Complexity Theory Exercise 6: Diagonalization December 5, 2018

Exercise 6.1. Find the fault in the following proof of $P \neq NP$.

Assume that P = NP. Then SAT $\in P$ and thus there exists a $k \in \mathbb{N}$ such that SAT \in DTime (n^k) . Because every language in NP is polynomial-time reducible to SAT we have NP \subseteq DTime (n^k) . It follows that $P \subseteq$ DTime (n^k) . But by the Time Hierarchy Theorem there exist languages in DTime (n^{k+1}) that are not in DTime (n^k) , contradicting $P \subseteq$ DTime (n^k) . Therefore, $P \neq$ NP.

Exercise 6.2. Show the following.

- 1. $\text{TIME}(2^n) = \text{TIME}(2^{n+1})$
- 2. TIME $(2^n) \subset \text{TIME}(2^{2n})$
- 3. NTIME $(n) \subset PSPACE$

Exercise 6.3. Show that there exists A function that is not time-constructible.

Exercise 6.4. Consider the function pad: $\Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ defined as $pad(s, \ell) = s \#^j$, where $j = max(0, \ell - |s|)$. In other words, $pad(s, \ell)$ adds enough copies of # to the end of s so that the length is at least ℓ .

For some language $\mathbf{A} \subseteq \Sigma^*$ and $f \colon \mathbb{N} \to \mathbb{N}$ define $\mathsf{pad}(\mathbf{A}, f) = \{\mathsf{pad}(s, f(|s|)) \mid s \in \mathbf{A}\}.$

- 1. Show that if $\mathbf{A} \in \text{DTIME}(n^6)$, then $\text{pad}(\mathbf{A}, n^2) \in \text{DTIME}(n^3)$.
- 2. Show that if NEXPTIME \neq EXPTIME, then P \neq NP.
- 3. Show for every $\mathbf{A} \subseteq \Sigma^*$ and every $k \in \mathbb{N}$ that $\mathbf{A} \in \mathcal{P}$ if and only if $\mathsf{pad}(\mathbf{A}, n^k) \in \mathcal{P}$.
- 4. Show that $P \neq DSPACE(n)$.
- 5. Show that $NP \neq DSPACE(n)$.