According to [Vrandečić, 2010], ontology evaluations can be done on several different levels, as

it is described below:

1. Ontologies can be evaluated by themselves;

2. Ontologies can be evaluated with some context;

3. Ontologies can be evaluated within an application. This approach was introduced by

[Brank et al., 2005] in his work and it is called application based ontology evaluation;

4. Ontologies can be evaluated in the context of an application and a task. This method was

described first by [Porzel and Malaka, August 2004] and is called task based ontology

evaluation approach.

Each of the evaluation levels listed above, evolves from the previous ones. It means that every

ontology should be evaluated first by itself and with some context, and later can be evaluated

https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P31

Chapter 2. Preliminaries 19

already within an application. The most of the possible errors can be found in the evaluation

during the first two levels.

The task of ontology evaluation which consists in checking if the ontology has been modeled

correctly, is called ontology verification task [Vrandečić, 2010]. During the verification process

is tried to find out if the initial specifications are met correctly in the modeled ontology. Errors

such as cycles contained in the class hierarchy, redundant axioms, and other types of errors are

easily detected by ontology verification task. Once the ontology has been verified, conclusions

can be drawn to confirm or not if the ontology has been modeled correctly according to certain

specified quality criteria.

2.3.1 Criteria

Ontology verification is made based on some evaluation criteria. These criteria tell us: if an

ontology is good or not; if the intended specifications have been implemented correctly; if the

encoded knowledge can be inferred correctly from the created ontology etc.

Evaluation of an ontology for some criteria is possible within a specially designed system. This

implementation and ontology verification depends on the initially defined requirements. Before

the implementation, first need to define several evaluation criteria that an ontology has to satisfy

to assess its quality.

In the following, we will list a number of criteria which comply with those presented by [Hitzler

et al., 2010] and [Vrandečić, 2010]. We will try to aggregate them to form a coherent and concise

set, and to discuss their applicability and relevance for the Wikidata ontology.

Consistency, coherency, completeness are considered logical criteria. These criteria have char-

acteristics that can be checked on a logical level [Hitzler et al., 2010].

According to [Vrandečić, 2010], the consistency criteria says if an ontology is interpretable at

all, and if there are no contained contradictions. The logical consistency which is a part of it,

tells if the contained comments and descriptions are not contradicting to each other and if they

are linked correctly with the set of axioms from the ontology. Thus, the consistency criteria is

one of the important conditions for an ontology to be useful.

Now, we will explore an example where a logical inconsistency can appear. Let’s assume that an

ontology contains the class entity Java which is defined as “Java is an island in the archipelago

of Indonesia.” and contains the following axiom

ClassAssertion(Island Java)

The inconsistency appears when the following axiom is added to the ontology:

ClassAssertion(Programming language Java)

Chapter 2. Preliminaries 20

These problems are often the result of an incorrect ontology modeling or a badly management.

Besides the presented logical criteria, ontologies can be automatically evaluated for other criteria

that indicate the possible presence of problems. These criteria refer to the structural representa-

tion of the ontology. For example, the detection of taxonomy cycles can be done directly from

the ontology.

SubClassOf(Informatics Faculty)

SubClassOf(Faculty University)

SubClassOf(University Building)

SubClassOf(Building Informatics)

From the example above, we can infer that in this ontology is present a cycle. If to follow the

subsumption statements we will arrive to the first axiom, which means that “this taxonomy col-

lapses semantically” [Hitzler et al., 2010]. We can infer that the presented classes Informatics,

Faculty, University, and Building are all equivalent. Therefore, it’s unlikely to have so

many equivalent classes in the ontology. It can be a sign that ontology has a problem.

Each of the class entities in the ontology can have several characteristics, such as identity, unity,

dependence, and rigidity. The last characteristic shows if a class is considered rigid in the class

hierarchy or not. As it is described in [Hitzler et al., 2010], the rigidity means that every instance

of that class cannot change its state without losing its existence.

Accuracy criterion tells whether the ontology is modeled accurately with respect to the initial

specifications. Also it states if the contained axioms in the ontology comply with the repre-

sented knowledge about the domain [Hitzler et al., 2010]. Of course, it is considered one of the

important requirements and therefore evaluation criterion for an ontology.

[Vrandečić, 2010] says that a good accuracy of a modeled ontology comes from “correct defi-

nitions and descriptions of its classes, properties, and individuals”. Correctness is coming from

the correspondence with the defined standards and conceptualizations. Defined axioms should

encode the possible interpretations of an ontology, so that the resulting models are compatible

with the intended conceptualizations.

Unfortunately, this criterion is impossible to check fully automatically. This task relies on hu-

mans and how they represent the real-world knowledge. But there are some possibilities to

check if exists some problems and omissions where a domain is modeled incorrectly to the

initial intention [Hitzler et al., 2010].

The biggest goal for us is to achieve good results for all analyzed criteria, as long as they are

not contradicting each other. For example, the conciseness criterion that tells if there are some

irrelevant elements about the domain of interest, and completeness criterion that describes if

this domain is “appropriately covered” [Vrandečić, 2010] – sometimes can have a contradictory

Chapter 2. Preliminaries 21

results. Usually, the person who is in charge for ontology evaluation, needs to decide which

criteria is better for the verified ontology and which methods to apply to analyze it.

Besides the criteria listed above, exist other criteria which can be checked to improve the quality

of the modeled ontology. For example: adaptability, clarity, computational efficiency etc. All

these criteria are explained in more details in [Vrandečić, 2010].

2.3.2 Methods

To assess the quality of an ontology, some evaluation methods are applied. These methods

describe the way how to verify an ontology for several criteria or specify the expected results.

[Vrandečić, 2010] defines the evaluation criteria, which are checked in this case, as premisses

for some evaluation methods, where the methods give the results how the ontology satisfies or

not these quality criteria.

In the following we will describe few of the evaluation methods that are applicable to the

scenario of the Wikidata ontology evaluation. These evaluation methods are compiled from

[Vrandečić, 2010].

Maximum depth of the taxonomy

[Vrandečić, 2010] defines the maximum depth of a class hierarchy as “. . . the largest existing

path following the inheritance relationships leading through the taxonomy”.

However, he does not agree fully with this definition. There are some situations when the maxi-

mum depth of a class hierarchy in the taxonomy can be infinite, which is almost impossible and

not very useful result. This is happening because of cycles in the taxonomy.

Consider the following ontology example proposed by Vrandečić [2010], shown in Figure 2.4:

B

A

C

D

Figure 2.4: Example for a cycle hierarchy path.

SubClassOf(B A) SubClassOf(B C)

SubClassOf(C A) SubClassOf(C B)

SubClassOf(D C) SubClassOf(D B)

Chapter 2. Preliminaries 22

The longest path in this taxonomy is 4 (either DBCBA or DCBCA), even though we would

expect the maximal depth of the class hierarchy to be 3 (since B and C are on the same hierarchy

level which means that these classes are equivalent).

Semantic similarity measure

Another characteristics of a modeled ontology is semantics. It is important to represent the

semantics in most accurate way to run correctly automated reasoning.

Semantic similarity measure method was firstly introduced by [Alani and Brewster, 2006]. To

understand how this method works, [Vrandečić, 2010] came with an example which is shown

below.

In Figure 2.5 we can see two ontologies which have similar semantics. The hierarchy from

the right side has several “subclass of” relations which are redundant. If to remove them, the

semantics of both hierarchies remains unchanged. Even though, the semantic similarity measure

method should give the same result for both ontologies, which is not the case.

A

B1 B2

C1 C2 C3 C4

A

B1 B2

C1 C2 C3 C4

‘su
bc

las
s of

’

‘s
ub

cl
as

s
of

’ ‘subclass
of’

‘subclass of’

Figure 2.5: Two class hierarchies with identical semantics.

Actually, any of the classes C1, C2, C3, or C4 can easily be connected using a subsumption

relation to the class A from the top. This will not change the general semantics of the hierarchy.

As we know, the subsumption relation is a transitive property which makes the new added links

redundant, because each of the classes is connected to the top in two ways.

The presence of some redundancies in the ontology, not always leads to complications. Even

though a redundant subsumption axiom may be represented in the ontology without breaking

the quality measurements of the ontology. The inclusion of such an axiom often has a reason. In

human-engineered ontologies it may express a specific relation (even though that does not mean

anything in the formal semantics). These explicit connections may indicate some semantic

closeness that the formal semantics do not properly capture.

Chapter 3

Application Design

The main contribution to this thesis is implementation of an automated system for taxonomy

browsing and ontology evaluation. The Wikidata project and its ontology were chosen as a

basic scenario for our application.

In Section 3.1 we describe the most important components and functionalities of the imple-

mented system. In the same section, we describe the main approaches and strategies of design-

ing this application. To organize the developing process, we elaborated user stories that are

presented in Section 3.2.

Besides the taxonomy browser, we give some methods and tools for the ontology evaluation

task. To evaluate the ontology of Wikidata, we check it for several criteria. The errors and

redundancies that are found in the ontology are generalized in several distinctive cases and

schematically are shown as patterns in Section 3.3, together with some representative examples

from the Wikidata ontology.

3.1 Components and Functionality

Before we have started the implementation, we did a small research in the area to collect infor-

mation regarding the main strategies and techniques about how to develop a system for taxon-

omy browsing and visualization of a class hierarchy. Since we have also decided to implement

additional methods and tools which would allow to assess the quality of ontology, we need to

adjust the developing process to this specific scenario and to find good solutions how to design

the system.

At the beginning we decided to design the application with two separate components (frontend

and backend). The first component will extract data from the Wikidata repository and the second

23

Chapter 3. Application Design 24

component will allow users to navigate through the Wikidata taxonomy and to verify it for

several quality criteria. For more details about the architecture of the developed application, see

Section 4.1.

The first step to make the application functional, is to supply it with the data that will be pro-

cessed later. The Backend component is designed to extract the data from the weekly data

dumps from an external repository that is accesible freely. The downloaded data from the ex-

ternal repository contains millions of items. To reduce the amount of processed data, we extract

only the class entities1 that are contained in the class hierarchy.

To make the application more interactive and dynamic, we decided to build the Frontend com-

ponent using the JavaScript programming language. In this way, users can interact with the

system, without reloading the web page to get some results. The Frontend component allows

users to browse the Wikidata taxonomy. Navigation on the taxonomy, up to the root class or

down to the leaves, gives a general overview for the modeled ontology.

Besides the taxonomy browsing, the system gives some methods to verify the Wikidata ontol-

ogy for several evaluation criteria and outputs the results in different sections, according to the

analyzed criteria. Users will be able to select each of the found issues and to navigate to the area

of the taxonomy where it is contained, for a complete graphical representation of the problem.

We know that the Wikidata ontology is maintained by different editors. Sometimes they discuss

about a specific situation where an error or an omission can occur in the ontology. To help them

to visualize the segment of the taxonomy where such problems can occur, we implemented a

possibility to share the current state of the class hierarchy with some other users or to save it for

a later visualization.

Within the application, the user will be able to view additional details about a class entity, such

as: label, ID, description, how many direct up or down neighbors are still hidden or displayed

in the graph etc. The user can also find the direct link to the Wikidata.org website where the

selected class entity is located, to see the full list of statements.

For the case when too many nodes are displayed in the graph, the user will have the possibility

to adjust space between the nodes. Two options for spacing: small and large, will allow user to

change it for a better visualization of the graph.

The system is designed to browse the taxonomy and to visualize the class hierarchy that is

contained in the Wikidata ontology. This class hierarchy is constructed using the class entities

and two of their relation properties: ‘subclass of’ and ‘instance of’. In order to display only the

class subsumptions in the class hierarchy, it will be possible to exclude the ‘instance of’ relation,

which is represented by another type of edge in the graph, by disabling it from the general menu.

1 “A class entity is a type of item which refers to a group of instances.” [Wikidata.org]

Chapter 3. Application Design 25

3.2 User Stories

A user story is a description in one or more sentences of a task or a job that a user or a com-

ponent of an application needs to do. Usually, the user story is written in a simpler language,

without some technical terms or notions. User stories are important in the agile development

methodology2 that we use for our implementation.

To summarize all the functional tasks that are proposed to be implemented in the application,

we formulate some general user stories. We can divide these stories into three different groups:

a first group regarding the Wikidata taxonomy browsing, a second group about ontology evalu-

ation, and the last third group about data extraction from the Wikidata repository.

The complete list of user stories is presented in Table 3.1, Table 3.2, and Table 3.3.

3.3 Relation Properties Patterns and Examples

In this section we show what kind of general errors and redundancies can be found in the Wiki-

data ontology. All the errors and redundancies have been generalized in some representative

patterns. These patterns will help us in the ontology evaluation task to detect any possible prob-

lems. The errors and redundancies are generated by two types of relation properties (‘subclass

of’ and ‘instance of’), which belong to the class entities from the taxonomy.

The taxonomy from Wikidata is represented as an acyclic graph. The class entities are displayed

as nodes of the graph, and ‘subclass of’ and ‘instance of’ relationships as edges.

In the following patterns representation, we display nodes of the graph as black circles �. Edges

are shown with two different types of lines: solid lines for ‘subclass of’ relationships, and

dashed-lines for ‘instance of’ connections. We consider the direction of the relations from the

bottom to the top. All the situations that we consider as errors are depicted in Figure 3.1.

In Figure 3.2 we present three different examples of errors that can be found in the Wikidata

ontology. These examples correspond to the generalized patterns shown in Figure 3.1.

To generalize the redundancy cases from the Wikidata ontology created by the relation proper-

ties, we have two types of patterns, shown in Figure 3.3. These patterns are exemplified with

two concrete situations from the Wikidata ontology (Figure 3.4).

To understand why all these cases are considered errors or redundancies in the taxonomy, see

Section 4.3.3 and 4.3.4 for more explanations.

2 “a software development method ... which promotes adaptive planning, evolutionary development, ... continu-
ous improvement, and encourages rapid and flexible response to change.” [Wikipedia.org]

Chapter 3. Application Design 26

Table 3.1: User stories regarding the Wikidata taxonomy browsing.

As a user, I want to . . .

UN1 . . . browse the Wikidata taxonomy.

UN2 . . . have the possibility to expand step-by-step all the upwards and downwards neigh-
bors of each node in the graph.

UN3 . . . choose which neighbors to expand of those nodes that have more direct up or down
neighbors.

UN4 . . . generate a link of the current graph state, to be shared with other users or saved for
a later visualization.

UN5 . . . have a menu for each node, opened by a right-click, with additional possibilities.

UN6 . . . have the possibility to select nodes in the graph and to apply the following menu
options to the selected nodes: Select all, Hide selected, Invert selection, Deselect all,
Expand all path, Expand only up neighbors, Expand only down neighbors, and Undo
the last changes.

UN7 . . . have the possibility to change the spacing between nodes in the graph, for any
suitable visualization.

UN8 . . . have the possibility to show or hide in the graph the ‘instance of’ relation property.

UN9 . . . have a general map navigation of the displayed graph.

UN10 . . . have a tooltip which will display all the known details about the class entity, avail-
able by hovering on the node.

UN11 . . . have the possibility to zoom-in and zoom-out on the graph.

UN12 . . . find a class from the Wikidata ontology by its label or ID, and to visualize it in the
class hierarchy.

Table 3.2: User stories for the Wikidata ontology evaluation.

As a user, I want to . . .

OE1 . . . see the Wikidata ontology evaluation results in a list for all analyzed criteria.

OE2 . . . have a legend with all the colors and their explanations, used in the graph navigation.

OE3 . . . know from which date is the latest data dump from the Wikidata repository, used in
the application.

OE4 . . . have a Help page which explains shortly all details how to use and understand the
application.

OE5 . . . select one of the detected issues and to view the area of the graph where that issue
is contained.

Table 3.3: User stories for the Wikidata data extraction.

The backend component should be able to . . .

AJ1 . . . download weekly data dumps from the Wikidata repository.

AJ2 . . . extract from the external repository all the class entities and their properties (ID,
label, description).

AJ3 . . . collect all the class entities from the Wikidata ontology which have only ‘subclass
of’ and/or ‘instance of’ relation properties.

Chapter 3. Application Design 27

e1 e2 e3 e4 e5

Figure 3.1: Error patterns for ‘subclass of’ and ‘instance of’ relation properties from Wikidata.

e1 e3
e4

Figure 3.2: Error examples for ‘subclass of’ and ‘instance of’ relation properties from Wikidata
(November, 2015).

r1 r2

Figure 3.3: Redundancy patterns for ‘subclass of’ and ‘instance of’ relation properties from
Wikidata.

Chapter 3. Application Design 28

r1 r2

Figure 3.4: Redundancy examples for ‘subclass of’ and ‘instance of’ relation properties from
Wikidata (November, 2015).

In the following, we describe Algorithm 1, which detects all the redundancies and errors from

the Wikidata ontology. It is an iterative algorithm that starts verification in one node of the graph

and goes upwards on its path, checking all the parent nodes until the root node is reached. The

algorithm counts the number of parsed edges by their type (‘subclass of’ or ‘instance of’), to

categorize the found problem as a redundancy or an error based on the checked pattern. In the

end, the algorithm returns the pair of the first node and the last node.

Algorithm 1 The algorithm for detection the redundancies and errors of relation properties.
1: for each node in nodes do
2: var cSubclasses = 0;
3: var cInstances = 0;
4: // check ‘subclass of’ parents
5: if node.parent nodes.length > 0 then
6: for each node.parent nodes (key, value) do
7: cSubclasses++;
8: Parents Iteration (value, node, node.id, node.rank);
9: cSubclasses = 0;

10: end for
11: end if
12: // check ‘instance of’ parents
13: if node.parent instance.length > 0 then
14: for each node.parent instance (key, value) do
15: cInstances++;
16: Parents Iteration (value, node, node.id, node.rank);
17: cInstances = 0;
18: end for
19: end if
20: end for

Chapter 3. Application Design 29

21: function Parents Iteration(node, initNode, nodeID, nodeRank)
22: var found = FALSE; var source = “Error”;
23: // check ‘subclass of’ parents
24: if node.parent nodes.length > 0 then
25: for each node.parent nodes (key, value) do
26: if initNode.parents nodes subclassOf has key then
27: cSubclasses += cSubclasses + 2;
28: found = TRUE;
29: else if initNode.parents nodes instanceOf has key then
30: cSubclasses += cSubclasses + 1;
31: cInstances += cInstances + 1;
32: found = TRUE;
33: end if
34:

35: if found then
36: if (cSubclasses==1 and cInstances!=0) or cInstances==0 then
37: source = “Redundancy”; found = FALSE;
38: if nodeID != key then
39: return (value, initNode);
40: end if
41: end if
42: else
43: for each value.parents nodes subclassOf (k,v) do
44: if initNode.parents nodes subclassOf has k then
45: cSubclasses += cSubclasses + 3;
46: found = TRUE;
47: else if initNode.parents nodes instanceOf has k then
48: cSubclasses += count subclasses + 2;
49: cInstances += cInstances + 2;
50: found = TRUE;
51: end if
52: if found then
53: if (cSubclasses==1 and cInstances!=0) or cInstances==0 then
54: source = “Redundancy”;
55: end if
56: found = FALSE;
57: if nodeID != k then
58: return (v, initNode);
59: end if
60: else
61: if v.rank < nodeRank then
62: // check parents of next upper level
63: return Parents Iteration (v, initNode, nodeID, v.rank);
64: end if
65: end if
66: end for
67: . . . // repeat [43-66] for ‘instance of’ parents
68: end if
69: end for
70: end if
71: . . . // repeat [24-70] for ‘instance of’ parents
72: end function

Chapter 4

Implementation

There are already a number of different applications and tools for taxonomy browsing, but none

of them is built to give possibility to browse the taxonomy from Wikidata. The main goal of this

thesis is to implement a system that allows users to navigate through the Wikidata taxonomy

and to visualize the class hierarchy. Also, the same system gives some methods to evaluate

automatically the Wikidata ontology for several criteria.

In this chapter, we discuss about the implementation of this system. Figure 4.1 provides a

general overview of the developed system’s core components and architecture. Section 4.1

explains in details the components of the system, what kind of libraries, tools, and methods

were used in the developing process, and describes some technical details of the application.

Section 4.2 describes the main algorithms and implemented methods for the Wikidata ontology

evaluation task.

4.1 Architecture and Technical Details

Application consists of two separate components: frontend and backend. The Backend compo-

nent is built using the Java programming language. The main task of this component is to extract

data from the Wikidata external repository, to parse the downloaded ontology file, and to collect

only the data that we need. The Wikidata ontology has reached millions of items. Obviously,

we do not need in our application all the information contained in the ontology. For this reason,

we developed a backend component to help us in collecting the data that we need. The extracted

data is converted into JSON1 format and then it is saved into a file which later will be used as

data source for the Frontend component of the application.

1 “an open standard format that uses human-readable text to transmit data objects consisting of attribute-value
pairs” [Wikipedia.org]

31

Chapter 4. Implementation 32

Figure 4.1: Architecture of the developed system

For data extraction from the Wikidata external repository, we use Wikidata Toolkit2 (version

0.4.0) – a collection of libraries which gives access to the data stored on the Wikidata repository

and to other available services. In our application we use the weekly data dumps from Wikidata

which are provided freely to the public. Weekly dumps are stored in a GZIP compressed JSON

format file. The Wikidata Toolkit helps to parse the dump file and to analyze each of the entities

contained in the ontology. A separate controller, called “ClassParser.java”, was built to help

in collecting only the class entities which have ‘subclass of’ and ‘instance of’ properties. The

‘subclass of’ property is present only for items which represent classes in the Wikidata ontology.

Since we want to construct only the class hierarchy from the ontology in our application, other

items are skipped.

Because the Wikidata ontology counts millions of items and most of the items has multiple state-

ments, for a memory saving reason, we store only the values for: ID, the label and description

in English, and the value for ‘subclass of’ and ‘instance of’ statements of each found item.

The process is automated and runs weekly, once a new data dump is provided by the Wikidata.

The final generated JSON file (classes.json) is saved and used as source data for the second

component of the application.

The Frontend component is built mainly using the JavaScript programming language, and HTML5

and CSS3 as markup languages. This component is accessible by any user from a web browser.

2 https://github.com/Wikidata/Wikidata-Toolkit/releases

Chapter 4. Implementation 33

As we already explained in Section 3.3, the taxonomy from the Wikidata ontology is displayed

as an acyclic directed graph. To build an acyclic graph from the provided data in JSON format,

we use additional JavaScript libraries, such as:

• Dagre.js3 (version 0.0.6) – a JavaScript library that makes easy to lay out directed graphs

on the client-side;

• D3.js4 (version 3.0) – a JavaScript library for manipulating documents based on data;

• JQuery5 (version 1.9.0) – for general implementation;

• JQuery UI6 (version 1.11) – to adjust user interface.

First, Dagre.js librabry renders a graph structure in the virtual memory of the web browser

for the given data in JSON format. It produces an acyclic graph out of the provided data and

uses the idea of a minimum spanning tree for ranking which is explained in more details in

[Gansner et al., 1993]. Then, the D3.js library uses the rendered acyclic graph to build a visual

representation out of it, helping to bring data to life using HTML, SVG, and CSS.

SVG (or Scalable Vector Graphics)7 is an XML-based vector image format for two-dimensional

graphics with support of interactivity and animation. Most of the modern web browsers have at

least some degree of SVG rendering support which gives possibility to use it in our application.

It is relatively fast in generating data graphs with several hundreds of nodes.

To build a graphical representation of the Wikidata taxonomy, the D3.js library is using the

following SVG elements:

• path – used to display graph edges as lines with different properties;

• g – shows the graph node, a container used to group objects;

• rect – gives to a graph node the shape of rectangle or triangle, with styling options;

• text – displays textual details of the node: the label, number of up and down neighbors.

Figure 4.2: Graphical representation of the nodes and edges, using SVG elements.

3 https://github.com/cpettitt/dagre/wiki
4 http://d3js.org
5 https://jquery.com
6 http://jqueryui.com
7 http://www.w3.org/Graphics/SVG

Chapter 4. Implementation 34

4.2 Components

When the Frontend component of the application is accessed from a web browser, it generates

the results for the ontology evaluation task and displays them in a component placed on the

right side of the window. Figure 4.3 shows how the evaluation results are grouped based on the

analyzed criteria and how they are displayed in that component.

Figure 4.3: The evaluation component from “Wikidata Taxonomy Browser” application
(November, 2015).

Here we can see how some of the user stories described in Section 3.2 (Table 3.2: OE1-OE5)

have already been implemented. Figure 4.4 shows how a user can select one of the evaluation

criteria to see a complete list of found issues. After that, the user can click on one of them to

jump to the area in the Wikidata taxonomy where it is contained (Figure 4.5).

Figure 4.4: Evaluation criteria selection in “Wikidata Taxonomy Browser” application
(November, 2015).

Chapter 4. Implementation 35

Figure 4.5: An example of how a redundancy is found and displayed graphically in “Wikidata
Taxonomy Browser” application (November, 2015).

The next component of the application, shown in Figure 4.6, allows to navigate through the

class hierarchy, either by selecting nodes in the graph, and then applying some of the main

menu options for showing or hiding neighbors, or by expanding step by step all children or

parents of a node in the graph. These functionalities are described by the user stories which are

listed in Table 3.1: UN1-UN12.

Figure 4.6: Navigation through the class hierarchy in “Wikidata Taxonomy Browser”
application (November, 2015).

Chapter 4. Implementation 36

4.3 Algorithms

In this section we will present algorithms which have been implemented in the application,

toward evaluation of the Wikidata ontology. Some of the used methods have already been intro-

duced in Section 2.3.2.

In total we verify the Wikidata ontology for six evaluation criteria:

• cycles detection;

• self-loops detection;

• checking for errors of ‘subclass of’ and ‘instance of’ relation properties;

• checking for redundancies of ‘subclass of’ and ‘instance of’ relation properties;

• identifing classes which have more than 100 direct subclasses;

• root classes detection.

4.3.1 Cycles Detection

A correct graphical representation of the Wikidata taxonomy is an acyclic graph. However,

because of some wrong modeling actions which have been done by the Wikidata editors, can

lead to a cycle in the taxonomy and break the acyclicity8 of the graph, e.g. when a class is

declared as subclass of another class which is situated on a lower rank in the class hierarchy.

The existence of a cycle in directed graph, can be determined by whether the Depth-First Search

Algorithm (DFS)9 finds an edge that points to an ancestor of the current node. It means that the

graph contains a back edge. This approach is described in more details by [Gansner et al., 1993]

in his work. Such situations should be detected, considered as errors, and fixed.

Figure 4.7: A cycle example from the Wikidata taxonomy (November, 2015).

In Figure 4.7 is presented one of the cycle examples detected in the Wikidata taxonomy. Classes

brain damage (Q720026) and brain injury (Q3280669) are part of a cycle in the taxonomy, since

the path which starts in one of the nodes, leads in the end to the same node. The edge with a

8 the condition of being acyclic
9 “an algorithm for traversing or searching tree or graph data structures” [Wikipedia.org]

Chapter 4. Implementation 37

bigger width is considered a back edge that has a wrong direction in the class hierarchy. Also

the different colouring of the nodes and edges shows the presence of the cycle in the taxonomy.

4.3.2 Self-loops Detection

Second criterion that we analyze is the presence of self-loops in the taxonomy. Sometimes the

Wikidata editors declare intentionally or by mistake the ‘subclass of’ or ‘instance of’ relation

properties to the class entity itself. Occasionally this can lead to errors. A self-loop is an edge

that connects a node to itself. We should avoid such situations and to fix them if exist.

The pseudo-code for self-loop edges detection algorithm is presented below:

Algorithm 2 Self-loop edges detection algorithm
1: for each node in nodes do
2: if node.parent nodes.id==node.id or node.parents nodes instanceOf.id==node.id then
3: return node
4: end if
5: end for

Figure 4.8 shows an example of a self-loop from the Wikidata taxonomy for the class music

school (Q184644). Because the developed application does not support visualization of self-

loop edges, we cannot see it graphically, but we can notice it from the different colouring (pink)

of the node.

Figure 4.8: A self-loop example for class music school (Q184644) from the Wikidata taxonomy
(November, 2015).

4.3.3 Errors Detection for Relation Properties

As it was described in Section 2.2.2, a subclass of (P279) property from Wikidata is a transitive

property – a binary relation over a set of two classes, and instance of (P31) property represents

the item as an instance of some class entity. These properties can create errors in the graph, if

they are not used correctly.

https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P31

Chapter 4. Implementation 38

Let’s analyze a general example, which explains how an error is created when the ‘subclass of’

and ‘instance of’ relation properties are not used correctly according to their characteristics.

From Figure 4.9 we can infer that the class A is in a ‘subclass of’ relation with the class C,

based on the transitivity property of the ‘subclass of’ relation. If whenever the class A is related

to another class B, and the class B is in turn related to the class C with the same ‘subclass of’

relation type. On other side, if the class A is in an ‘instance of’ relation with the class C, then

this situation is considered an error, because an entity cannot be a ‘subclass of’ and an ‘instance

of’ another class simultaneously.

C

B

A

‘subclass of’

‘in
st

an
ce

of
’

‘su
bcla

ss
of’

Figure 4.9: General representation of an error with ‘subclass of’ and ‘instance of’ relation
properties in Wikidata.

An error example for relation properties from the Wikidata taxonomy is shown in Figure 4.10.

Here we can see that the class noun (Q1084) is an instance of the class part of speech (Q82042).

However it is also a subclass of the same class which can be inferred from the transitivity prop-

erty of the ‘subclass of’ relation and its connection via the class name (Q82799).

Figure 4.10: Example of an error from the Wikidata taxonomy (November, 2015).

Errors in the taxonomy are detected based on several patterns. For a complete list of the used

patterns, additional examples, and the pseudo-code for the implemented algorithm, see Section

3.3.

Chapter 4. Implementation 39

4.3.4 Redundancies Detection for Relation Properties

Similar to errors created by incorrect use of the relation properties, we detect redundancies

which are not considered strong errors, but rather some duplications.

For example, Figure 4.11 shows one of the redundancy examples. We can see that the class

boy (Q3010) is linked via a ‘subclass of’ relation to the class child (Q7569), which in its turn is

linked with the same relation type to the class human (Q5). The redundancy is created by the

direct ‘subclass of’ relation between the classes boy (Q3010) and human (Q5), which can be

removed, because it is resulting from the transitivity property of the ‘subclass of’ relation.

Figure 4.11: Example of a redundancy from the Wikidata taxonomy (November, 2015).

The complete list of redundancy patterns for relation properties can be found in Section 3.3,

with some additional examples.

4.3.5 Identifing classes which have more than 100 direct subclasses

Classes which have more than 100 direct children linked with ‘subclass of’ relation, also need

to be analyzed. These classes are not treated as being a part of errors, but it is recommended to

have less direct up and down neighbors of a class for a better visualization of the taxonomy and

a better semantic representation of the entities.

As an example from the Wikidata taxonomy can be used the class disease (Q12136) (Figure

4.12) which has hundreds of direct subclasses representing different type of known diseases. It

is impossible to visualize all the direct neighbors of this class. It is recommended to link these

direct subclasses to other entities which can express more directly the real semantics.

Chapter 4. Implementation 40

Figure 4.12: Class disease (Q12136) and the amount of its direct neighbors (November, 2015).

The pseudo-code for algorithm that distinguishes classes which have more than 100 direct sub-

classes, is presented below:

Algorithm 3 Algorithm for detection classes with more than 100 direct subclasses.
1: for each node in nodes do
2: if node.parent nodes.length ≥ 100 then
3: return node
4: end if
5: end for

4.3.6 Root Classes

Another problem for the Wikidata taxonomy is the presence of a big number of root classes

without any direct up neighbors (parents). As a recommendation, is better to have fewer root

classes in the taxonomy as possible. Here are some examples of root classes from the Wikidata

ontology: pottery (Q11642), fashion (Q12684), symmetry (Q12485), fee (Q11765) etc. (Figure

4.13).

Figure 4.13: Some examples of root classes from the Wikidata ontology (November, 2015).

The pseudo-code for detection of root classes in the taxonomy is listed below:

Algorithm 4 Algorithm for root classes detection
1: for each node in nodes do
2: if node.parent nodes == Empty then
3: return node
4: end if
5: end for

Chapter 5

Evaluation

To demonstrate capabilities and usefulness of the “Wikidata Taxonomy Browser” application,

we tested it for different technical criteria. The complete performance testing results are pre-

sented in Section 5.1. In Section 5.2 we show what kind of problems we confronted during the

developing process and what approaches we applied to fix them. Also, we present what we have

learned from the Wikidata ontology evaluation and what problems have been found (Section

5.3). Finally, we discuss about the feedback received from the users after the official launch of

the application to the Wikidata community (Section 5.4).

5.1 Performance

To evaluate the performance and efficiency of the “Wikidata Taxonomy Browser” application,

regarding the taxonomy browsing and evaluation tasks, we did several tests to check it, and then

compared the results.

The performance testing of the application has been done separately for each of the application

components (frontend and backend). For more details about the architecture of the developed

system, see Section 4.1. The most important factor is the task completion time measurement

which shows how fast the system is in computing the results.

5.1.1 The Frontend Component Performance Testing

To check the performance of the Frontend component, we did the following testing tasks:

• T1: to search a class by label or ID in the Wikidata taxonomy;

• T2: to run a full evaluation of the Wikidata ontology for all analyzed criteria;

• T3: to display the complete path of a chosen class in the class hierarchy.

41

Chapter 5. Evaluation 42

Table 5.1: Runtime comparison for the Frontend component testing (November, 2015).
The time is given in seconds.

System T1.a T1.b T1.c T2 T3.a T3.b T3.c
Mac OS (El Capitan v. 10.11.1),

Chrome (v. 46)
0.566 0.574 0.522 2.741 0.590 0.173 0.278

Mac OS (El Capitan v. 10.11.1),
Firefox (v. 42)

0.643 0.605 0.596 2.399 0.891 0.223 0.412

Mac OS (El Capitan v. 10.11.1),
Safari (v. 9.0.1)

0.458 0.448 0.441 4.267 0.562 0.162 0.243

Windows 8, Chrome (v. 46) 3.345 3.795 3.473 7.783 3.555 1.448 1.377
Windows 8, Firefox (v. 42) 4.651 3.982 4.429 7.015 5.967 2.128 2.944

For the initial setup of the experiment, the tasks T1, T2, and T3 have been tested on Windows 8

and Mac OS (El Capitan v. 10.11.1) machine platforms. For tests were used the latest version of

the web browsers which support JavaScript, such as Chrome (v. 46), Firefox (v. 42), and Safari

(v. 9.0.1). On the moment of testing, the application was using the Wikidata ontology dump

from 16th of November, 2015.

The tasks T1 and T3 have been repeated three times with different searched class entities which

are situated on different levels1 in the class hierarchy:

• T1.a / T3.a: class food (Q2095), level 5;

• T1.b / T3.b: class cake (Q13276), level 8;

• T1.c / T3.c: class Gouda (Q593675) , level 17.

The complete results of testing and the runtime comparison are displayed in Table 5.1. The total

amount of class entities from the Wikidata taxonomy used in the application on the moment of

testing, was 24,030 classes (November, 2015). Analyzing the evaluation results, we can conclude

that our system behaves differently for particular machine platforms and web browsers. It is

obvious that the runtime results depend on the technical configuration of the used machine.

Figure 5.1 shows the difference between using application on Windows and Mac OS platforms.

The values from Table 5.1 represent the time in which the system parses the whole taxonomy

to find the searched entity, to execute the task, and to output the results. We are happy to see

that the Task T2 is executed in less than 30 seconds, because a typical web browser returns an

average timeout response already after this limit. Otherwise, we could run in a problem. See

Section 5.2 for other problems that we have encountered during the developing process, and

solutions that we applied.

We run the test with three different class entities that are situated on different levels in the

hierarchy. We expected to see a difference in time for running the tests. But the difference

is very small and not important. We can conclude that the location of the class entities in the
1 the maximal distance from the root class Entity (Q35120) to the class itself

https://www.wikidata.org/wiki/Q2095
https://www.wikidata.org/wiki/Q13276
https://www.wikidata.org/wiki/Q593675

Chapter 5. Evaluation 43

hierarchy does not have a big impact to the runtime of the system. Probably the difference in

time will be more obvious for bigger taxonomies which include thousands of entities.

From the charts represented in Figure 5.1, we can conclude that the Chrome browser is slower

when is loading the first data (executing the task T2 for ontology evaluation), but then outputs

the results faster for the tasks T1 and T3. Where the Firefox browser is faster in executing

the task T2 first and then the rest of the tasks. Based on this results, we can conclude and

recommend to use the system with Chrome browser, which can give a better usability of it.

Figure 5.1: Runtime comparison charts for the performance testing of the Frontend component.

Chapter 5. Evaluation 44

Table 5.2: Runtime comparison for the performance testing of the Backend component
(November, 2015).

System T4.a T4.b T4.c
MacBook Pro

• Mavericks v10.9.5;
• Processor 2,4 Ghz Intel Core 2 Duo;
• 6 GB RAM

31min 21sec 32min 11sec 33min

MacBook Pro
• El Capitan v10.11.1;
• Processor 2,2 GHz Intel Core i7;
• 16 GB RAM

12min 55sec 13min 13min 09sec

5.1.2 The Backend Component Performance Testing

To test the Backend component, we run a single task T4: “data extraction from the external

Wikidata repository”. The system has been tested only on Mac OS (Mavericks and EL Capitan)

machine platforms with different configurations, on which have been installed and runs the Java

SE Development Kit (version 8u66)2. The tests have been executed several times with different

versions of data dumps. Note, that every week new class entities are added to the Wikidata

ontology, such that the quantity of analyzed data is growing continuously. This should influence

the runtime performance of the application. For more processed data, we will have a longer time

for computations.

The task T4 has been repeated three times, using several versions of the data dumps from the

Wikidata repository which include different amount of entities in the ontology:

• T4.a: weekly dump from 26th of October, 2015 (with 18,699,771 entities in total);

• T4.b: weekly dump from 9th of November, 2015 (with 18,896,048 entities in total);

• T4.c: weekly dump from 16th of November, 2015 (with 18,959,744 entities in total).

Table 5.2 displays runtime comparison of the task T4 for the Backend component. The time

shown in results, is taken by the system to parse the whole ontology file, to collect the entities

and statements that we need, to convert the data into JSON format, and to save it into a file.

The results tell us that the runtime for the system is increasing with the amount of growing

processed entities. As we can see, the system is running faster on machines with a better con-

figuration. A machine with bigger RAM memory and a faster processor, increases the speed of

computations. However, the difference in time for processing different data dumps for machines

with a better configuration, is very small. We can estimate that the system can be useful even

when the amount of processed data will be doubled.

2 http://www.oracle.com/technetwork/java/javase/overview/index.html

Chapter 5. Evaluation 45

5.2 Technical Problems

Throughout the first phase of designing and developing application, we had encountered several

problems that were necessary to fix to continue the implementation. The first problem was a

very slow response time for processing big amount of data from the Wikidata ontology. We

could not admit slow response time for the system on the taxonomy visualization and ontology

evaluation tasks.

For example, the first runtime for the ontology evaluation task was around 4 mins 30 sec to

output the first results. It is very slow, since a typical web browser returns an average timeout

response already after 30 seconds. At this point, the main goal for us was to improve the used

algorithms and libraries, to reduce the response time to the minimum.

Several changes have been done to the JavaScript libraries that we used in our application (see

Section 4.1 for a complete list of the used libraries). Especially, Dagre.js and D3.js libraries were

adapted to our scenario. Many of the additional features of these libraries have been deleted to

improve the performance. In this way, the total time for the graph construction was reduced to

the minimum. We achieved the highest response time for the ontology evaluation task, to be

smaller than the default timeout response of a web browser.

Another technical problem that we confronted, was running out of virtual memory for data

extraction task. Every dump file contains millions of entities from the Wikidata ontology. Col-

lecting the class entities which represent only a small part of the whole ontology, did not help

us to escape from this problem.

To solve this problem we decided to store for each of the class entities only the properties

and statements that we need in our application, such as: ID, label, description, the values for

‘subclass of’ and ‘instance of’ relation properties. Another decision was to transform the ID of

each class entity, which is stored as a string value, into an integer type, by removing the “Q”

char from it (To remark that integers occupy less memory). Finally we could manage to run a full

data export without exceeding the memory limit of the machine that is used in the processing.

Usually the memory limit depends on the machine’s configuration and other installed tools that

are used.

5.3 What we’ve learned about the Wikidata Ontology

After several evaluations of the Wikidata ontology we have learned about the main problems

that occur often in the ontology. Many of the class entities have been added to the ontology

without a correct configuration of their statements (i.e. taxonomy relations, such as ‘subclass

of’ and ‘instance of’).

Chapter 5. Evaluation 46

For example, from the total amount of analyzed class entities (24,174) on 18th of November

2015, we have encountered:

• 11 cycles which are considered strong errors in the ontology modeling;

• 26 self-loop edges;

• about 439 errors created by Subclass of (P279) and Instance of (P31) relation properties;

• about 1530 redundancies in which Subclass of (P279) and Instance of (P31) relation prop-

erties are involved;

• 4 classes which have more than 100 direct subclass children;

• and 3,831 root classes.

The most of errors and redundancies in the taxonomy appear because the Subclass of (P279) and

Instance of (P31) taxonomy relations are configured incorrectly. A general example explaining

how an error is created in the taxonomy, is depicted in Figure 5.2. From the representation below

we can see that the class A is declared instance of the class B. In its turn, the class B is declared

as subclass of the class A. Because subclass of property is a transitive relation, we can infer that

all the instances of the class B are also instances of the class A. In this case we can logically

infer that the class A is an instance of itself, which can not always be the case. In this way is

created a cycle error in the taxonomy.

A

B

‘s
ub

cl
as

s
of

’ ‘instance
of’

Figure 5.2: A general representation of a cycle error from the Wikidata taxonomy.

Another issue that we’ve noticed, was the presence in the taxonomy of too many root classes.

These entities have not been placed correctly in the class hierarchy. Some of them are not linked

to any other entity in the taxonomy. A good modeled ontology should not have many root

classes.

5.4 Feedback

After the “Wikidata Taxonomy Browser” application was official launched in October 2015, we

received some feedback from the community of Wikidata. In this way we can conclude: how

useful the system is in the completion of a specific task and how users are satisfied using the

application in general.

https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P31

Chapter 5. Evaluation 47

We would like to outline few things about the “Wikidata Taxonomy Browser” application which

differentiate it from any other system:

• There is no other tool which would allow to visualize and to browse the taxonomy of Wiki-

data, beyond the “Wikidata Taxonomy Browser” application that is especially designed to

do it.

• The developed application gives possibility to verify the Wikidata ontology for several

evaluation criteria, in order to asses its quality.

Here are some of the feedback that we received from users of the Wikidata community:

• “Great tool ! The error detection is precious !”;

• “This is fantastic. :)”;

• “Nice work! Thanks for sharing”.

The feedback from the regular users and the Wikidata community was extremely positive and

confirmed our main design objectives.

Also we would like to remark that the application is used frequently in the users discussions.

Usually users share the link of our application with some class entity in the hierarchy to visualize

its neighbours and the whole path, in a particular discussion on the Wikidata platform. This

makes us happy to see that the system is really useful.

Chapter 6

Conclusions

The main goals of this thesis were to implement a system for taxonomy browsing and to provide

some tools and methods for ontology evaluation. As a basic scenario for this system, has been

chosen the Wikidata ontology, since there are no other systems which would accomplish these

tasks for it.

The biggest challenge for us was to find the appropriate solutions to combine in a single appli-

cation so many different functionalities and requirements. In Chapter 3 we described general

designing procedures about developing the application.

The first step toward our goals, was to build an infrastructure which would allow users to navi-

gate through the Wikidata taxonomy. Finding the best JavaScript libraries with the possibility to

construct a visual and structural representation of the class hierarchy, was a very important task.

Based on the chosen libraries, listed in Section 4.1, we implemented functionalities described

by the user stories elaborated in Section 3.2.

In order to provide some methods for ontology evaluation, we decided to divide the application

into two different components, to separate the basic tasks: data extraction from the Wikidata

repository, the possibility to navigate through the taxonomy, and to run the ontology evaluation.

For the Wikidata ontology verification, we elaborated several evaluation criteria which are ap-

plicable for this case. Based on them, we distinguish certain patterns that indicate the presence

of some errors or redundancies in the ontology (Section 3.3). This application should be very

useful to detect any possible errors that appear in the ontology, both for simple users and for the

Wikidata editors.

When the application was ready, we did a performance testing to see how useful it is. The

runtime results presented in Section 5.1, show how fast is the application in processing the data.

Despite the technical problems that we confronted at the beginning of its implementation, such

as very slow response time and running out of virtual memory, we improved our techniques to

49

Conclusions 50

avoid them and to reach our initial goals (Section 5.2). Finally, we could achieve very good

results, from minimising the maximal time for data processing from 4min 30sec to less than

30sec.

The possibility to navigate through the taxonomy of Wikidata, shows how the entities are placed

in the hierarchy. And from the ontology evaluation we have learned that the Wikidata ontology

contains a lot of issues that have not been discovered before and which need to be fixed to assess

the good quality of it.

6.1 Related Work

Our work is closely related to the work of Denny Vrandečić about the ontology evaluation

[Vrandečić, 2010]. He presents a theoretical framework and describes several methods which

are used to evaluate the web ontologies. Within this thesis we implemented some of his algo-

rithms and methods (see Section 2.3) which are applicable to the case of evaluation the Wikidata

ontology. Besides that, we designed our own algorithms (see Algorithms 1, 2, 3, and 4) and eval-

uation criteria (see Section 3.3) for the cases that we did not find in his work.

Unfortunately, the Vrandečić work about the ontology evaluation is one of the most recent works

that could be found. No other work is describing in more details the evaluation process and the

procedures that can be adapted and applied to the case of Wikidata, to achieve the goals that we

have.

As we know, there are numerous quality evaluation methods which have been suggested in

other literature. But only few of them have been properly designed, defined, implemented, and

experimentally verified. “The relation between evaluation methods and ontology quality criteria

is only badly understood and superficially investigated, if at all”, says [Vrandečić, 2010].

6.2 Future Work

The work in this thesis can be seen as the first step toward a complex system which can give the

possibility to browse a bigger taxonomy and to improve the quality verification of the Wikidata

ontology. This system can be used not only for the Wikidata ontology, but also can be adjusted

to any other web ontology.

In the following, we will outline briefly the potential future work, some of them merely represent

ideas which might be worth to consider, whereas others are concrete improvements or simply

open issues.

Bibliography 51

6.2.1 Open Issues and Optimization

First, the application which was implemented as a beta-version, has many issues that need to

be fixed or improved. The technical problems such as memory limit or timeout response, do

not allow us to use completely all the knowledge contained in the Wikidata ontology. It is still

required to do some improvements to the algorithms that we are using, to be able to use and

process a bigger quantity of data.

A possible improvement of the user interface would be required, in order to increase the usability

of the application in general. Possibly that some of the application features which are not used

at all by the users or are not understandable how to apply, need to be changed.

6.2.2 Extensions

Besides the taxonomy browsing or the ontology evaluation tasks that have been implemented

in the application, would be good to add additional features to make the system more attractive

and useful to the users. One of the future tasks is to integrate the Wikidata API services. This

would allow the accredited users to make changes to the Wikidata repository directly from our

application. For example, to rearrange “on-the-fly” the class entities in the class hierarchy or

to fix immediately any found errors or redundancies in the ontology, would be possible if to

implement such techniques.

On other side, the Wikidata API integration would be a difficult task to implement. The API

integration will become a security treat to the Wikidata system. Also, the API it’s not always a

very convenient way to use when multiple changes need to be done to the repository. So, this

implementation is open for discussions and future proposals.

Another future task that needs to be accomplished, is to add additional evaluation criteria to the

existing ones. More evaluation criteria will allow to discover from different perspectives any

possible problems in the ontology.

The implemented system can be adjusted to other scenarios where it can be used. We can use

the system to navigate through other class hierarchies, instead of the one which is created by

the class entities and their ‘subclass of’ and ‘instance of’ relations. For example, we can use

the power of the Wikidata ontology which includes a very large knowledge from different areas,

to extract the entities and relations which refer to the biological classification. In this way, we

can browse in our application the biological taxonomy which classifies all the groups of known

organisms. And also, we can evaluate it for several criteria.

Bibliography

Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language Overview.

W3C Recommendation, 2004. URL https://www.w3.org/TR/owl-features/.

Isabel Cruz, Stefan Decker, Jérôme Euzenat, and Deborah McGuinness, editors. The emerging

semantic web. Frontiers in artificial intelligence and applications. IOS press, Amsterdam

(NL), 2002. ISBN 1-58603-255-0.

Denny Vrandečić. Ontology Evaluation. PhD thesis, Karlsruhe Institute of Technology, 2010.

Wikidata.org. https://www.wikidata.org, Dec, 2015.

Tim Berners-Lee, Jim Hendler, and Ora Lassila. The semantic web. Scientific American, 2001.

Thomas R. Gruber. A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2):199–220, 1993.

Michael C. Daconta, Leo J. Obrst, and Kevin T. Smith. The Semantic Web. Wiley Publishing,

Inc., Indianapolis, Indiana, USA, 2003.

Karin K. Breitman, Marco Antonio Casanova, and Walter Truszkowski, editors. Semantic Web:

Concepts, Technologies and Applications. Springer, 2007.

W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview (Second Edi-

tion). W3C Recommendation, 2012. URL https://www.w3.org/TR/owl2-overview/.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz.

OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommendation, 2012a.

URL https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL Web Ontology Language

Guide. W3C Recommendation, 2004. URL https://www.w3.org/TR/owl-guide/.

Boris Motik, Peter F. Patel-Schneider, Bernardo Cuenca Grau, Ian Horrocks, Uli Sat-

tler, and Bijan Parsia. OWL 2 Web Ontology Language Direct Semantics (Sec-

ond Edition). W3C Recommendation, 2012b. URL http://www.w3.org/TR/2012/

REC-owl2-direct-semantics-20121211/.

53

https://www.w3.org/TR/owl-features/
https://www.wikidata.org
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
https://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/

Bibliography 54

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-

Schneider. The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press, New York, NY, USA, 2003.

Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Sebastian Rudolph.

OWL 2 Web Ontology Language Primer (Second Edition). W3C Recommendation, 2012.

URL https://www.w3.org/TR/2012/REC-owl2-primer-20121211/.

Wikidata Introduction. Wikidata Introduction. Wikidata.org, Dec, 2015. URL https://www.

wikidata.org/wiki/Wikidata:Introduction.

Wikidata Help. Items. Wikidata Help. Items. Wikidata.org, Dec, 2015. URL https://www.

wikidata.org/wiki/Help:Items.

Wikidata Help. About Data. Wikidata Help. About Data. Wikidata.org, Dec, 2015. URL

https://www.wikidata.org/wiki/Help:About_data.

Markus Krötzsch and Denny Vrandečić. Wikidata: A free collaborative knowledgebase. Com-

munications of the ACM, 57(10):78–85, 2014.

Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez, and Denny Vrandečić.

Introducing Wikidata to the Linked Data Web. Technische Universität Dresden, Germany,

2014.

Janez Brank, Marko Grobelnik, and Dunja Mladenić. A survey of ontology evaluation tech-

niques. Proceedings of 8th International Multi-Conference of the Information Society, pages

166–169, 2005.

Robert Porzel and Rainer Malaka. A task-based approach for ontology evaluation. Proceedings

of ECAI 2004 Workshop on Ontology Learning and Population, August 2004.

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web Tech-

nologies. Springer, 2010.

Harith Alani and Christopher Brewster. Metrics for ranking ontologies. Proceedings of the

4th International Workshop on Evaluation of Ontologies for the Web (EON2006) at the 15th

International World Wide Web Conference (WWW 2006), pages 24–30, 2006.

Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo. A technique

for drawing directed graphs. Software Engineering, IEEE Transactions on, 19:214–230, 1993.

https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.wikidata.org/wiki/Wikidata:Introduction
https://www.wikidata.org/wiki/Wikidata:Introduction
https://www.wikidata.org/wiki/Help:Items
https://www.wikidata.org/wiki/Help:Items
https://www.wikidata.org/wiki/Help:About_data

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Preliminaries
	2.1 The Semantic Web
	2.1.1 Taxonomy
	2.1.2 Ontologies
	2.1.3 OWL
	2.1.3.1 Semantics
	2.1.3.2 Entities
	2.1.3.3 Axioms

	2.2 Wikidata
	2.2.1 The Wikidata Repository
	2.2.2 The Wikidata Statements

	2.3 Ontology Evaluation
	2.3.1 Criteria
	2.3.2 Methods

	3 Application Design
	3.1 Components and Functionality
	3.2 User Stories
	3.3 Relation Properties Patterns and Examples

	4 Implementation
	4.1 Architecture and Technical Details
	4.2 Components
	4.3 Algorithms
	4.3.1 Cycles Detection
	4.3.2 Self-loops Detection
	4.3.3 Errors Detection for Relation Properties
	4.3.4 Redundancies Detection for Relation Properties
	4.3.5 Identifing classes which have more than 100 direct subclasses
	4.3.6 Root Classes

	5 Evaluation
	5.1 Performance
	5.1.1 The Frontend Component Performance Testing
	5.1.2 The Backend Component Performance Testing

	5.2 Technical Problems
	5.3 What we've learned about the Wikidata Ontology
	5.4 Feedback

	6 Conclusions
	6.1 Related Work
	6.2 Future Work
	6.2.1 Open Issues and Optimization
	6.2.2 Extensions

	Bibliography

