
Theoretical Computer Science 802 (2020) 141–146
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note

One-variable logic meets Presburger arithmetic

Bartosz Bednarczyk

Institute of Computer Science, University of Wrocław, Joliot-Curie 15, 50-383 Wrocław, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 October 2018
Received in revised form 16 September
2019
Accepted 17 September 2019
Available online 23 September 2019
Communicated by D. Sannella

Keywords:
Finite satisfiability
Computational complexity
Decidability
Classical decision problem
Arithmetics

We consider the one-variable fragment of first-order logic extended with Presburger
constraints. The logic is designed in such a way that it subsumes the previously-known
fragments extended with counting, modulo counting or cardinality comparison and
combines their expressive powers. We prove NP-completeness of the logic by presenting
an optimal algorithm for solving its finite satisfiability problem.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that first-order logic FO cannot describe natural quantitative properties like parity or equicardinality of
sets. To solve this problem one can think about enlarging the language with special constructs, e.g., generalized quantifiers
like counting quantifiers, modulo counting quantifiers, majority quantifiers or the Härtig quantifier. However additional ex-
pressive power often comes with an increase in computational complexity. For example consider the two-variable fragment
of first order logic, FO2. It is known that FO2 becomes undecidable when cardinality comparison via Härtig or Rescher
quantifiers is allowed [8]. On the other hand its extension with counting quantifiers is decidable [7,12]. The decidability
status of FO2 with modulo counting quantifiers is currently unknown. Thus there is no hope to obtain a decidable extension
of FO2 which allows all of these features.

In this paper we take a closer look at the one-variable fragment of first-order logic, denoted here by FO1. The logic
is well-understood and its finite satisfiability is known to be only NP-complete. We are aware of three extensions of FO1

that differ in expressive power: C1, FO1
MOD and L1[I], see e.g. [14,3,8]. The mentioned logics extend FO1 with counting

quantifiers ∃≥k , modulo-counting quantifiers ∃=a(mod b) and the so-called Härtig quantifier I, respectively. The semantics
of the first two logics is very intuitive. For the third logic we define I(ϕ, ψ) to be true if the total number of elements
satisfying the formula ϕ is the same as the total number of elements satisfying ψ . It follows from [14] and [3] that the
finite satisfiability problem for C1 and FO1

MOD is NP-complete, even when the numbers in quantifiers are written in binary.
Moreover, a practical algorithm for deciding satisfiability of a fragment of C1 was implemented and tested in [6]. For the
third logic, namely L1[I] from [8], the authors of the paper stated that the logic is decidable but no proof or complexity
bounds were given.

E-mail address: bartosz.bednarczyk@cs.uni.wroc.pl.
https://doi.org/10.1016/j.tcs.2019.09.028
0304-3975/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2019.09.028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:bartosz.bednarczyk@cs.uni.wroc.pl
https://doi.org/10.1016/j.tcs.2019.09.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2019.09.028&domain=pdf

142 B. Bednarczyk / Theoretical Computer Science 802 (2020) 141–146

1.1. Our contribution

In this article we present a novel logic P1 which subsumes previously known logics with counting or cardinality compar-
ison, i.e., C1, FO1

MOD and L1[I] from [14,3,8]. Moreover the logic allows one to express percentage constraints. As an example
we can consider a property that the majority of elements of a model satisfies a given formula ϕ .

We obtain a tight NP upper bound for P1. The proof goes via a translation of formulae into a system of inequalities
and closely follows the techniques presented in [14]. However some technical details differ. As a by-product we fill a gap
concerning the complexity of L1[I].
1.2. Our motivations

Our main motivation is to see what the scope of the technique of Pratt-Hartmann [14] is for deciding finite satisfiability
for C1. Moreover, we would like to see how powerful a logic we can obtain while keeping the complexity reasonably low.
Last but not least, the proposed logic P1 is the core part of Presburger Modal Logic [5] and its NP-completeness can be used
to establish complexities for reasoning tasks of the family of Euclidean Presburger Modal Logics. A slight generalization of
the translation from [9] shows that their local and global satisfiability can be easily reduced to the finite satisfiability of P1.

We recently learned about the existence of QFBAPA [10], the quantifier-free fragment of Boolean Algebra with Presburger
Arithmetic. The logics can express similar properties and share the same complexity of satisfiability, namely NP-completeness.
Nevertheless, we strongly believe that the logic P1 is a very natural logic, arguably more elegant than QFBAPA, and the proof
technique used here is much easier to understand.

2. Preliminaries

We employ the standard terminology from model theory and linear algebra. We refer to structures with fraktur letters,
and to their universes with the corresponding Roman letters. We always assume that structures have non-empty universes.
Here we are interested in finite structures over a countable signature � consisting of unary relational symbols only.

Let L be an arbitrary logic. In the finite satisfiability problem for the logic L we ask whether an input formula ϕ from L
is finitely satisfiable, i.e., has a finite model.

2.1. Linear algebra and integer linear programming

By Zn we denote the set of all remainders modulo n, that is the set {0, 1, . . . , n−1}.
A linear inequality is an expression of the form t ≥ t′ , where t and t′ are linear terms. In this paper we are interested only

in linear inequalities with integer coefficients (written in binary). It is well known that solving systems of such inequalities
over N is in NP [4].

The following “sparse solution” lemma provides an upper bound on the minimum number of non-zero unknowns in
solutions of systems of linear inequalities:

Lemma 1 ([1]). Let E be a system of I inequalities with integer coefficients such that the absolute value of each coefficient from E
is bounded by C. If E has a solution over N , then it has also a solution over N with the number of non-zero unknowns bounded
by 2I log

(
2C

√
I
)

.

2.2. Syntax of the logic P1

In this article we propose an extension of a function-free one-variable fragment of first-order logic with counting terms
and Presburger constraints. We let P1 denote the formalism.

The main ingredients of formulae of P1 are counting terms tx [8]. Their intuitive role is to count the total number of
witnesses of a given formula featuring a single variable x. Such terms can be multiplied by integer constants and added
to each other. On the top level we allow for the comparison of values of counting-terms with a given threshold using a
greater-than operator ≥ and to test congruence modulo some number k using ≡k . More general formulae can be constructed
with Boolean connectives and by means of nesting.

The minimal syntax of the logic P1 is given by the following BNF grammar:

tx ::= tx + tx | a · �x[ϕ(x)]
ϕ ::= P (x) | ¬ϕ | ϕ ∧ ϕ | tx ≥ b | tx ≡c d

where P ∈ � is a unary relational symbol, a ∈Z \ {0} is a non-zero integer, b ∈N is a natural number, c ∈Z+ is a positive
integer and d ∈Zc is a remainder modulo c.

A counting term of the form a1 · �x[ϕ1] + . . . + an · �x[ϕn] is abbreviated by �n
i=1ai · �x[ϕi]. Note that all standard logical

connectives such as ∨, →, ↔ as well as other (in)equality symbols like <, >, ≤ and = can be easily defined using Boolean
combinations and constants. Hence, we will use them as abbreviations.

B. Bednarczyk / Theoretical Computer Science 802 (2020) 141–146 143
We write |ϕ| to denote the length of a formula ϕ , i.e., the number of bits required to encode ϕ as a string. We will
assume that all numbers appearing in ϕ are written in binary.

2.3. Semantics of the logic P1

The semantics of the logic P1 is a straightforward extension of the semantics of first-order logic. For formulae ϕ not
involving counting terms, the semantics �ϕ�M of ϕ in a model M is the same as in first-order logic. We extend it to
counting terms by defining ��x[ϕ(x)]�M to be the cardinality of the set {a ∈ M | M |= ϕ[a]}. Addition, multiplication by a
constant and comparison are treated in the obvious way.

2.4. Expressive power

We note here that P1 trivially extends the one-variable fragment of first-order logic. Moreover, the logic can capture a
scenario of threshold counting ∃≥kϕ(x) (i.e., C1 from [14]) as well as modulo counting ∃=a(mod b)ϕ(x) (i.e., FO1

MOD from [3]).
The logic also allows cardinality comparison, i.e., it can simulate the so-called Härtig and Rescher quantifiers from [8] and
percentage constraints, e.g. Ix.(ϕ(x), ψ(x)) can be encoded as �x[ϕ(x)] − �x[ψ(x)] = 0. Hence P1 can even express some
second-order properties.

2.5. Types and normal forms

Let τ be a finite signature, and following a standard terminology, we define an atomic 1-type over τ as a maximal
satisfiable set of atoms or negated atoms involving only the variable x. Usually we identify a 1-type with the conjunction of
all its elements. We note here that the number of all atomic 1-types is exponential in the size of τ .

When a formula ϕ is fixed, we often refer to its signature (i.e., the set of unary symbols occurring in ϕ) with τϕ . Then,
the set of all 1-types over τϕ is denoted by tpϕ and we refer to its elements with π

τϕ

1 , πτϕ

2 , . . . , πτϕ

|tpϕ | . Additionally, when
both a model M and a 1-type π are fixed, we define |π |M as the total number of elements from a structure M satisfying
a 1-type π .

Definition 1. We say that a formula ϕ ∈ P1 is flat, if:

ϕ =
n∧

i=1

⎛
⎝ ni∑

j=0

ai, j · �x[ϕi, j]
⎞
⎠
�i bi

where
�i is a comparison symbol, i.e.,
�i∈ {≤, ≥, ≡k| k ∈ N}, each ai, j ∈ Z \ {0} is a non-zero integer, each bi ∈ N is a natural
number and all formulae ϕi, j are free of counting terms.

The main purpose of introducing a flat form for P1 formulae is to avoid nesting of counting terms and to simplify
reasoning about satisfaction of a formula. The following lemma shows that every satisfiable P1 formula can be flattened
in NP:

Lemma 2. There exists a non-deterministic polynomial time procedure, taking as its input a P1 formula over a signature τ and pro-
ducing a flat formula ϕ′ over the same signature τ , such that ϕ is satisfiable iff the procedure has a run producing a satisfiable ϕ′ .

Sketch of proof. The proof goes in a standard fashion, similarly to the proof of Theorem 1 in [14]. The main idea of the algo-
rithm is to take the innermost expression e, from the original formula ϕ , of the form �ai�x[ϕi] ≥ a or �ai�x[ϕi] ≡b c. Since
we are designing an NP procedure and an expression e speaks only globally about the total number of elements, we can
guess whether e is satisfied or not. Then depending on a guess we replace e with � or ⊥ and we put, respectively, e or ¬e
in front of the formula. Additionally, in the case when ¬e contains a modulo constraint, we guess a proper remainder c′
and replace ¬�ai�x[ϕi] ≡b c with �ai�x[ϕi] ≡b c′ . We repeat the whole process until we obtain a flat formula. �
3. The finite satisfiability of P1

In this section we will show that the one-variable fragment of first-order logic remains NP-complete even if we extend
it with Presburger constraints. As we mentioned in the beginning of the paper, we are interested only in finite models since
e.g. modulo constraints do not make sense over infinite structures. Our proof will strongly rely on techniques presented
in [14], namely reducing our problem to integer linear programming.

144 B. Bednarczyk / Theoretical Computer Science 802 (2020) 141–146
3.1. Overview of the method

Throughout this section, we fix a satisfiable P1 formula ϕ . Due to Lemma 2 we can always produce a flat version of ϕ ,
thus we assume that ϕ is flat.

We will first sketch our approach. A crucial observation leading to a simple description of P1 models is that the logic
cannot speak about any kind of connection between two distinct elements of a model. Thus any model M of ϕ can be
described up to isomorphism by the information about the total number of elements of given 1-types. We call such infor-
mation a characteristic vector χϕ . It could be defined in the following way:

χϕ
def=

(
|πτϕ

0 |M, |πτϕ

1 |M, . . . , |πτϕ

|tpϕ ||M
)

,

where the i-th element of χϕ is simply the total number of elements from M of the i-th 1-type.
Our goal is to translate a formula ϕ into a system of inequalities and congruences E , whose solution will be a tuple χϕ .

Then, we will get rid of congruences, i.e., replace each of them with inequalities, at the expense of introducing polynomially
many fresh variables. The obtained system E ′ , as well as some of its coefficients, will be exponential due to the binary
encoding of numbers. Since integer linear programming is in NP [4] we will obtain an NExpTime upper bound. To improve
the complexity of the algorithm, we will use Lemma 1, which states that if there is a solution for E , there is also a “sparse”
solution, i.e., assigning only polynomially many non-zero values to unknowns.

It is worth pointing out that due to the presence of exponential coefficients we cannot easily adapt the lemma about
small solutions from [14]. The technique we use, namely Lemma 1, is more sophisticated and requires a more difficult proof.
We will use it as a black box.

3.2. A translation into a system of inequalities and congruences

We are going to describe a potential model M of the formula ϕ in terms of unknowns and inequalities. In the desired
system of inequalities, we will have exponentially many variables xk , where each xk corresponds to |πk|M in a characteristic
vector and each inequality or congruence corresponds to a threshold given in some conjunct from ϕ .

Let ϕi be the i-th conjunct from ϕ , i.e., ϕi =
(∑ni

j=0 ai, j · �x[ϕi, j]
)

�i bi . Then, for every 1-type πk we will associate an
indicator 1i, j,k , whose intuitive role will be to tell us whether the k-th type πk is compatible with the formula ϕi, j . More
formally:

1i, j,k=
{

1, if |= πk → ϕi, j
0, otherwise

With the above definition it is not hard to see that the value of a counting term �x[ϕi, j] is equal to �
|tpϕ |
k=1 1i, j,k · xk . By

multiplying such value with constants ai, j and summing it over j, the whole formula ϕi can be represented as the following
inequality or congruence:⎛

⎝ ni∑
j=0

ai, j ·
(
�

|tpϕ |
k=1 1i, j,k · xk

)⎞
⎠
�i bi

After rearranging the left-hand side of the above expression, we obtain a linear term with unknowns x1, x2, . . . , x|tpϕ | . Note
that coefficients in front of variables xk are exponential due to the binary encoding. We construct a system of inequalities
and congruences Eϕ by translating each conjunct ϕi from ϕ in the presented way.

The following lemma follows directly from the fact that each model M of P1 formula can be described up to isomorphism
by a characteristic vector and from the construction of Eϕ .

Lemma 3. Each solution of Eϕ is a characteristic vector of some model M of a P1 formula ϕ .

3.3. Getting rid of congruences

The obtained system Eϕ can still contain linear terms with congruences. We will show a way how to replace them with
inequalities. Let us assume that the i-th equation of the system Eϕ is a congruence of the following form:

ai
1 · x1 + ai

2 · x2 + . . . + ai|tpϕ | · x|tpϕ | ≡ki bi

For any natural number Si , there exists a remainder ri ∈Zki and a quotient qi ∈N , such that Si = ri + qiki . Thus we only
need to ensure that the remainder ri is equal to bi . Since we do not know the precise value of the quotient qi , we introduce
a fresh variable yi to represent it. We can rewrite the above congruence as

∑|tpϕ |
ai = bi + ki · yi , which is equivalent to:
j=1 j

B. Bednarczyk / Theoretical Computer Science 802 (2020) 141–146 145
ai
1 · x1 + ai

2 · x2 + . . . + ai|tpϕ | · x|tpϕ | − bi − ki · yi ≤ 0,

ai
1 · x1 + ai

2 · x2 + . . . + ai|tpϕ | · x|tpϕ | − bi − ki · yi ≥ 0,

Let E ′
ϕ be the system of inequalities obtained from Eϕ by exhaustive elimination of all congruences. Since each step of

the “congruence-elimination” procedure described above is sound, together with Lemma 3 we establish:

Lemma 4. Each solution of E ′
ϕ is a characteristic vector of some model M of a P1 formula ϕ .

One can observe that the number of equations in E ′
ϕ is bounded by 2n (i.e., where n is the number of conjuncts from

flat ϕ), which is clearly of polynomial size in |ϕ|. Integer coefficients of the system E ′
ϕ can be bounded by the sum of

the absolute values of the numbers occurring in the formula ϕ . Since every number can be exponential in |ϕ| (due to
the binary encoding) and the mentioned sum contains at most polynomially many elements, we can conclude that each
coefficient from the system E ′

ϕ is bounded exponentially in |ϕ|.

3.4. Algorithm

By using Lemma 1 we know that the minimum number of non-zero unknowns in a sparse solution of E ′
ϕ can be bounded

by a polynomial function of |ϕ|. Hence we non-deterministically guess which unknowns will be non-zero and we construct
a corresponding system E ′′

ϕ directly for them. The obtained system has polynomial size in |ϕ|, thus it is solvable in NP.
Below we present a non-deterministic polynomial time algorithm for testing whether a given P1 formula has a finite

model.

Procedure 1: Satisfiability test for P1.
Input: A formula ϕ ∈ P1

1 guess ϕ′ – a flat version of ϕ // in NP, Lemma 2
2 guess which 1-types are realized at least once. // polynomially many, Lemma 1
3 Write the system of inequalities E ′′

ϕ for the guessed 1-types. // of poly size
4 Return True iff E ′′

ϕ has a solution over N . // in NP [4]

To ensure the correctness of the algorithm, we prove the following lemma:

Lemma 5. A formula ϕ ∈ P1 has a finite model if and only if Procedure 1 returns True.

Proof. We first assume that an input formula ϕ has a finite model. Therefore, we can obtain a flat finitely satisfiable
formula ϕ′ (by Lemma 2) and describe its model in terms of linear inequalities and congruences Eϕ′ (by Lemma 3). Clearly
the system has a solution over N (e.g., a characteristic vector χϕ′), hence also suitable choices for E ′

ϕ′ and E ′′
ϕ′ have solutions.

Hence Procedure 1 returns True.
Conversely, suppose that Procedure 1 returns True for its input formula ϕ . We construct a model for ϕ . We do it simply

by taking a proper number of realizations of each 1-type, exactly as described in the solution of the constructed system of
linear inequalities E ′′

ϕ′ . �
Using the above lemma, one can conclude the following theorem:

Theorem 6. The finite satisfiability problem for P1 is NP-complete.

Proof. The lower bound comes trivially from Boolean satisfiability problem or from the earlier works on C1 [14]. For the
upper bound it is enough to note that Procedure 1 works in NP. It follows from (i) the fact that flattening can be done
in NP (Lemma 2), (ii) correspondence between systems of inequalities and characteristic vectors of P1 models (Lemma 3),
(iii) existence of sparse solutions of systems of inequalities (Lemma 1), and (iv) an NP algorithm for solving systems of
inequalities with polynomially many unknowns [4]. �
4. Conclusions and future work

4.1. Conclusions

In this article we proposed a new logic called P1 which significantly increase the expressive power of the one-variable
fragment of first-order logic. The obtained logic generalizes previously known concepts of counting, i.e., threshold count-
ing, modulo counting and cardinality comparison. By using a generic method of transforming a formula into a system of

146 B. Bednarczyk / Theoretical Computer Science 802 (2020) 141–146
inequalities, we prove that every satisfiable P1 formula can be represented as a system of inequalities of polynomial size.
By using a well-known theorem that integer linear programming is in NP we obtained a tight NP upper bound for finite
satisfiability for the logic P1. This proves that the complexity of P1 with expressive numerical constraints does not differ
from the classical one-variable fragment of FO, or even from Boolean satisfiability, which is rather surprising.

4.2. Future work

For future work we would like to investigate other classical decidable fragments of first-order logic and see how their
complexity and decidability status behaves after adding some form of Presburger constraints.

One candidate could be the two-variable fragment of first-order logic FO2. However in the presence of cardinality com-
parison the logic becomes undecidable [8].

Another prominent logic is a two-variable fragment of the guarded fragment of first-order logic GF2, which is known
to be decidable even in the presence of counting quantifiers [13]. However, even adding modulo constraints to the logic is
a challenging task and currently we do not even have a decidability proof. On the other hand, some decidable fragments
of GF2 extended with Presburger constraints are known. We already know that the complexity of the modal logic K or
the description logic ALC do not differ from their Presburger versions, see [2,5,11]. We believe that to obtain tight com-
plexity bounds for Presburger GF2 one should start with a more modest goal, i.e., to establish the exact complexity of
Presburger ALCI , namely an extension of ALC with inverse relations.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by the Polish Ministry of Science and Higher Education program “Diamentowy Grant” no. DI2017
006447. The author would also like to thank the two anonymous reviewers as well as Witold Charatonik, Emanuel Kieroński
and Antti Kuusisto for their careful proofreading and for pointing out numerous grammatical mistakes.

References

[1] Iskander Aliev, Jesús A. De Loera, Friedrich Eisenbrand, Timm Oertel, Robert Weismantel, The support of integer optimal solutions, SIAM J. Optim.
28 (3) (2018) 2152–2157.

[2] Franz Baader, A new description logic with set constraints and cardinality constraints on role successors, in: Clare Dixon, Marcelo Finger (Eds.), Pro-
ceedings of the Frontiers of Combining Systems – 11th International Symposium, FroCoS 2017, Brasília, Brazil, September 27–29, 2017, in: Lecture
Notes in Computer Science, vol. 10483, Springer, 2017, pp. 43–59.

[3] Bartosz Bednarczyk, On one variable fragment of first order logic with modulo counting quantifier, in: Karoliina Lohiniva, Johannes Wahle (Eds.), ESSLLI
2017 Student Session, 29th European Summer School in Logic, Language & Information, Toulouse, France, July 17–28, 2017, pp. 7–13.

[4] I. Borosh, M. Flahive, B. Treybig, Small solutions of linear Diophantine equations, Discrete Math. 58 (3) (1986) 215–220.
[5] Stéphane Demri, Denis Lugiez, Complexity of modal logics with Presburger constraints, J. Appl. Log. 8 (3) (2010) 233–252.
[6] Marcelo Finger, Glauber De Bona, Algorithms for Deciding Counting Quantifiers over Unary Predicates, in: Satinder P. Singh, Shaul Markovitch (Eds.),

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, California, USA, February 4–9, AAAI Press, 2017, pp. 3878–3884.
[7] Erich Grädel, Martin Otto, Eric Rosen, Two-variable logic with counting is decidable, in: Proceedings, 12th Annual IEEE Symposium on Logic in Com-

puter Science, Warsaw, Poland, June 29–July 2, IEEE Computer Society, 1997, pp. 306–317.
[8] Erich Grädel, Martin Otto, Eric Rosen, Undecidability results on two-variable logics, Arch. Math. Log. 38 (4–5) (1999) 313–354.
[9] Yevgeny Kazakov, Ian Pratt-Hartmann, A note on the complexity of the satisfiability problem for graded modal logics, in: Proceedings of the 24th

Annual IEEE Symposium on Logic in Computer Science, LICS 2009, Los Angeles, CA, USA, August 11–14, IEEE Computer Society, 2009, pp. 407–416.
[10] Viktor Kuncak, Martin C. Rinard, Towards efficient satisfiability checking for boolean algebra with presburger arithmetic, in: Frank Pfenning (Ed.),

Proceedings of the 21st International Conference on Automated Deduction, CADE-21, Bremen, Germany, July 17–20, in: Lecture Notes in Computer
Science, vol. 4603, Springer, 2007, pp. 215–230.

[11] Clemens Kupke, Dirk Pattinson, Lutz Schröder, Reasoning with global assumptions in arithmetic modal logics, in: Adrian Kosowski, Igor Walukiewicz
(Eds.), Fundamentals of Computation Theory – 20th International Symposium, Proceedings, FCT 2015, Gdańsk, Poland, August 17–19, 2015, in: Lecture
Notes in Computer Science, vol. 9210, Springer, 2015, pp. 367–380.

[12] Leszek Pacholski, Wieslaw Szwast, Lidia Tendera, Complexity results for first-order two-variable logic with counting, SIAM J. Comput. 29 (4) (2000)
1083–1117.

[13] Ian Pratt-Hartmann, Complexity of the guarded two-variable fragment with counting quantifiers, J. Log. Comput. 17 (1) (2007) 133–155.
[14] Ian Pratt-Hartmann, On the computational complexity of the numerically definite syllogistic and related logics, Bull. Symb. Log. 14 (1) (2008) 1–28.

http://refhub.elsevier.com/S0304-3975(19)30579-1/bib416C6965764C454F573138s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib416C6965764C454F573138s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4261616465723137s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4261616465723137s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4261616465723137s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4265646E6172637A796B2D4553534C4C49s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4265646E6172637A796B2D4553534C4C49s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib426F726F7368616E6454726579626967s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib44656D72694C3130s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib46696E676572423137s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib46696E676572423137s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib47726164656C4F523937s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib47726164656C4F523937s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib47726164656C4F523939s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4B617A616B6F76503039s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4B617A616B6F76503039s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4B756E63616B523037s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4B756E63616B523037s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4B756E63616B523037s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4B75706B6550533135s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4B75706B6550533135s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib4B75706B6550533135s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib506163686F6C736B6953543030s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib506163686F6C736B6953543030s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib50726174742D486172746D616E6E3037s1
http://refhub.elsevier.com/S0304-3975(19)30579-1/bib5072617474486172746D616E6E3038s1

	One-variable logic meets Presburger arithmetic
	1 Introduction
	1.1 Our contribution
	1.2 Our motivations

	2 Preliminaries
	2.1 Linear algebra and integer linear programming
	2.2 Syntax of the logic P1
	2.3 Semantics of the logic P1
	2.4 Expressive power
	2.5 Types and normal forms

	3 The ﬁnite satisﬁability of P1
	3.1 Overview of the method
	3.2 A translation into a system of inequalities and congruences
	3.3 Getting rid of congruences
	3.4 Algorithm

	4 Conclusions and future work
	4.1 Conclusions
	4.2 Future work

	Acknowledgements
	References

